首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Public lands managed for wildlife frequently provide various forms of sanctuary to increase residency times and allow access to energetic and other habitat resources for waterfowl. The influence of sanctuary type and disturbance regime on resource use and fine-scale movements of waterfowl has not been investigated extensively using currently available transmitter technologies. We examined mallard (Anas platyrhynchos) use of various types of waterfowl sanctuary and non-sanctuary areas in the Mississippi Alluvial Valley region of eastern Arkansas, USA, during winters of 2019–2021. We deployed 105 global positioning system transmitters on mallards at 4 closed-access spatial sanctuaries on or adjacent to Dale Bumpers White River National Wildlife Refuge. We used hourly transmitter locations to examine mallard use of public sanctuary areas, public hunt areas, and private lands using integrated step selection analysis. Public sanctuary areas provided varying levels of protected status, public hunt areas allowed for varying levels of hunting intensity by duck hunters, and private lands were open to waterfowl hunting and other forms of private uses but may or may not have been hunted at any specific frequency. Mallards selected spatial sanctuary and avoided public hunt areas, other sanctuary types, and private lands during the day. In contrast, mallards selected for private lands over spatial sanctuary at night. Mallards tended to avoid areas that allowed duck hunting or used them during the night when risk of harvest mortality was removed. After the hunting season closed, mallards began using areas that previously allowed duck hunting during the day, suggesting that risk was the primary factor influencing site use. Moreover, mallards were 1.6 times more likely to use public daily hunt areas and 2.1 times more likely to use private lands potentially open to hunting during the day than spatial sanctuary 2 weeks after the close of duck hunting season in February. Spatial sanctuaries appear more effective in influencing mallard use than temporal sanctuaries or inviolate sanctuaries, which are commonly used by state and federal agencies. Partial daily, daily, or activity-specific (e.g., no hunting past noon, no hunting 3 days/week, no waterfowl hunting) closures to encourage mallard use of temporal sanctuaries do not appear to reduce the perceived harvest-related risk to mallards enough for them to view these areas as accessible or significantly increase their use.  相似文献   

2.
Waterfowl with more body mass and a greater body condition during the non-breeding season are thought to be more likely to survive and have increased productivity during the following breeding season. Body mass and body condition in waterfowl should reflect the resources available to them locally. We analyzed the relationship of landscape composition on mallard (Anas platyrhynchos) body mass and body condition (mass-wing length index) among age and sex groups. We calculated these variables from hunter-harvested mallards during the 2019–2020 and 2020–2021 duck hunting seasons in the Lower Mississippi Alluvial Valley of Arkansas, USA. We used linear mixed-effects models to analyze changes in body mass and body condition with changes in the percent landscape composition of water cover, woody wetlands, herbaceous wetlands, rice, soybeans, and disturbance. We found that body mass and condition of harvested mallards were positively associated with greater proportions of water cover and woody wetlands but negatively associated with greater proportions of herbaceous wetlands and human disturbance from human infrastructure. Management actions focused on providing flooded and woody wetland areas on the landscape that allow waterfowl to access food resources, while decreasing the disturbance around wetlands in the form of road density and human infrastructure, should increase body mass and body condition in mallards spending the non-breeding season in the Lower Mississippi Alluvial Valley.  相似文献   

3.
Animals select resources to maximize fitness but associated costs and benefits are spatially and temporally variable. Differences in wetland management influence resource availability for ducks and mortality risk from duck hunting. The local distribution of the Mallard (Anas platyrhynchos) is affected by this resource heterogeneity and variable risk from hunting. Regional conservation strategies primarily focus on how waterfowl distributions are affected by food resources during the nonbreeding season. To test if Mallard resource selection was related to the abundance of resources, risks, or a combination, we studied resource selection of adult female Mallards during autumn and winter. We developed a digital spatial layer for Lake St. Clair, Ontario, Canada, that classified resources important to Mallards and assigned these resources a risk level based on ownership type and presumed disturbance from hunting. We monitored 59 individuals with GPS back‐pack transmitters prior to, during, and after the hunting season and used discrete choice modeling to generate diurnal and nocturnal resource selection estimates. The model that classified available resources and presumed risk best explained Mallard resource selection strategies. Resource selection varied within and among seasons. Ducks selected for federal, state and private managed wetland complexes that provided an intermediate or relatively greater amount of refuge and foraging options than public hunting areas. Across all diel periods and seasons, there was selection for federally managed marshes and private supplemental feeding refuges that prohibited hunting. Mallard resource selection demonstrated trade‐offs related to the management of mortality risk, anthropogenic disturbances, and foraging opportunities. Understanding how waterfowl respond to heterogeneous landscapes of resources and risks can inform regional conservation strategies related to waterfowl distribution during the nonbreeding season.  相似文献   

