首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Range-wide declines in northern bobwhite populations (Colinus virginianus) have been attributed to concomitant loss of breeding habitat. Bobwhite management efforts to restore this habitat resource can be informed by empirical studies of associations between breeding success and multi-scale habitat attributes. We compared bobwhite nest success in 2 southern Iowa landscapes as a function of microhabitat and landscape composition. Lake Sugema Fish and Wildlife Area (LSWA) was managed to promote bobwhite recruitment, and Harrisburg Township (HT) was an adjacent landscape dominated by private agricultural production. Survival rate modeling based on telemetry data provided evidence for age-specific daily nest survival rate. Daily survival rates decreased as nest age increased, but the decline was more severe at HT. Nest survival at LSWA (S = 0.495, SE = 0.103) was nearly twice that on HT (S = 0.277, SE = 0.072). We found no evidence that habitat composition or spatial attributes within 210 m of a nest site significantly influenced nest success. Forb canopy at the nest site had a positive influence on nest success at HT but not at LSWA. We suggest nesting habitat with greater forb canopy cover will increase the opportunity for nesting success in landscapes with limited nesting habitat. © 2010 The Wildlife Society.  相似文献   

2.
The survival of waterfowl nests is positively correlated with the amount of grassland on the landscape, and population growth rates of some waterfowl species (e.g., mallards [Anas platyrhynchos]) are sensitive to nest survival rates. Thus, the effect of actions that alter grassland vegetation physiognomy, such as grazing, on waterfowl production is of interest to waterfowl habitat managers. Additionally, grasslands contribute other ecological goods (e.g., forage for livestock and wildlife) and services (e.g., photosynthesis, carbon sequestration), which can be influenced by grazing practices. We address key uncertainties about the linkages between grazing, vegetation physiognomy, and the survival and density of duck nests at study-site, field, and nest-site spatial scales. Using data from 2,554 duck nests found in 434 grazed or idled fields (median field size = 48.0 ha) in the Canadian Prairie Pothole Region between 2002 and 2009, we found that vegetation physiognomy affected nest survival at both the field and nest-site scales, such that nest survival increased with nest-site vegetation density and late-season field vegetation density. Nest survival also responded to early-season within-field variation in vegetation height in a quadratic manner, such that survival was greatest in fields with moderate variation in vegetation height. Nest survival was negatively related to the intensity of grazing and to the amount of cropland in the surrounding landscape. Both the abundance of wetlands and the average vegetation height in the field had a positive influence on nest density. Fields idled during the breeding season had greater densities of nests than fields grazed either early or late in the breeding season. Leaving lands idled may be the most effective way to increase both waterfowl nest survival and nest density. When management of upland vegetation is required, we recommend grazing at moderate stocking rates (between 2 and 2.5 animal unit months [AUM]/ha) after the waterfowl breeding season is complete and monitoring vegetative characteristics to ensure they remain suitable to attract nesting waterfowl (e.g., leaving vegetation height >28 cm). Where grazing must be carried out during the breeding season, low to moderate stocking rates should be encouraged as these rates appear to have the least negative impact on both waterfowl nest survival and nest density. These stocking rates also will maintain rangeland in good condition to the long-term benefit of producers. © 2013 The Wildlife Society.  相似文献   

