首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human papillomavirus (HPV) E2 protein regulates viral gene expression and is also required for viral replication. HPV-transformed cells often contain chromosomally integrated copies of the HPV genome in which the viral E2 gene is disrupted. We have shown previously that re-expression of the HPV 16 E2 protein in HPV 16-transformed cells results in cell death via apoptosis. Here we show that the HPV 16 E2 protein can induce apoptosis in both HPV-transformed and non-HPV-transformed cell lines. E2-induced apoptosis is abrogated by a trans-dominant negative mutant of p53 or by overexpression of the HPV 16 E6 protein, but is increased by overexpression of wild-type p53. We show that mutations that block the DNA binding activity of E2 do not impair the ability of this protein to induce apoptosis. In contrast, removal of both N-terminal domains from the E2 dimer completely blocks E2-induced cell death. Heterodimers formed between wild-type E2 and N-terminally deleted E2 proteins also fail to induce cell death. Our data suggest that neither the DNA binding activity of E2 nor other HPV proteins are required for the induction of apoptosis by E2 and that E2-induced cell death occurs via a p53-dependent pathway.  相似文献   

2.
Binding of the chloroplast poly(A)-binding protein, RB47, to the psbA mRNA is regulated in response to light and is required for translation of this mRNA in chloroplasts. The RNA binding activity of RB47 can be modulated in vitro by oxidation and reduction. Site-directed mutations to individual cysteine residues in each of the four RNA binding domains of RB47 showed that changing single cysteines to serines in domains 2 or 3 reduced, but did not eliminate, the ability of RB47 to be redox-regulated. Simultaneously changing cysteines to serines in both domains 2 and 3 resulted in the production of RB47 protein that was insensitive to redox regulation but retained the ability to bind the psbA mRNA at high affinity. The poly(A)-binding protein from Saccharomyces cerevisiae lacks cysteine residues in RNA binding domains 2 and 3, and this poly(A)-binding protein lacks the ability to be regulated by oxidation or reduction. These data show that disulfide bond formation between RNA binding domains in a poly(A)-binding protein can be used to regulate the ability of this protein to bind mRNA and suggest that redox regulation of RNA binding activity may be used to regulate translation in organisms whose poly(A)-binding proteins contain these critical cysteine residues.  相似文献   

3.
Rb protein inhibits both cell cycle progression and apoptosis. Interaction of specific cellular proteins, including E2F1, with Rb C-terminal domains mediates cell cycle regulation. In contrast, the nuclear N5 protein associates with an Rb N-terminal domain with unknown function. The N5 protein contains a region of sequence similarity to the death domain of proteins involved in apoptotic signaling. We demonstrate here that forced N5 expression potently induces apoptosis in several tumor cell lines. Mutation of conserved residues within the death domain homology compromise N5-induced apoptosis, suggesting that it is required for normal function. Endogenous N5 protein is specifically altered in apoptotic cells treated with ionizing radiation. Furthermore, dominant interfering death domain mutants compromise cellular responses to ionizing radiation. Finally, physical association with Rb protein inhibits N5-induced apoptosis. We propose that N5 protein plays a role in the regulation of apoptosis and that Rb directly coordinates cell proliferation and apoptosis by binding specific proteins involved in each process through distinct protein binding domains.  相似文献   

4.
Molluscum contagiosum virus (MCV), a member of the human poxvirus family, encodes the MC159 protein that inhibits Fas-, tumor necrosis factor (TNF)-, and TNF-related apoptosis-inducing ligant (TRAIL)-induced apoptosis. We used site-directed mutagenesis to change charged or hydrophobic amino acid residues to alanines to identify regions of MC159 that are critical for protection from apoptosis and for protein-protein interactions. Surprisingly, while MC159 is thought to block apoptosis by binding to Fas-associated death domain (FADD) or caspase-8, several mutants that lost apoptosis blocking activity still bound to both FADD and caspase-8. Mutations in the predicted hydrophobic patch 1 and alpha2 regions of both death effector domains (DEDs) within MC159 resulted in loss of the ability to bind to FADD or caspase-8 and to block apoptosis. Amino acid substitutions in the RXDL motif located in the alpha6 region of either DED resulted in loss of protection from apoptosis induced by Fas, TNF, and TRAIL and abolished the ability of MC159 to block death effector filament formation. Thus, charged or hydrophobic amino acids in three regions of the MC159 DEDs (hydrophobic patch 1, alpha2, and alpha6) are critical for the protein's ability to interact with cellular proteins and to block apoptosis.  相似文献   

