首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild turkeys (Meleagris gallopavo) use a polygynous mating system whereby males engage in multiple courtship behaviors, including vocalizations (gobbling) to attract females and compete with other males for breeding opportunities. Males must balance the risk of courtship behaviors with the reproductive potential of each courtship behavior. Male turkeys are primarily hunted during the reproductive period, so the associated risk of courtship behaviors is increased. Many state agencies attempt to set hunting season frameworks that maximize hunter satisfaction by allowing hunting when gobbling activity is greatest and most females are theoretically incubating nests, but the relationship between gobbling activity and nesting phenology is unclear. We used autonomous recording units and global positioning system transmitters to monitor gobbling activity by male turkeys and reproductive behaviors of female turkeys in the Piedmont region of Georgia, USA. We used 13,177 gobbles, behavioral data from 82 females during the reproductive season, and daily estimates of harvest of males by hunters to examine relationships between daily gobbling activity, cumulative removal of males, and reproductive behaviors (laying, incubating) of females during 2017–2018. We observed a weak negative relationship between daily gobbling activity and gobbling activity the following day. As the reproductive season progressed, gobbling activity decreased. As the proportion of females engaged in laying or incubating behaviors increased, expected daily gobbling activity increased. Conversely, we observed that hunting and removal of males had a negative effect on daily gobbling activity, and this effect was disproportionately greater than the positive effect of female reproductive behaviors. Our findings suggest that hunting and removal of males are important determinants of gobbling activity, and that corresponding reductions in gobbling activity may have mediating effects on the mating system of wild turkeys. © 2019 The Wildlife Society.  相似文献   

2.
ABSTRACT Concealment cover is important for ground-roosting wild turkey (Meleagris gallopavo) poults immediately following hatch during the vulnerable, preflight stage. We compared concealment cover resources selected at ground roosts to those of nest sites and available resources for Merriam's turkeys (Meleagris gallopavo merriami) in the Black Hills of South Dakota, USA. Females with preflight poults selected ground roosts that were similar in structure to nest sites. Ground roosts and nests were greater in visual obstruction (unit odds ratios ≥1.19) than random sites. However, ground roosts were closer to meadow-forest edges than either nests or random sites (unit odds ratios ≤0.98). Structure at ground roosts may provide visual protection from predators, and management for shrub vegetation or woody debris along meadow-pine forest ecotones will provide cover for Merriam's turkey broods.  相似文献   

3.
Extensive restoration and translocation efforts beginning in the mid‐20th century helped to reestablish eastern wild turkeys (Meleagris gallopavo silvestris) throughout their ancestral range. The adaptability of wild turkeys resulted in further population expansion in regions that were considered unfavorable during initial reintroductions across the northern United States. Identification and understanding of species distributions and contemporary habitat associations are important for guiding effective conservation and management strategies across different ecological landscapes. To investigate differences in wild turkey distribution across two contrasting regions, heavily forested northern Wisconsin, USA, and predominately agricultural southeast Wisconsin, we conducted 3050 gobbling call‐count surveys from March to May of 2014–2018 and used multiseason correlated‐replicate occupancy models to evaluate occupancy–habitat associations and distributions of wild turkeys in each study region. Detection probabilities varied widely and were influenced by sampling period, time of day, and wind speed. Spatial autocorrelation between successive stations was prevalent along survey routes but was stronger in our northern study area. In heavily forested northern Wisconsin, turkeys were more likely to occupy areas characterized by moderate availability of open land cover. Conversely, large agricultural fields decreased the likelihood of turkey occupancy in southeast Wisconsin, but occupancy probability increased as upland hardwood forest cover became more aggregated on the landscape. Turkeys in northern Wisconsin were more likely to occupy landscapes with less snow cover and a higher percentage of row crops planted in corn. However, we were unable to find supporting evidence in either study area that the abandonment of turkeys from survey routes was associated with snow depth or with the percentage of agricultural cover. Spatially, model‐predicted estimates of patch‐specific occupancy indicated turkey distribution was nonuniform across northern and southeast Wisconsin. Our findings demonstrated that the environmental constraints of turkey occupancy varied across the latitudinal gradient of the state with open cover, snow, and row crops being influential in the north, and agricultural areas and hardwood forest cover important in the southeast. These forces contribute to nonstationarity in wild turkey–environment relationships. Key habitat–occupancy associations identified in our results can be used to prioritize and strategically target management efforts and resources in areas that are more likely to harbor sustainable turkey populations.  相似文献   