3.
Identifying factors influencing nest survival among sympatric species is important for understanding and managing sources of variation in population dynamics of individual species. Three species of loons nest sympatrically in northern Alaska and differ in body size, life history characteristics, and population trends. We tested the effects of competition, nest site selection, and water level variations on nest survival of Pacific Gavia pacifica, yellow‐billed G. adamsii, and red‐throated loons G. stellata on the Arctic Coastal Plain in Alaska. Although overall nest survival rates did not differ between species, the factors influencing nest survival varied. Nest site selection influenced nest survival for Pacific and yellow‐billed loons, with both species having high nest survival when nesting on islands and peninsulas, likely due to a reduction in access by terrestrial predators. However, on mainland shorelines, Pacific loons had lower nest survival than yellow‐billed loons, and used a higher proportion of vegetation mats for nest sites suggesting that their smaller body size makes them less adept at nest defense. Nest site selection did not influence nest survival of red‐throated loons corresponding to our result of no nest site preferences by this species. Initiation date had a strong influence on nest survival for Pacific and yellow‐billed loons with nests laid earlier having higher survival. Pacific and yellow‐billed loon nests were susceptible to flooding due to precipitation, which contrasted with red‐throated loons that nest on smaller lakes with lower water level variations. Competition did not affect nest survival for any of the species likely due to most territorial encounters occurring prior to incubation. The only influence we found on red‐throated loon nest survival was differences among years. Our results indicate that loons chose nest sites based on predation risk and that factors influencing breeding success of closely related species may differ under similar breeding conditions.  相似文献   

4.
Ecological relationships of animals and their environments are known to vary spatially and temporally across scales. However, common approaches for evaluating resource selection by animals assume that the processes of habitat selection are stationary across space. The assumption that habitat selection is spatially homogeneous may lead to biased inference and ineffective management. We present the first application of geographically weighted logistic regression to habitat selection by a wildlife species. As a case study, we examined nest site selection by greater prairie-chickens at 3 sites with different ecological conditions in Kansas to assess whether the relative importance of habitat features varied across space. We found that 1) nest sites were associated with habitat conditions at multiple spatial scales, 2) habitat associations across spatial scales were correlated, and 3) the influence of habitat conditions on nest site selection was spatially explicit. Post hoc analyses revealed that much of the spatial variability in habitat selection processes was explained at a regional scale. Moreover, habitat features at local spatial scales were more strongly associated with nest site selection in unfragmented grasslands managed intensively for cattle production than they were in fragmented grasslands within a matrix of farmland. Female prairie-chickens exhibited spatial variability in nest site selection at multiple spatial scales, suggesting plasticity in habitat selection behavior. Our results highlight the importance of accounting for spatial heterogeneity when evaluating the ecological effects of habitat components. © 2013 The Wildlife Society.  相似文献   

5.
Species distributions are influenced by climate and topography in alpine ecosystems, yet resource selection studies of alpine species are uncommon. Basic characteristics of habitats used by alpine-endemic white-tailed ptarmigan (Lagopus leucura) have been described to explain foraging behavior, morphology, and survival in many alpine regions; however, there is a lack of information about fine-scale habitat selection for nesting and brood-rearing, particularly in the southern extent of the species’ range. Few studies have tested whether nest and brood-site selection by white-tailed ptarmigan are influenced by fine-scale components such as vegetation and arthropod communities. We assessed these fine-scale habitat characteristics analyzing paired use-available resource selection for nest (n = 61) and brood (n = 54) sites. We used conditional logistic regression for data collected in 2 alpine areas along the Front Range of Colorado, USA, during 2014 and 2015. We evaluated resource selection at larger (patch) and finer (nest site) scales. Nest-site selection at the patch scale was best predicted by cover (%) of forage forbs, rock and gravel, and shrubs. Forage forb cover explained more variation in our top nest model at the patch scale when compared to models with specific vegetation species. Females placed their nests along elevational gradients but more so at lower elevations and selected for less graminoid cover at the nest-site scale. Brood habitat selection at the patch level was influenced by cover (%) of rock and gravel and proximity to shrubs (m). Analysis of a subset of our brood data (n = 34) revealed females selected brood habitat that contained high arthropod abundance (e.g., Cicadellidae) over high vegetation cover, likely as a response to meet dietary requirements of chicks. Our results demonstrate how and where white-tailed ptarmigan are currently selecting these different breeding sites in Colorado's alpine, giving us insight into consequences this alpine-endemic bird may face if their breeding habitat is altered. © 2019 The Wildlife Society.  相似文献   