4.
We weighed hunter-killed mallards (Anas platyrhynchos; n = 4,747) during the 2005, 2008, and 2009 hunting seasons in Manitoba, Minnesota, North Dakota, Saskatchewan, and South Dakota to examine effects of hunting pressure on body mass. Our final model indicated that main effects describing age, hunting pressure, hunting method, season, relative harvest date, and selected interactions were influential in predicting mass of drake mallards during fall. Body mass of hatch-year and after-hatch-year drake mallards harvested in low hunting pressure jurisdictions was 4.3% and 2.5% greater, respectively, than those harvested in high hunting pressure jurisdictions. Body mass of drake mallards from low hunting pressure jurisdictions was 12.1% greater for birds that were harvested using pass or jump shooting hunting methods than those that were harvested by hunters using decoys over dry agricultural fields. When possible, managers should consider disturbance during planning stages of attracting mallards, and not rely upon dry agricultural fields as foraging resources for mallards unless a positive energy balance can be achieved. Finally, studies examining physiological condition of waterfowl must account for collection technique. © 2012 The Wildlife Society.  相似文献   

5.
In anthropogenic landscapes, aerial insectivores are often confronted with variable habitat complexity, which may influence the distribution of prey. Yet, high mobility may allow aerial insectivores to adjust their foraging strategy to different prey distributions. We investigated whether aerial-hunting common noctules Nyctalus noctula adjust their foraging strategy to landscapes with different habitat complexity and assumingly different prey distribution. We hypothesized that the movement behaviour of hunting common noctules and changes of movement behaviour in reaction towards conspecifics would depend on whether they hunt in a structurally poor cropland dominated landscape or a structurally rich forest dominated landscape. We tracked flight paths of common noctules in northeastern Germany using GPS loggers equipped with an ultrasonic microphone that recorded foraging events and presence of conspecifics. Above cropland, common noctules hunted mainly during bouts of highly tortuous and area restricted movements (ARM). Bats switched from straight flight to ARM after encountering conspecifics. In the forested landscape, common noctules hunted both during ARM and during straight flights. The onset of ARM did not correlate with the presence of conspecifics. Common noctules showed a lower feeding rate and encountered more conspecifics above the forested than above the cropland dominated landscape. We conjecture that prey distribution above cropland was patchy and unpredictable, thus making eavesdropping on hunting conspecifics crucial for bats during search for prey patches. In contrast, small scale structural diversity of the forested landscape possibly led to a more homogeneous prey distribution at the landscape scale, thus enabling bats to find sufficient food independent of conspecific presence. This suggests that predators depending on ephemeral prey can increase their foraging success in structurally poor landscapes by using social information provided by conspecifics. Hence, a minimum population density might be obligatory to enable successful foraging in simplified landscapes.  相似文献   

6.
Adult survival is a key driver of waterfowl population growth and is subject to temporal and spatial variation. Mottled ducks (Anas fulvigula) are native to the Gulf Coast and peninsular Florida, USA, and have suffered population declines over the past decade, especially in Texas and Louisiana, USA. Although the cause of this decline is not well understood, previous research concluded variation in survival contributed to nearly a third of variation in the species' population growth rate. We used global positioning system-groupe spécial mobile (GPS-GSM) transmitters to study temporal and spatial variation in survival of adult female western Gulf Coast mottled ducks in southwestern Louisiana, 2017–2020. We evaluated weekly survival models parameterized with combinations of hunted and non-hunted periods, biological seasons, and landcover types that were used by mottled ducks. There were 3 competitive survival models, and all contained 4 parameters that parsed the annual cycle into the non-hunted period, first part of the general waterfowl season, and second part of the waterfowl season, and included the proportion of GPS locations in agricultural lands. Weekly survival was 0.979 during the first part of the general waterfowl hunting season, and 0.996 during the second part of the general waterfowl season. Daily survival rate increased with an increasing proportion of locations logged in agricultural lands. Annual survival rates were similar to other waterfowl that are not experiencing population declines, which suggests survival is not limiting population growth of mottled ducks along the western Gulf Coast. Managers should ensure the availability of refuge areas where hunting is prohibited during the first part of the general waterfowl season, when mottled ducks are at an increased risk of mortality, in addition to the targeted conservation of agricultural lands that provide cover and forage.  相似文献   