5.
Discordant views regarding host cell death induction by Chlamydia are likely owing to the different methods used for evaluation of apoptosis. Apoptotic and non-apoptotic death owing to both caspase-dependent and -independent activation of the Bax protein occur late in the productive growth cycle. Evidence also suggests that Chlamydia inhibits apoptosis during productive growth as part of its intracellular survival strategy. This is in part owing to proteolytic degradation of the BH3-only family of pro-apoptotic proteins in the mitochondrial pathway. Chlamydia also inhibits apoptosis during persistent growth or in phagocytes, but induces apoptosis in T cells, which suggests that apoptosis has an immunomodulatory role in chlamydial infections. The contribution of apoptosis in disease pathogenesis remains a focus for future research.  相似文献   

6.
RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required for RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.  相似文献   

7.
Bcl-2 is an anti-apoptotic member of the Bcl-2 family of proteins that protects cells from apoptosis induced by a large variety of stimuli. The protein BMRP (MRPL41) was identified as a Bcl-2 binding partner and shown to have pro-apoptotic activity. We have performed deletion mutational analyses to identify the domain(s) of Bcl-2 and BMRP that are involved in the Bcl-2/BMRP interaction, and the region(s) of BMRP that mediate its pro-apoptotic activity. The results of these studies indicate that both the BH4 domain of Bcl-2 and its central region encompassing its BH1, BH2, and BH3 domains are required for its interaction with BMRP. The loop region and the transmembrane domain of Bcl-2 were found to be dispensable for this interaction. The Bcl-2 deletion mutants that do not interact with BMRP were previously shown to be functionally inactive. Deletion analyses of the BMRP protein delimited the region of BMRP needed for its interaction with Bcl-2 to the amino-terminal two-thirds of the protein (amino acid residues 1-92). Further deletions at either end of the BMRP(1-92) truncated protein resulted in lack of binding to Bcl-2. Functional studies performed with BMRP deletion mutants suggest that the cell death-inducing domains of the protein reside mainly within its amino-terminal two-thirds. The region of BMRP required for the interaction with Bcl-2 is very relevant for the cell death-inducing activity of the protein, suggesting that one possible mechanism by which BMRP induces cell death is by binding to and blocking the anti-apoptotic activity of Bcl-2.  相似文献   

8.
Apoptosis plays an important role in modulating the pathogenesis of a variety of infectious diseases. Chlamydial infection protects cells against different forms of apoptosis: extrinsic, intrinsic, and granzyme B mediated. Redox reactions are central to the life and death decision of cells and pathogens and an intimate relationship exists between oxidative stress and iron metabolism. The link between redox status and ferritin was largely unexplored in chlamydia-infected cells. In the present study, we showed that Chlamydia trachomatis (CT) infection induced FHC protein in HeLa cells. FHC induction by CT-infected cells stably expressing FHC blunted ROS production compared with mock infected cells, and the infected cells were relatively resistant to apoptosis induced by H?O?. We also demonstrated that endogenous FHC overexpression correlates well with the stabilization of the mitochondrial membrane potential in CT-infected cells. Increased expression of FHC is independent of iron supplementation (FAC) and depletion (DFO) in CT-infected cells. These data suggest that FHC up-regulation is an acute response of HeLa cells against CT infection and that FHC exerts anti-apoptotic activity against oxidative stress.  相似文献   

9.
Cleavage and Inactivation of ATM during Apoptosis   总被引:10,自引:0,他引:10       下载免费PDF全文
The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance-the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.  相似文献   

10.
11.
The Fas receptor is a representative death receptor, and the Fas-associated protein with death domain (FADD) is a crucial adapter protein needed to support the Fas receptor’s activity. The Fas–FADD interactions constitute an important signaling pathway that ultimately induces apoptosis or programmed cell death in biological systems. The interactions responsible for this cell-death process are governed by the binding process of the Fas ligand to the Fas, followed by the caspase cascade activation. Using a computational approach, the present communication explores certain essential structural aspects of the Fas–FADD death domains and their interfacial interactions.  相似文献   