6.
The Common Pheasant Phasianus colchicus is currently the most abundant, widespread and economically important gamebird in Europe. The Game and Wildlife Conservation Trust has undertaken several recent studies of Pheasant breeding ecology to improve the management of this species. Although predation is often the most important cause of nest failure in declining ground-nesting birds in agricultural landscapes, the causes of predation and the identity of predators are often unknown. In this paper, we analyse data from approximately 450 nests of radiotagged hen Pheasants collected from six sites between 1990 and 2003 and present results on the fate and survival rates of Pheasant nests in relation to habitat, predation control and other covariates. Survival rates during the laying stage and incubation stage were 28 and 37%, respectively, and overall nest survival was 10%. Nest predation rates were significantly lower on two sites where intensive predation control was undertaken than on four sites with only low levels of predation control. Red Foxes Vulpes vulpes and corvids were the most important nest predators, accounting for at least half of all predation events. We assess these results in the context of other ground-nesting farmland birds.  相似文献   

7.
Snowy plover (Charadrius nivosus) populations have declined throughout their range, in part because of habitat degradation and poor nest success, making information regarding regionally specific nest site selection and spatial patterns important when considering habitat conservation and management guidelines. We determined nest site selection characteristics (n = 180) and examined spatial patterns (n = 215) of snowy plover nests in saline lakes in the Southern High Plains (SHP) of Texas. At 104 nests, we examined the influence of substrate type on nest temperatures and heat mitigation. Snowy plover nests were more likely to be found near an object, on pebble substrate, and with fewer plants than random sites. High use areas were generally located in areas with pebble substrate and on human-made or natural islands, berms, and peninsulas. Overall, nests placed on pebble substrate had lower temperatures during the day than nests placed on sand substrates. Nest placement on pebble substrate may be valuable to nesting snowy plovers, providing thermal advantages to incubating adults and depressing potentially high nest predation rates. Management guidelines for this region should emphasize the importance of addressing key elements of snowy plover nesting habitat including the presence of pebble substrate and reducing vegetation encroachment. © 2012 The Wildlife Society.  相似文献   

8.
Periodic treatment of established stands of dense nesting cover (DNC) is a recommended practice to maintain cover quality, but little information exists on the magnitude and duration of treatment effects on nesting waterfowl. During 1998–2001, we examined the effect of management treatments on vegetative characteristics and waterfowl nest success and density in fields of DNC seeded to introduced and native grass and forb mixes in the parklands of Saskatchewan and Manitoba. We measured vegetation height–density and litter depth within fields and located and monitored 1,927 duck nests within 33–42 fields/yr ranging in size from 6 ha to 62 ha. We considered a series of models examining the influence of grass type and management treatment (GTMT) and years post-management (YPM) on vegetative characteristics, nest success, and nest density while including covariates potentially affecting these response variables. Visual obstruction and litter depth were lowest in native-burned fields and greatest in introduced-hayed fields. Visual obstruction was low the year following management, peaked 2–3 YPM, and remained at intermediate levels through ≥6 YPM. Litter depth remained low for the first 3 YPM and increased thereafter. Nest success and nest density varied little among GTMT. Nest success was high (14.3%) the year following a management treatment, low (6.5%) at 2 YPM, and moderate thereafter. Nest success decreased with percent cropland in the surrounding landscape. Nest density was 0.7 nests/ha the first year following management, increased to approximately 1.3 nests/ha in years 2–3, and declined back to approximately 0.7 nests/ha for ≥6 YPM. Nest density decreased with field size and increased with the area of small wetlands, percent cropland, and percent wetland within surrounding landscapes. Nest density tracked vegetation density as expected and our results indicate a possible trade-off between nest density and nest success. Given ancillary data on small mammal and insect prey in our study fields, and evidence from other studies, we speculate that DNC fields may act as prey reservoirs during years of peak vegetative density with a consequent reduction in nest survival. Therefore, management to increase waterfowl production based on our results needs to consider the interaction of treatment effects, competing habitats, and surrounding landscape composition. © 2011 The Wildlife Society.  相似文献   