7.
Wildlife populations are subjected to increasing pressure linked to human activities, which introduce multiple stressors. Recently, in addition to direct effects, it has been shown that indirect (non-lethal) effects of predation risk are predominant in many populations. Predation risk is often structured in space and time, generating a heterogeneous “landscape of fear” within which animals can minimize risks by modifying their habitat use. Furthermore, for ungulates, resource quality seems to be positively correlated with human-related sources of risk. We studied the trade-off between access to resources of high-quality and risk-taking by contrasting habitat use of roe deer during daytime with that during nighttime for 94 roe deer in a hunted population. Our first hypothesis was that roe deer should avoid human disturbance by modifying their habitat use during daytime compared to nighttime. Our results supported this, as roe deer mainly used open fields during nighttime, but used more forested habitats during daytime, when human disturbance is higher. Moreover, we found that diel patterns in habitat use were influenced by hunting disturbance. Indeed, the roe deer decreased their use of high-crops during daytime, an important source of cover and food, during the hunting season. The proximity of roads and dwellings also affected habitat use, since roe deer used open fields during daytime to a greater extent when the distance to these sources of disturbance was higher. Hence, our results suggest that roe deer resolve the trade-off between the acquisition of high-quality resources and risk avoidance by modifying their habitat use between day and night.  相似文献   

8.
Spatial variation of the ‘predation risk’ due to human activities or distribution may increase the sexual difference in habitat selection. Indeed, females with offspring are usually more risk adverse than males. Based on a long-term wild boar study, we analysed the diurnal distribution of female and male wild boar before, during and after the hunting period. Hunting, food and foliation were investigated as factors affecting patterns of forest parcel selection. As expected, dense vegetative covers were selected during resting periods, but wild boar decreased this pattern of habitat selection in response to hunting disturbance. Moreover, the habitat selection of wild boar did not fit with the variation of food availability (presence or absence of mast) and the vegetation cycle. As expected, sows responded more to the hunting disturbance than males, leading to a more pronounced sexual difference during the riskier season. The unexpected decrease of bush use may be explained either by the increased hunting effort in this habitat or by the increased movements between resting sites due to disturbance, leading to a more random habitat selection pattern. The observed difference between sexes could result from a higher response of females with offspring to hunting, leading to an increased frequentation of secondary habitats, whereas males can tolerate more risks and remain hidden in thicket plots. Our results highlight how hunting disturbance can lead game species to change their patterns of refuge habitat selection and may affect the habitat segregation between the sexes.  相似文献   

9.
Analysis of sample survey data on the species composition of waterfowl kill for resident and nonresident hunters for provinces of Canada during 1974 and 1975 showed that a successful game bird hunter who hunted in more than one area (degree block) had both a higher average season kill and more successful days of hunting in which one or more birds were bagged, than one who hunted in the same area during the season. Adjustment for days hunted resulted in a higher daily hunting for those who hunted in more than one degree block. However, the higher kill of the successful hunter is attributable more to a larger number of days hunted than to a larger kill per successful day. Also, hunters hunting in more than one degree block had their successful hunting days more evenly spread across the season. The estimates of kill per successful hunter and days hunted for stratified sampling by areas of hunting were considerably more efficient than simple random sampling.  相似文献   

10.
Despite a long historical record of radio-tracking analyses, basic home-range information is still lacking for most common waterfowl species, especially during the winter. We investigated how dabbling duck home ranges and daily foraging movements are influenced by extrinsic (site, temperature, date) and intrinsic factors (species, sex, age). We radio-tagged and monitored 125 individuals of three duck species (mallard Anas platyrhynchos, Eurasian teal A. crecca crecca and northern pintail A. acuta) in three French wetlands over four winters. Home-range sizes for a given species varied greatly among our study sites. Moreover, species differed according to home-range structure and distance traveled to reach their foraging grounds (teal had a more patchy home range and traveled farther distances than mallards). Foraging distances increased with temperature and time (over the winter season), but this effect differed among species, suggesting that they behave differently in response to food depletion and/or cold weather. The commuting behavior (i.e., the decision to leave the roost at night for foraging) differed among species and season. Teals were more risk-prone because they were more likely to leave the roost at night. In our study, ducks foraged at distances of 1–2 km from roosts, whereas distances of 2–48 km have been recorded in North America. We suggest that food supply, hunting pressure or population density may account for these inter-continental differences.  相似文献   