4.
5.
In recent years, there have been increasing efforts to understand effects of prescribed fire on population dynamics of wild turkeys (Meleagris gallopavo; turkeys) in pine (Pinus spp.) forests. Although distribution of turkeys is not limited to pine forests, these forests provide nesting and brood-rearing habitat throughout the southeastern United States. Previous studies have investigated direct (e.g., nest loss to fire) and indirect (e.g., nest- and brood-site selection) effects of prescribed fire, but little is known about how turkeys are influenced by the spatial scale and shape of prescribed fire. We constructed an individual-based model (IBM) with landscapes of 2 burn unit shapes and 17 spatial scales. We used telemetry data obtained from global positioning system-marked female turkeys to replicate movement behaviors of turkeys within the model. We hypothesized that use of units burned during the current year (<1 yr) would decrease as scale of fires increased, and that shape of burn units would influence use by turkeys. Spatial scale most influenced turkey use; the greatest use was in burned stands of approximately 23 ha in size, whereas least use was associated with burned stands >1,269 ha. At a spatial scale of 23 ha, the daily percent use of rectangular burn units was 7% greater than square-shaped burn units. Likewise, daily percent use of rectangular burn units was 34% greater than square-shaped burn units at a spatial scale of 1,269 ha. When burn units were rectangular-shaped, daily percent use decreased by 48% as the spatial extent of the fires increased from 23 ha to 203 ha. Likewise, when burn units were square-shaped, turkey use decreased by 49% as spatial extent of fires increased from 23 ha to 203 ha. Our findings suggest the importance of managing forested landscapes with prescribed fires not exceeding approximately 200 ha if wild turkeys are a management concern. © 2020 The Wildlife Society.  相似文献   

6.
ABSTRACT We estimated loss of butt-end leg bands on male wild turkeys (Meleagris gallapavo) captured in New York, Ohio, and Pennsylvania (USA) during December-March, 2006–2008. We used aluminum rivet leg bands as permanent marks to estimate loss of regular aluminum, enameled aluminum, anodized aluminum, and stainless steel butt-end leg bands placed below the spur. We used band loss information from 887 turkeys recovered between 31 days and 570 days after release ( = 202 days). Band loss was greater for turkeys banded as adults (>1 yr old) than juveniles and was greater for aluminum than stainless steel bands. We estimated band retention was 79–96%, depending on age at banding and type of band, for turkeys recovered 3 months after release. Band retention was <50% for all age classes and band types 15 months after banding. We concluded that use of butt-end leg bands on male wild turkeys is inappropriate for use in mark-recapture studies.  相似文献   

7.
Abstract: We evaluated brood sex ratio (BSR) variation in Rio Grande wild turkeys (RGWT; Meleagris gallopavo intermedia) in the Edwards Plateau and South Texas Plains of Texas, USA, during 2005-2006. Offspring sex was determined from DNA extracted from tissue biopsies of embryos from unhatched eggs or vascular tissue from eggshells of hatched and depredated eggs. Sex ratio across all eggs was 56.3% male (135/240; X21 = 3.75, P = 0.053). We found that mean population growth rate based on a population simulation with BSR at unity averaged 1.02 (range = 0.924-1.058), whereas it declined to 0.978 (range = 0.816-1.037) using BSR estimates from our study. Although our statistical analyses did not detect BSRs different from unity in BSR, our simulation modeling demonstrated that BSR variation caused biologically significant differences in mean population growth rates. Even though the biological mechanism controlling primary sex ratio remains unknown, our estimates of BSR should allow managers to more reliably predict population dynamics insuring viable RGWT populations across Texas.  相似文献   