9.
Wildlife management and conservation can be challenging when the demography of a focal species is unknown or limited given that fecundity and adult survival influence population growth. The Columbian sharp-tailed grouse (Tympanuchus phasianellus columbianus) have been reduced to ≤10% of their former range since the early 1900s. We conducted a 3-year study (2015–2017) across 4 study sites in northwestern Colorado, USA, to evaluate female hazard and nest survival. We trapped and marked 270 female sharp-tailed grouse and identified 275 nests for our hazard and survival analyses. Females during the breeding stage of the reproductive season experienced more hazard compared to the nesting and the early and late post-nesting stages for females without broods. Females experienced a higher degree of hazard during the breeding stage and mortality risk was >3 times higher than the nesting stage, >7 times higher than early post-nesting (EPN)-no brood stage, and >5 times higher than the late post-nesting (LPN)-unsuccessful stage. Two reproductive season stages (LPN-successful and EPN-brood) provided marginal inference. Nest incubation initiation date and nest age best described nest daily survival. Females that initiated incubation of initial nests earlier in the season experienced lower nest daily survival than later in the incubation season. Because female Columbian sharp-tailed grouse hazard varied among different reproductive season stages, we recommend that wildlife managers develop management actions that reduce hazard during the specific reproductive season stages (i.e., the breeding season). For Columbian sharp-tailed grouse in Colorado, we recommend that Colorado Parks and Wildlife collaborate with federal farm program agencies to implement a no-tillage restriction from 1 May through 30 June for active agricultural fields within 2 km of active Columbian sharp-tailed grouse leks to enhance nest survival.  相似文献   

10.
Abstract: Waterfowl nesting in annual croplands has remained a little-known aspect of waterfowl nesting ecology because of the inability of many studies to systematically search this habitat through the nesting season. Where searches have been conducted, they are generally restricted to the period prior to seeding, and many nests found are destroyed by the seeding operation. Consequently, fall-seeded crops have been promoted as an alternative cropping practice that could increase nest survival of waterfowl nesting in croplands. During 1996–1999, we conducted 3–4 complete nest searches on 4,274 ha of cropland, including spring-seeded wheat and barley, winter wheat, and fall rye in southern Saskatchewan, Canada. Using suites of predictive models, we tested hypotheses regarding relative nest abundance and nest survival among crop types and tested the influence of several landscape-scale covariates on these metrics. Apparent nest densities were higher in fall-seeded crops (winter wheat: 0.39 nests/ha, fall rye: 0.25 nests/ha) than in spring-seeded crops (0.03 nests/ha), and nest density in spring-seeded croplands increased with percent cropland and percent wetland habitat in the surrounding landscape. Nest survival was higher in winter wheat (38%) than in either fall rye (18%) or spring-seeded crops (12%), and nest survival in spring-seeded crops increased with relative nest initiation date. Nest survival was unaffected by surrounding landscape characteristics but tended to be higher in years of average wetness. Based on our findings, winter wheat and fall rye have the potential to provide productive nesting habitat for ≥7 species of upland nesting ducks and fall-seeded crops are a conservation tool well suited to highly cropped landscapes.  相似文献   