11.
ABSTRACT Spatial and temporal closures of anthropogenic activities are a common management strategy to increase waterfowl usage of an area. However, empirical evidence, specifically how individual waterfowl respond to disturbance, is lacking to support their efficacy. We exposed radiomarked mallards (Anas platyrhynchos) to walk-in, shooting, or no disturbance along the South Platte River corridor in Colorado, USA, from September to February during 2006–2007 and 2007–2008. Mallards exposed to shooting disturbance had greater mean flight distance after disturbance (FDAD) during September-November (4.58 km, 95% CI = 3.55–5.62) than December-February (3.04 km, 95% CI = 2.51–3.58) and were 35% and 17% greater than mean FDAD of mallards exposed to walk-in disturbance, respectively. Walk-in and shooting disturbance had a similar effect on return rates, and disturbed mallards had higher (0.09–0.41) movement probabilities away from and lower (0.15–0.20) probabilities of returning to treatment locations than controls. Probability of presence of disturbed mallards was 37% lower than controls during the daytime but was equal at night. Mallards exposed to walk-in (0.38 [95% CI = 0.30–0.46]) and shooting (0.23 [95% CI = 0.17–0.30] disturbance had low return rates the first afternoon after a disturbance compared to controls (0.71 [95% CI = 0.65–0.77]). A high proportion of mallards exposed to walk-in (0.75 [95% CI = 0.67–0.83]) and shooting (0.70 [95% CI = 0.64–0.76]) disturbance returned to treatment locations in ≤1 day. Managers may be able to more effectively manage disturbance regimes by 1) accounting for surrounding lands within <10 km, especially lands within <5 km, 2) being conscientious when establishing regulations that will affect levels of disturbance 1–2 days after a previous disturbance, and 3) considering shooting and walking disturbance equally for refuge design.  相似文献   

12.
1. Potential human sources of disturbance, including fishing, sailing, windsurfing and different types of waterfowl hunting, are described and their effects on autumn-staging waterbirds, including mute swan, wigeon and coot, were examined at a coastal wetland in Denmark from 1985 to 1988.
2. Bird and human distributions were superimposed on the distribution of submerged vegetation and water depths to identify the extent of spatial overlap; likewise, seasonal and diurnal temporal overlap in bird abundance, and human activities were defined. Behavioural and distributional reactions of waterbirds to different human activities, in terms of escape distances, disruption of activity patterns and redistribution, were assessed to establish their relative effects.
3. Sailing and windsurfing showed little spatial overlap, and fishing partial spatial overlap with bird distributions; these activities almost ceased before the peak in autumn bird numbers. Hunting showed a high degree of spatial and temporal overlap with bird presence.
4. Birds responded to windsurfing at greatest distances, whereas hunting (especially from mobile punts) caused the longest disruptions to activities of waterfowl. In terms of behaviour and redistribution, wigeon was more affected by shooting than was mute swan or coot. One or two mobile shooting punts reduced wigeon numbers, whereas numbers were unaffected by the presence of up to 4–6 stationary punts; fishing boats had no effect on wigeon abundance.
5. Hunting, especially shooting from mobile punts, was identified as the most disturbing human activity in relation to staging waterfowl in this area. Similar results and conclusions were reached in another comparable study area. The results have implications for refuge designs and zoning of disturbing recreational activities.  相似文献   