8.
Abstract: Wild turkey (Meleagris gallopavo) broods spend the first several days of life on the ground until poult flight capabilities are attained. This is a critical period of wild turkey life history, with poult survival ranging from 12% to 52%. We measured vegetation in plots used by Rio Grande wild turkey (M. g. intermedia) preflight broods at 4 sites in southwest Kansas and the Texas Panhandle, USA, to determine microhabitat selection for ground roosting and to determine if microhabitat was related to poult survival. Hens selected ground-roost locations with more visual obstruction from multiple observation heights than random sites. Plots surrounding ground roosts had 1) greater visual obstruction; 2) increased tree decay; 3) higher percent grass, shrub, litter, and forb cover; and 4) lower percent bare ground cover than random sites. Grass, shrubs, and downed trees appeared to provide desired cover for ground-roosting broods. Poult survival increased with age of poult, size of brood, and density of shrubs 1–2 m tall. Plots used by broods <10 days old with above average survival contained more visual obstruction and shrubs than plots used by broods 10–16 days old with above average survival, signifying a shift in habitat use by successful broods as poults attain flight abilities. Density of shrubs 1–2 m tall in brood-use areas appears to be important for poult survival to 16 days of age on southern Great Plains rangeland habitats. Ground-level vegetative cover appears to be a significant factor in preflight poult survival. Provisions of ground-level vegetative cover should be considered during wild turkey brooding periods where increased poult survival is desired.  相似文献   

9.
Abstract: Intensive pine (Pinus spp.) management is a dominant form of forest management in the southeastern United States. Previous research has shown that managed pine forests provide suitable habitat for eastern wild turkeys (Meleagris gallopavo silvestris), but little research has examined seasonal habitat selection for female wild turkeys from a landscape perspective, particularly within managed pine landscapes. Therefore, we used a long-term (1986-1993) data set to describe seasonal habitat selection by female wild turkeys, using an information-theoretic approach from a landscape perspective, on an intensively managed pine landscape. Habitat use patterns during preincubation and autumn-winter were indicative of female wild turkeys moving between a bottomland hardwood-agricultural field complex during autumn-winter and upland managed pine stands during the remainder of the year. During spring and summer, female wild turkeys used landscapes primarily composed of intensively managed pine, including thinned and burned stands and roadsides. Our results confirm results of short-term, stand-based habitat analyses on our study area. We recommend variable fire return intervals of 3 to 7 years to improve habitat conditions for wild turkeys within intensively managed pine forests. Further research is needed to examine management actions, such as thinning, prescribed fire, and herbicide use, within the context of wild turkey use of intensively managed pine landscapes.  相似文献   

10.
Abstract: There is interest in expanding eastern wild turkey (Meleagris gallopavo silvestris) populations north of their current range. We hypothesized that winter survival and food availability are primary determinants in setting the northern extent of wild turkey distribution. To test our hypothesis, we translocated wild turkey females north of their present range into central Minnesota, USA, and compared survival in areas with supplemental food in the form of corn food plots versus areas with no supplemental food. During 2 winters with below-average snow, winter survival was higher for females with supplemental food. In one winter with above-average snow depths, survival was extremely low even with supplemental food. Supplemental food could augment survival during mild winters if wildlife managers arrange with farmers to, annually, retain standing corn near roosting habitat, but food plots may only partially offset effects of deep snow. Managers should critically evaluate northern habitats, long-term costs of sustained feeding, and potential outcomes of concentrating animals and introducing wild animals into new ecosystems. Winter survival may delimit the northern range of wild turkeys, though annual survival rates may also be important and need further research.  相似文献   

11.
Abstract: The southeastern portion of the Edwards Plateau of Texas, historically a stronghold of Rio Grande wild turkeys (Meleagris gallopavo intermedia), has seen a decline in turkey numbers since the 1970s. Because adult and juvenile survival are key parameters affecting turkey population dynamics, we used radiotagged individuals to compare Rio Grande wild turkey survival in areas of suspected decline versus stable portions of the Edwards Plateau during 2001–2003. Reproductive period (breeding or nonbreeding) had an impact on survival, but differences in age, sex, or region did not influence survival. Model averaged estimates of monthly survival were 0.97 (SE = 0.005) for nonbreeding periods and 0.96 (SE = 0.007) for breeding periods. Our results indicate juvenile and adult survival in the declining areas was similar to survival in the stable areas of the Edwards Plateau. This suggests causes of the decline might be associated with differences during other life-history stages, such as nest success or poult survival, although we cannot rule out the possibility juvenile or adult survival contributed to the decline in the past. This situation demonstrates why wildlife managers should be cognizant of the implications of initiating long-term monitoring programs after changes in population status occur, rather than initiating them in expectation of such changes.  相似文献   