11.
During a 13‐yr study near Utqia?vik (formerly Barrow), Alaska, we documented the prevalence of nest reuse in eight arctic‐breeding shorebirds. We evaluated whether nest reuse saved individuals time and energy, enhanced nest survival, or was related to nest density. We documented 208 (6.2%) cases of nest reuse among 3336 nesting attempts. Nest reuse occurred in all years but the first and in all species, with greatest reuse in semipalmated sandpiper (10.9%) and American golden‐plover (10.0%). While most cases of nest reuse occurred with conspecifics, many cases of heterospecific nest reuse were also observed, indicating high niche overlap in nest site preferences among species. We found that individuals reusing old nests may have benefited by nesting earlier, but nest reuse did not generally enhance nest survival. A significant positive relationship was also found between nest reuse and nest density at the community level and for four of the eight species, suggesting high inter‐ or intraspecific competition combined with limited suitable nest sites may force individuals to reuse old nests. Our observations also suggest that upland nesting species may be the most dependent on old nest sites. Preferential development of these sites may therefore have a previously unknown detrimental effect on these species, although further study is needed to better determine the impact of such habitat loss.  相似文献   

12.
Because of liberalization of American alligator (Alligator mississippiensis) harvest management in Texas, estimates of nest success and hatchling survival for inland populations are essential for long-term, sustainable population and harvest management. To date, few studies have examined American alligator nest success and hatchling survival. We initiated a 3-year study from 2006 to 2008 to document alligator nest success and hatchling survival within several wetlands in east Texas. From June 2006 to August 2008, we located 30 nests from 3 wetlands within east Texas, where overall nest success was 44.2% (95% CI = 25.1–63.1%), irrespective of year. Nest circumference and day during the nesting season exerted the greatest influence on nest success. Additionally, from August 2006 to August 2008 we captured, marked, and released 271 hatchling alligators at Little Sandy National Wildlife Refuge, and recaptured an additional 192 hatchling alligators during this time. We estimated yearly apparent survival at 6.0% (95% CI = 2.0–14.6%) for hatchling alligators born in 2006 and 43.0% (95% CI = 28.4–57.8%) for those hatched in 2007. Variation in nest success and hatchling survival was likely attributed to fluctuating water levels and habitat management practices. Alligator harvest regulations need to account for variability in nest success and hatchling survival by including site-specific estimates of these metrics into harvest models. Failing to account for spatial and temporal variation in nest success and hatchling survival may result in unsustainable harvest and/or overharvest. © 2012 The Wildlife Society.  相似文献   

13.
ABSTRACT.   In 2003 and 2004, we placed 41 floating nest platforms on Grassy Lake in southeastern Wisconsin (USA) to test the hypothesis that reproductive success of Black Terns ( Chlidonias niger ) is limited by the quality of suitable nesting habitat. Extreme differences in water levels between these 2 yr provided a natural experiment to evaluate the effectiveness of the nest platforms during a drought year (2003) when natural nesting substrate was abundant, and a flood year (2004) when natural substrate was limited during the peak nesting period. Terns nested on 27 of 41 (66%) of the platforms in 2003 and 26 of 41 (63%) in 2004. No difference in the occupancy rate of platforms and natural nests was evident in 2003, but the pattern of clutch initiations early in the season in 2004 indicated that platforms were preferred over natural substrates. In 2003, nest survival rates did not differ between nests placed on platforms and those placed on natural substrates, but platform nests had significantly higher hatching success and nest survival rates in 2004. Both the Kaplan-Meier and Apparent Nest Success methods of calculating nest survival provided similar estimates. In both years, eggs laid on platforms were significantly larger than those laid on natural substrates, suggesting that platforms were occupied by high-quality birds. Our study indicates that floating nest platforms can be an effective management tool to enhance nesting habitat for Black Terns and other aquatic birds that construct floating nests, primarily because platforms provide nest sites when natural sites are not available due to flooding. Nest platforms also may be useful for addressing questions concerning habitat selection and parental quality.  相似文献   