13.
ABSTRACT Research on effects of key weather stimuli influencing waterfowl migration during autumn and winter is limited. We investigated relationships between changes in relative abundances of mallard (Anas platyrhynchos) and other dabbling ducks (Anas spp.) and weather variables at midlatitude locations in North America. We used waterfowl survey data from Missouri Conservation Areas and temperature and snow cover data from the Historical Climatology Network to evaluate competing models to explain changes in relative abundance of ducks in Missouri, USA, during autumn-winter, 1995–2005. We found that a cumulative weather severity index model (CumulativeWSI; calculated as mean daily temp - degrees C + no. of consecutive days with mean temp ≤ 0° C + snow depth + no. of consecutive days with snow cover) had the greatest weight of evidence in explaining changes in relative abundance of ducks. We concluded the CumulativeWSI reflected current and cumulative effects of ambient temperatures on energy expenditure by ducks, and snow cover and wetland icing, on food availability for ducks. The CumulativeWSI may be useful in determining potential changes in autumn-winter distributions of North American waterfowl given different climate change projections and associated changes in habitat conservation needs. Future investigations should address interactions between CumulativeWSI and landscape habitat quality, regional waterfowl populations, hunter harvest, and other anthropogenic influences to increase understanding of waterfowl migration during autumn-winter.  相似文献   

14.
Arsnoe DM  Ip HS  Owen JC 《PloS one》2011,6(8):e22633
Migrating waterfowl are implicated in the global spread of influenza A viruses (IAVs), and mallards (Anas platyrhynchos) are considered a particularly important IAV reservoir. Prevalence of IAV infection in waterfowl peaks during autumn pre-migration staging and then declines as birds reach wintering areas. Migration is energetically costly and birds often experience declines in body condition that may suppress immune function. We assessed how body condition affects susceptibility to infection, viral shedding and antibody production in wild-caught and captive-bred juvenile mallards challenged with low pathogenic avian influenza virus (LPAIV) H5N9. Wild mallards (n = 30) were separated into three experimental groups; each manipulated through food availability to a different condition level (−20%, −10%, and normal ±5% original body condition), and captive-bred mallards (n = 10) were maintained at normal condition. We found that wild mallards in normal condition were more susceptible to LPAIV infection, shed higher peak viral loads and shed viral RNA more frequently compared to birds in poor condition. Antibody production did not differ according to condition. We found that wild mallards did not differ from captive-bred mallards in viral intensity and duration of infection, but they did exhibit lower antibody titers and greater variation in viral load. Our findings suggest that reduced body condition negatively influences waterfowl host competence to LPAIV infection. This observation is contradictory to the recently proposed condition-dependent hypothesis, according to which birds in reduced condition would be more susceptible to IAV infection. The mechanisms responsible for reducing host competency among birds in poor condition remain unknown. Our research indicates body condition may influence the maintenance and spread of LPAIV by migrating waterfowl.  相似文献   

15.
ABSTRACT Changes in resource selection associated with human predation risk may alter elk distributions and availability for harvest. We used Global Positioning System data collected from telemetered female elk (Cervus elaphus) to evaluate effects of refuges (areas where hunting was prohibited), spatial variation in hunting risk, and landscape attributes on resource selection within an established Greater Yellowstone Area, USA, winter range. We also evaluated elk distributions during and outside of a late-season hunting period. Refuge areas and landscape attributes such as habitat type and snow water equivalents (SWE) affected resource selection. Elk selection for flat grasslands increased as SWE increased, likely because these areas were windswept, leaving grasses exposed for foraging. Elk distributions differed during hunting and no-hunting periods. During the hunting period, elk shifted to privately owned refuge areas and the estimated odds of elk occupying refuge areas more than doubled. Risk-driven changes in resource selection resulted in reduced availability of elk for harvest. Elk selection for areas where hunting is prohibited presents a challenge for resource managers that use hunting as a tool for managing populations and influences grazing patterns on private ranchlands.  相似文献   