12.
13.
ABSTRACT We recorded telemetry locations from 1,129 radiotagged turkeys (Meleagris gallopavo intermedia) on 4 study areas in the Texas Panhandle and southwestern Kansas, USA, from 2000 to 2004. Analyses of telemetry locations indicated both sexes selected riparian vegetative zones. Females did not select grazed or nongrazed pastures for daily movements. However, females did select nongrazed pastures for nest sites on 2 study areas and males selected for grazed pastures at one study area during the breeding season. We compared nest sites (n = 351) to random sites using logistic regression, which indicated height of visual obstruction, percent canopy cover, and percent bare ground provided the highest predictive power (P ≤ 0.003) for characteristics describing nest-site selection. Nest-site vegetative characteristics between vegetative zones differed primarily in composition: upland zone nest sites had more (P ≤ 0.001) shrubs and riparian zone nest sites had more (P ≤ 0.001) grass. There were no differences in measured nest site vegetative characteristics between pasture types, but there were differences between available nesting cover in grazed and nongrazed pastures. Random plots in grazed pastures had less grass cover (P ≤ 0.001) and more bare ground (P = 0.002). Because of cattle impacts on average grass height and availability, grazing would likely have the highest impact on nesting in riparian zones due to turkey use of grass as nesting cover. An appropriate grazing plan to promote Rio Grande turkey nesting habitat would include grazing upland zones in the spring, when it likely has little impact on nesting-site selection, and grazing riparian zones following breeding season completion. Grazing at light to moderate intensities with periods of rest did not affect male turkey pasture use and may have continued to maintain open areas used by male turkeys for displaying purposes.  相似文献   

14.
From 1969 through 1972, 605 wild turkeys (Meleagris gallopavo Linnaeus) from 10 localities in Florida were examined for blood protozoans. The prevalence in turkeys more than a month old was 84% for Haemoproteus meleagridis Levine, 1961 and 72% for Leucocytozoon smithi Laveran and Lucet, 1905. Sixty-three percent of the birds were infected by both parasites. Infections were most prevalent in juveniles 8–12 months of age. No infection of H. meleagridis or L. smithi was found in 111 poults younger than 35 days. Prevalences were similar in both sexes. Haemoproteus meleagridis was more prevalent (87%) in the southern part of the state; L. smithi was more prevalent (75%) in the north. The prevalence of H. meleagridis did not change during the 4 year period, but L. smithi decreased markedly in 1971, a year of low rainfall. None of the 605 blood films was positive for Plasmodium, but 24 (75%) of 32 blood samples were found by subinoculation technics to be positive for a species of Plasmodium morphologically similar to P. durae Herman, 1941. No trypanosomes were seen on the 605 blood films or in bone marrow cultures (saline-neopeptone-blood) made from 11 turkeys.  相似文献   

15.
Abstract: Although previous research and theory has suggested that wild turkey (Meleagris gallopavo) populations may be subject to some form of density dependence, there has been no effort to estimate and incorporate a density-dependence parameter into wild turkey population models. To estimate a functional relationship for density dependence in wild turkey, we analyzed a set of harvest-index time series from 11 state wildlife agencies. We tested for lagged correlations between annual harvest indices using partial autocorrelation analysis. We assessed the ability of the density-dependent theta-Ricker model to explain harvest indices over time relative to exponential or random walk growth models. We tested the homogeneity of the density-dependence parameter estimates (θ) from 3 different harvest indices (spring harvest no. reported harvest/effort, survey harvest/effort) and calculated a weighted average based on each estimate's variance and its estimated covariance with the other indices. To estimate the potential bias in parameter estimates from measurement error, we conducted a simulation study using the theta-Ricker with known values and lognormally distributed measurement error. Partial autocorrelation function analysis indicated that harvest indices were significantly correlated only with their value at the previous time step. The theta-Ricker model performed better than the exponential growth or random walk models for all 3 indices. Simulation of known parameters and measurement error indicated a strong positive upward bias in the density-dependent parameter estimate, with increasing measurement error. The average density-dependence estimate, corrected for measurement error ranged 0.25 ≤ θC ≤ 0.49, depending on the amount of measurement error and assumed spring harvest rate. We infer that density dependence is nonlinear in wild turkey, where growth rates are maximized at 39-42% of carrying capacity. The annual yield produced by density-dependent population growth will tend to be less than that caused by extrinsic environmental factors. This study indicates that both density-dependent and density-independent processes are important to wild turkey population growth, and we make initial suggestions on incorporating both into harvest management strategies.  相似文献   