14.
Species conservation requires an understanding of the factors and interactions affecting species distribution and behavior, habitat availability and use, and corresponding vital rates at multiple temporal and spatial scales. Opportunities to investigate these relationships across broad geographic regions are rare. We combined long-term waterfowl population surveys, and studies of habitat use and breeding success, to develop models that identify and incorporate these interactions for upland-nesting waterfowl in the Prairie Pothole Region (PPR) of Canada. Specifically, we used data from the annual Waterfowl Breeding Population and Habitat Survey (1961–2009) at the survey segment level and associated habitat covariates to model and map the long-term average duck density across the Canadian PPR. We analyzed nest location and fate data from approximately 25,000 duck nests found during 3 multi-year nesting studies (1994–2011) to model factors associated with nest survival and habitat selection through the nesting season for the 5 most common upland nesting duck species: mallard (Anas platyrhynchos), gadwall (Mareca strepera), blue-winged teal (Spatula discors), northern shoveler (Spatula clypeata), and northern pintail (Anas acuta). Duck density was highly variable across the Canadian PPR, reflecting positive responses to local wetland area and count, and amounts of cropland and grassland, a regional positive response to latitude, and a negative response to local amounts of tree cover. Nest survival was affected by temporal and spatial variables at multiple scales. Specifically, nest survival demonstrated interactive effects among species, nest initiation date, and nesting cover type and was influenced by relative annual wetness, population density, and surrounding landscape composition at landscape scales, and broad geographic gradients (east-west and north-south). Likewise, species-specific probability of nest habitat selection was influenced by timing of nest initiation, population density, relative annual wetness, herbaceous cover, and tree cover in the surrounding landscape, and location within the Canadian PPR. We combined these models, with estimates of breeding effort (nesting, renesting, and nest attempts) from existing literature, in a stochastic conservation planning model that estimates nest distribution and success given spatiotemporal variation in duck density, habitat availability, and influential covariates. We demonstrate the use of this model by examining various conservation planning scenarios. These models allow estimation of local, landscape, and regional influence of conservation investments and other landscape changes on the productivity of breeding duck populations across the PPR of Canada. These models lay the groundwork for the incorporation of conservation delivery costs for full return-on-investment analyses and scenario analyses of climate, habitat, and land use change in regional and continental population models.  相似文献   

15.
Assumptions about breeding site fidelity (i.e., fidelity) in blue-winged teal (Spatula discors) are based on limited recapture data and analytic techniques. We banded female blue-winged teal (n = 12,543) from 2003 to 2014 in a 3,800-ha sample area in north-central South Dakota, USA, and used a Bayesian hierarchical modeling approach combining live recapture and dead recovery data to predict probabilities of fidelity, survival, recapture, and reporting. We explored sources of variation including time, annual wet area on the landscape, age, and nest survival, and compared our results to other dabbling ducks that nest in the Prairie Pothole Region, a critically important breeding area for waterfowl in central North America. We found annual estimates of fidelity ranging from 0.20 to 0.91, with mean values of 0.62 and 0.67 for hatch year birds and after hatch year birds, respectively. Our findings indicate that environmental factors may cause blue-winged teal to return to breeding sites more frequently than previously assumed. © The Wildlife Society, 2019  相似文献   