16.
Wildfire activity across the western United States has increased in recent decades, with wildfires burning at a higher severity and larger scale. The effect of wildfires on forest structure and wildlife habitat is largely influenced by wildfire severity; however, few studies have evaluated the effects of wildfire severity on resource selection of ungulates, particularly during hunting seasons, when knowledge of resource selection is essential for making informed management decisions. To fill this knowledge gap, we fit resource selection probability functions for female elk (Cervus canadensis) in years 2 and 3 post-wildfire to evaluate the effects of wildfire severity and other environmental and anthropogenic factors on elk resource selection during 4 autumn periods with varying levels of hunter pressure (prehunt, archery-only, backcountry rifle, and rifle). The probability of female elk selecting low-severity burned forests during the prehunt, archery-only, backcountry rifle, and rifle periods was 0.99 (95% credible interval [CrI] = 0.98–1.00), 0.99 (CrI = 0.97–1.00), 0.99 (CrI = 0.99–1.00), and 0.0010 (CrI = 0.00067–0.0015]), respectively, and did not strongly differ from the probability of selecting high-severity burned forests. During the prehunt period, elk also selected areas with greater forage quality and areas farther from open roads. Elk selected similar resources during the archery period, and selected areas with higher hunter pressure. Elk started leaving hunting districts that had higher snowpack (i.e., snow water equivalent; β = −0.84, CrI = −0.96–−0.72) and allowed rifle hunting (β = −5.39, CrI = −5.80–−4.97) but still selected areas with higher hunter pressure (β = 0.92, CrI = 0.78–1.07) during the backcountry rifle period. During the rifle period, elk continued avoiding areas with high snowpack (β = −3.96, CrI = −4.22–−3.71) and started selecting areas with lower hunter pressure (β = −1.71, CrI = −1.79–−1.64) and lower canopy cover. Overall, wildfire affected elk distributions in early autumn 2 and 3 years after fire in our study area, with limited differences in resource selection between wildfire severity categories. By late autumn, hunter pressure and snowpack were the primary factors influencing elk distribution, and wildfire had little influence on selection. When estimating wildfire effects on elk movements during autumn and establishing appropriate hunting regulations, managers should consider the hunting season, hunter pressure, timing and amount of snowpack, location of traditional winter range, and the seasonal elk range burned, as all these factors may contribute to how elk use the landscape in autumn.  相似文献   

17.
Roads fragment moose habitat and cause increased mortality through moose–vehicle collisions. Previous studies have found that moose avoid areas near roads. In late winter, when moose face depleting food resources elsewhere, moose may be more prone to use areas near roads for foraging. However, this presumed trade-off between foraging and keeping away from roads has not previously been investigated. We sampled positions from global positioning system-collared moose in late winter from a high-density moose population in Southern Norway that is heavily influenced by human infrastructure. We combined data on moose positions with detailed field surveys of food abundance at sites that were, respectively, intensively used or sparsely used by moose. The probability that a site was intensively used increased with increasing abundance of high-quality browse and also with increasing distance to the nearest road. This indicates that moose trade-off foraging against keeping away from roads. We also found that spatio-temporal movements in relation to roads were influenced by variation in perceived human-derived risk; moose moved closer to smaller roads (low traffic volume) than to major roads (higher traffic volume) and closer to roads at night than at day. Males moved closer to roads than females. In conclusion, moose clearly exhibited behavioural adaptations to cope with roads and traffic in the study area. Because availability of high-quality forage substantially influenced habitat use, it may be an option to establish artificial feeding sites during winter to keep moose away from the roads.  相似文献   

18.
Common kestrels (Falco tinnunculus) and long-eared owls (Asio otus) in intensively farmed areas in Switzerland decreased markedly as a result of declining vole (Microtus spp.) populations. In order to counteract the loss of biodiversity in intensively farmed areas, the Swiss agri-environment scheme stipulates several types of ecological compensation areas, which together should take up 7% of the farmland. Among them are wild flower and herbaceous strips, which are not mown every year and which in summer support up to 8 times more small mammals than ordinary fields and grassland. This study investigates whether kestrels and long-eared owls preferentially hunt on ecological compensation areas and whether preferred hunting areas are related to the density of small mammals or to the density and height of the vegetation. Both kestrels and long-eared owls mainly hunted on freshly mown low-intensity meadows and artificial grassland, despite low densities of small mammals. Therefore, vegetation structure was more important for the selection of hunting sites than prey abundance. However, both predators preferred to hunt on freshly mown grassland and meadows bordering a wild flower or herbaceous strip. Voles from these strips probably invaded the adjacent freshly mown grassland and became an easy prey for kestrels and owls. In intensively farmed regions, ecological compensation areas, particularly those not mown each year, are an important refuge for small mammals, although in summer the small mammals are not directly accessible to hunting birds. Hence, a mosaic of different habitat types with grassland mown at different times of the year together with undisturbed strips is best suited to provide a year-round supply of accessible food for vole hunters.  相似文献   