16.
Abstract Many current wild turkey (Meleagris gallopavo) harvest models assume density-independent population dynamics. We developed an alternative model incorporating both nonlinear density-dependence and stochastic density-independent effects on wild turkey populations. We examined model sensitivity to parameter changes in 5% increments and determined mean spring and fall harvests and their variability in the short term (3 yr) and long term (10 yr) from proportional harvesting under these conditions. In the long term, population growth rates were most sensitive to poult:female ratios and the form of density dependence. The nonlinear density-dependent effect produced a population that maximized yield at 40% carrying capacity. The model indicated that a spring or fall proportional harvest could be maximized for fall harvest rates between 0% and 13% of the population, assuming a 15% spring male harvest and 5% spring illegal female kill. Combined spring and fall harvests could be maximized at a 9% fall harvest, under the same assumptions. Variability in population growth and harvest rates increased uncertainty in spring and fall harvests and the probability of overharvesting annual yield, with growth rate variation having the strongest effect. Model simulations suggested fall harvest rates should be conservative (≤9%) for most management strategies.  相似文献   

17.
Abstract: Synchrony is an important component of wildlife population dynamics because it describes spatial pattern in temporal population fluctuations. The strength and spatial extent of synchrony can provide information about the extrinsic and intrinsic forces that shape population structure. Wild turkey (Meleagris gallopavo silvestris) populations undergo annual fluctuations, possibly due to variation in weather during the reproductive season. To determine if spring weather plays a role in synchronizing wild turkey populations, we used a modified Mantel-type spatial autocorrelation procedure to measure the synchrony in fall wild turkey harvest data collected in 443 townships from 1990 to 1995 and compared this to the pattern of synchrony in spring weather variables (May rainfall and temp) over the same period. We measured correlation using Spearman correlation coefficients between the total fall harvests from 1990 to 1995 for each pair of townships, and sorted pairs into 6 50-km distance intervals. We calculated a mean correlation coefficient for each interval and estimated its P-value using resampling. We found moderately significant synchrony in the fall harvest (rs = 0.12-0.34, P < 0.008) among township pairs <150 km apart, but no significant synchrony beyond this distance. In contrast, both May temperature (r = 0.82-0.90, P < 0.001) and rainfall (r = 0.49-0.76, P < 0.001) were strongly synchronized across all 6 distance intervals. Visual inspection of time series in the wild turkey fall harvest suggests that populations may be synchronized in some years when weather promotes high reproductive success (i.e., a synchronized growth peak) and asynchronous in other years. Knowledge of the spatial dynamics of wild turkey populations will aid wildlife managers in estimating population change, setting harvest quotas, and managing habitat.  相似文献   

18.
Resource heterogeneity across the landscape prompts animals to make behavioral tradeoffs to survive and reproduce. Behavioral thermoregulation can buffer organisms from thermal extremes but may conflict with other essential activities such as predator avoidance or foraging, and necessitate tradeoffs among resource requirements. We evaluated patterns of habitat selection relative to thermal conditions, forage availability, and concealment cover for female eastern wild turkeys (Meleagris gallopavo silvestris) with broods to assess potential tradeoffs among resource requirements. We quantified air temperature (°C), vegetation characteristics (e.g., visual obstruction), and arthropod biomass (g/m2) at locations used by broods across 5 study sites in the southeastern United States during May–July 2019–2020. We used conditional logistic regression to estimate brooding female resource selection at the second (home range) and third (within home range) orders. Specifically, we identified differences in selection between brooding and non-brooding females (second order), and factors influencing selection of sites used by brooding females during the day (when loafing and foraging) and night (roosting; third order). Brooding females selected sites with cooler temperatures (β = −0.22; 95% CI = −0.338–−0.102) and greater ground cover vegetation (β = 0.02; 95% CI = 0.013–0.033) than non-brooding females. Additionally, biomass of large prey (Orthoptera) was positively related to ambient temperature, suggesting that use of thermal refuge by brooding females may limit availability of large prey. Brooding females appeared to balance the tradeoff between thermal refuge and forage availability by altering habitat selection patterns within home ranges. Brooding females selected for herbaceous areas that provided greater biomass of large arthropods during the day, and avoided areas dominated by woody vegetation during both the day and night. We did not observe brooding females using locations where woody cover exceeded 27% of understory vegetation. Thermal refuge is an important component of brood habitat, but within thermally suitable areas brooding females can select sites with greater availability of large prey to meet energetic demands of broods. Evaluation of multiple spatial scales is key when assessing tradeoffs among resource needs and determining the potential of behavioral thermoregulation to buffer an organism's thermal environment and allow persistence in a warming climate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号