16.
Snowy plovers (Charadrius nivosus) are a species of conservation concern throughout North America and listed as a threatened species in Kansas. Management to minimize the effects of flooding and predation were implemented at Kansas breeding sites in the 1980s to encourage reproductive success. However, the effectiveness of those strategies and the effect of other variables that may influence nest survival have not been formally assessed. We used Program MARK to model the daily survival rate (DSR) of 317 snowy plover nests with 14 habitat- and management-related covariates to identify factors that influence nest survival and examine the efficacy of current management practices. In 2005 and 2006, we monitored nests and collected habitat data at the 2 known breeding sites in Kansas, Quivira National Wildlife Refuge (NWR) and Cheyenne Bottoms Wildlife Area (WA). Overall DSR was greater at Quivira NWR in 2006 (0.954) than at Cheyenne Bottoms WA (0.917) and Quivira NWR (0.942) in 2005. We developed 88 candidate models of which 4 competing models (ΔAICc < 2) were identified. We selected the most parsimonious model (K = 14, wi = 0.23) as the remaining 3 included covariates deemed biologically uninformative. This model included the effect of study site and year on a quadratic time trend, and included covariates quantifying nest age; precipitation; the proportion of gravel, rock, and vegetation at nests; occurrence within an electric fence and within 20 m of a road; occurrence on a human-constructed nest mound; and adult capture during incubation. We found a strong positive relationship between the use of nest mounds and DSR, and a strong negative relationship between precipitation and DSR. We also found a strong positive relationship between DSR and the proportion of vegetation at nest sites, the occurrence of a nest within an electric fence, and adult capture at a nest. We noted a strong negative relationship between DSR and occurrence within 20 m of a road. However, we found that DSR was not sensitive to the proportion of vegetation at a nest, occurrence within an electric fence or within 20 m of a road, and to adult capture at a nest in light of covariates quantifying precipitation and the use of nest mounds. We found weak support for a positive relationship between DSR, nest age, and the proportion of gravel and rock at nests. Our results indicate that large rainfall events are a major source of snowy plover nest loss in Kansas that can be mitigated by the construction of nest mounds. Limited influence of environmental variables found to influence nest survival at other breeding sites suggests that threats to snowy plover nest survival are site specific and managers should assess local sources of nest loss prior to implementing management strategies to improve reproductive success. © 2012 The Wildlife Society.  相似文献   

17.
NIALL H. K. BURTON 《Ibis》2009,151(2):361-372
Aspects of the reproductive success of Tree Pipits Anthus trivialis were examined in relation to broad‐scale habitat and nest‐site selection in Thetford Forest, a coniferous plantation forest in eastern England. Three habitat classes were defined corresponding to previously reported densities of Tree Pipits: clearfell and recently planted stands (habitat class A: low density), stands 2–5 years old (B: high density) and stands 6 years or older (C: low density). The preference for 2–5‐year‐old stands indicated by higher densities was supported by the timing of territory settlement. Tree Pipits also showed distinct preferences for nest‐site characteristics that were relatively consistent across habitat classes and throughout the breeding season. At the ‘habitat scale’, results were consistent with the predictions of the ideal despotic distribution model. First clutches were laid significantly earlier in the preferred habitat class B. Overall nesting success (i.e. the proportion of nests producing fledglings), but not clutch size, also varied between habitats, being greater in habitat classes B and C than in habitat class A. The variation in overall nesting success between habitats was primarily driven by low nest survival rates during the laying/incubation period in clearfell and recently planted stands. Nest survival rates during the nestling period were lower in the preferred 2–5‐year‐old (and older) stands and declined over the course of the study. Preferences for nest‐site characteristics (at least for those that were measured) provided no apparent benefit to nest survival rates. Overall nesting success thus appeared to be determined at the habitat scale, perhaps because the broad differences in cover between habitats affected the likelihood of nest predation (the main cause of nest failure). It is suggested that the very low nesting success experienced by Tree Pipits in clearfell and new stands may be one factor in the species’ relative avoidance of this habitat and preference for 2–5‐year‐old stands.  相似文献   

18.
ABSTRACT We studied nest survival of greater sage-grouse (Centrocercus urophasianus) in 5 subareas of Mono County, California, USA, from 2003 to 2005 to 1) evaluate the importance of key vegetation variables for nest success, and 2) to compare nest success in this population with other greater sage-grouse populations. We captured and radiotracked females (n = 72) to identify nest sites and monitor nest survival. We measured vegetation at nest sites and within a 10-m radius around each nest to evaluate possible vegetation factors influencing nest survival. We estimated daily nest survival and the effect of explanatory variables on daily nest survival using nest-survival models in Program MARK. We assessed effects on daily nest survival of total, sagebrush (Artemisia spp.), and nonsagebrush live shrub-cover, Robel visual obstruction, the mean of grass residual height and grass residual cover measurements within 10 m of the nest shrub, and area of the shrub, shrub height, and shrub type at the nest site itself. Assuming a 38-day exposure period, we estimated nest survival at 43.4%, with percent cover of shrubs other than sagebrush as the variable most related to nest survival. Nest survival increased with increasing cover of shrubs other than sagebrush. Also, daily nest survival decreased with nest age, and there was considerable variation in nest survival among the 5 subareas. Our results indicate that greater shrub cover and a diversity of shrub species within sagebrush habitats may be more important to sage-grouse nest success in Mono County than has been reported elsewhere.  相似文献   