19.
Mule deer (Odocoileus hemionus) are widely hunted throughout western North America and are experiencing population declines across much of their range. Consequently, understanding the direct and indirect effects of hunting is important for management of mule deer populations. Managers can influence deer mortality rates through changes in hunting season length or authorized tag numbers. Little is known, however, about how hunting can affect site fidelity patterns and subsequent habitat use and movement patterns of mule deer. Understanding these patterns is especially important for adult females because changes in behavior may influence their ability to acquire resources and ultimately affect their productivity. Between 2008 and 2013, we obtained global positioning system locations for 42 adult female deer at the Starkey Experimental Forest and Range in northeast Oregon, USA, during 5-day control and treatment periods in which hunters were absent (pre-hunt), present but not actively hunting (scout and post-hunt), and actively hunting male mule deer (hunt) on the landscape. We estimated summer home ranges and 5-day use areas during pre-hunt and hunt periods and calculated overlap metrics across home ranges and use areas to assess site fidelity within and across years. We used step selection functions to evaluate whether female mule deer responded to human hunters by adjusting fine-scale habitat selection and movement patterns during the hunting season compared to the pre-hunt period. Mule deer maintained site fidelity despite disturbance by hunters with 72 ± 4% (SE) within-year overlap between summer home ranges and hunt use areas and 54 ± 7% inter-annual overlap among pre-hunt use areas and 56 ± 7% among hunt use areas. Mule deer diurnal movement rates, when hunters are active on the landscape, were higher during the hunting period versus pre-hunt or scout periods. In contrast, nocturnal movement rates, when hunters are inactive on the landscape, were similar between hunting and non-hunting periods. Additionally, during the hunt, female mule deer hourly movements increased in areas with high greenness values, indicating that mule deer spent less time in areas with more vegetative productivity. Female mule deer maintained consistent habitat selection patterns before and during hunts, selecting areas that offered more forest canopy cover and high levels of vegetative productivity. Our results indicate that deer at Starkey are adopting behavioral strategies in response to hunters by increasing their movement rates and selecting habitat in well-established ranges. Therefore, considering site fidelity behavior in management planning could provide important information about the spatial behavior of animals and potential energetic costs incurred, especially by non-target animals during hunting season. © 2020 The Wildlife Society.  相似文献   

20.
ABSTRACT The influence of habitat, waterfowl abundance, and hunting on winter survival of waterfowl is not well understood. We studied late August-March survival of 163 after-hatch-year (AHY) and 128 hatch-year (HY) female mallards (Anas platyrhynchos) radiotagged in Sacramento Valley (SACV) and 885 AHY female northern pintails (A. acuta) radiotagged throughout the Central Valley of California, USA, relative to flooded habitat (HAB), January abundance of each species (JMAL or JPIN), hunter-days (HDY), and a hunting pressure index (HPI) that combined these variables. From EARLY (1987–1994) to LATE (1998–2000), HAB increased 39%, JPIN increased 45%, JMAL increased 53%, HDY increased 21%, duck-hunting season increased from 59 days to 100 days, and the female daily bag limit doubled to 2 for mallards but remained 1 for pintails. Survival (± SE) was greater during LATE versus EARLY for pintails radiotagged in each region (SACV: 93.2 ± 2.1% vs. 87.6 ± 3.0%; Suisun Marsh: 86.6 ± 3.2% vs. 77.0 ± 3.7%; San Joaquin Valley: 86.6 ± 3.1% vs. 76.9 ± 4.1%) but not for SACV mallards (AHY: 70.6 ± 7.2% to 74.4 ± 7.7% vs. 80.1 ± 7.2% to 82.8 ± 5.6%; HY: 48.7 ± 9.1% [1999–2000 only] vs. 63.5 ± 8.8% to 67.6 ± 8.0%). Most pintail (72%) and mallard (91%) deaths were from hunting, and lower HPI and higher JPIN or JMAL were associated with reduced mortality. Increased HAB was associated with reduced winter mortality for pintails but not for SACV mallards. Pintail survival rates that we measured were within the range reported for other North American wintering areas, and during LATE were higher than most, even though our study duration was 68–110 days longer. Winter survival rates of SACV mallards were also within the reported range. However, with higher bag limits and longer seasons, mallard survival during LATE was lower than in most other wintering areas, especially during 1999–2000, when high winds on opening weekend resulted in high hunting mortality. Habitat conservation and favorable agriculture practices helped create a Central Valley wintering environment where natural mortality of mallards and pintails was low and survival varied with hunting mortality. We recommend regulations and habitat management that continue to minimize natural mortality while allowing sustainable harvest at a level that helps maintain strong incentive for management of Central Valley waterfowl habitats, including the large portion that is privately owned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号