19.
Abstract: We studied greater sage-grouse (Centrocercus urophasianus) in northcentral Montana, USA, to examine the relationship between nest success and habitat conditions, environmental variables, and female sage-grouse characteristics. During 2001-2003, we radiomarked 243 female greater sage-grouse, monitored 287 nests, and measured 426 vegetation plots at 4 sites in a 3,200-km2 landscape. Nest survival varied with year, grass canopy cover, daily precipitation with a 1-day lag effect, and nesting attempt. In all years, daily survival rate increased on the day of a rain event and decreased the next day. There was temporal variation in nest success both within and among years: success of early (first 28 d of nesting season) nests ranged from 0.238 (SE = 0.080) in 2001 to 0.316 (SE = 0.055) in 2003, whereas survival of late (last 28 d of nesting season) nests ranged from 0.276 (SE = 0.090) in 2001 to 0.418 (SE = 0.055) in 2003. Renests experienced higher survival than first nests. Grass cover was the only important model term that could be managed, but direction and magnitude of the grass effect varied. Site, shrub and forb canopy cover, and Robel pole reading were less useful predictors of nest success; however, temporal and spatial variation in these habitat covariates was low during our study. We note a marked difference between both values and interpretations of apparent nest success, which have been used almost exclusively in the past, and maximum-likelihood estimates used in our study. Annual apparent nest success (0.46) was, on average, 53% higher than maximum-likelihood estimates that incorporate individual, environmental, and habitat covariates. The difference between estimates was variable (range = +8% to +91%). Management of habitats for nesting sage-grouse should focus on increasing grass cover to increase survival of first nests and contribute to favorable conditions for renesting, which should be less likely if survival of first nests increases.  相似文献   

20.
ABSTRACT Numerous factors, including nest predation and brood parasitism, may limit populations of neotropical migratory birds. However, nest predation and brood parasitism are not constant, and temporal, biological, habitat, and landscape factors can affect the likelihood of these events. Understanding these patterns is important for species of conservation concern for which managers seek to provide quality habitat. One such species, the Swainson's warbler (Limnothlypis swainsonii), is a neotropical migrant that breeds primarily in bottomland hardwood forests of the southeastern United States. Little is known of factors influencing reproductive success of this rare, yet locally abundant, species. From 2004 through 2007, we examined factors influencing reproductive success of Swainson's warblers at 2 sites in eastern Arkansas, USA, St. Francis National Forest and White River National Wildlife Refuge. We used 2-stage modeling to assess the relationship between 1) temporal and biological, and 2) habitat and landscape factors and brood parasitism, nest survival, and fledgling production. Brood parasitism was greater in this population (36%) than reported elsewhere (≤ 10%), but decreased throughout the breeding season. Nest survival was comparable to or lower than in other populations of this species and increased throughout the breeding season. The probability of brood parasitism was greater near forest edges. Although nests of Swainson's warblers were often associated with giant cane (Arundinaria gigantea), nest survival had a weak negative association with cane density. For nests that were successful, the best predictor of number of Swainson's warblers fledged was brood-parasitism status: nonparasitized nests fledged 2.75 young, whereas parasitized nests fledged 0.60 Swainson's warblers. Our findings suggest that managing and restoring relatively high-elevation bottomland forests that are located far from agricultural edges should increase Swainson's warbler productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号