12.
Much effort was expended to develop anti-cancer drugs that restore the function of the p53 tumor suppressor protein. However, the p53 activity might be harmful to the organism by amplifying side effects of chemotherapy. Therefore, under certain conditions, inhibition of p53 can serve to prevent inappropriately triggered apoptosis in normal tissues. We have identified a short 22-mer peptide derived from the p53 core domain (peptide 14), which can inhibit p53 specific DNA binding. Upon introduction in living cells, peptide 14 inhibited the ability of p53 to transactivate a reporter gene. Moreover, peptide 14 blocked p53-induced apoptosis in two different cell lines. Peptide 14-mediated inhibition of p53 activity appears to operate via the binding of peptide to the core and/or C-terminal domains of the p53 protein. Our findings provide a basis for the development of a novel approach aimed at the inhibition of p53. This could be essential for the protection from cell death in tissues thus suppressing for example neurodegenerative process or side effects of radio- or chemotherapy.  相似文献   

13.
14.
Much effort was expended to develop anti-cancer drugs that restore the function of the p53 tumor suppressor protein. However, the p53 activity might be harmful to the organism by amplifying side effects of chemotherapy. Therefore, under certain conditions, inhibition of p53 can serve to prevent inappropriately triggered apoptosis in normal tissues. We have identified a short 22-mer peptide derived from the p53 core domain (peptide 14), which can inhibit p53 specific DNA binding. Upon introduction in living cells, peptide 14 inhibited the ability of p53 to transactivate a reporter gene. Moreover, peptide 14 blocked p53-induced apoptosis in two different cell lines. Peptide 14-mediated inhibition of p53 activity appears to operate via the binding of peptide to the core and/or C-terminal domains of the p53 protein. Our findings provide a basis for the development of a novel approach aimed at the inhibition of p53. This could be essential for the protection from cell death in tissues thus suppressing for example neurodegenerative process or side effects of radio- or chemotherapy.  相似文献   

15.
Omi/HtrA2 is a nuclear-encoded mitochondrial serine protease that has a pro-apoptotic function in mammalian cells. Upon induction of apoptosis, Omi translocates to the cytoplasm and participates in caspase-dependent apoptosis by binding and degrading inhibitor of apoptosis proteins. Omi can also initiate caspase-independent apoptosis in a process that relies entirely on its ability to function as an active protease. To investigate the mechanism of Omi-induced apoptosis, we set out to isolate novel substrates that are cleaved by this protease. We identified HS1-associated protein X-1 (HAX-1), a mitochondrial anti-apoptotic protein, as a specific Omi interactor that is cleaved by Omi both in vitro and in vivo. HAX-1 degradation follows Omi activation in cells treated with various apoptotic stimuli. Using a specific inhibitor of Omi, HAX-1 degradation is prevented and cell death is reduced. Cleavage of HAX-1 was not observed in a cell line derived from motor neuron degeneration 2 mice that carry a mutated form of Omi that affects its proteolytic activity. Degradation of HAX-1 is an early event in the apoptotic process and occurs while Omi is still confined in the mitochondria. Our results suggest that Omi has a unique pro-apoptotic function in mitochondria that involves removal of the HAX-1 anti-apoptotic protein. This function is distinct from its ability to activate caspase-dependent apoptosis in the cytoplasm by degrading inhibitor of apoptosis proteins.  相似文献   

16.
The role of cellular redox potential in the regulation of protein activity is becoming increasingly appreciated and characterized. In this paper we put forward a new hypothesis relating to redox regulation of cellular physiology. We have exemplified our hypothesis using apoptosis since its redox phenomenology is well established, but believe that it is equally applicable to several other pathways. Our hypothesis is that since multiple proteins in the apoptosis pathway are thought to be regulated via oxidation/reduction reactions and since cellular redox potentials have been shown to become progressively more oxidative during apoptosis, that the proteins could be arranged in an electrochemical series where the protein's standard potential correlates with its position in the pathway. Since the most stable oxidation state of the protein is determined by its standard potential and the redox potential of its environment (in a way predictable by the Nernst equation), a quantitative model of the redox regulation of the pathway could be developed. We have outlined our hypothesis, illustrating it using a pathway map which assembles a selection of the literature on apoptosis into a readable graphical format. We have also outlined experimental approaches suitable for testing our hypothesis.  相似文献   

17.
RASSF1A is a tumor suppressor protein involved in death receptor-dependent apoptosis utilizing the Bax-interacting protein MOAP-1 (previously referred to as MAP-1). However, the dynamics of death receptor recruitment of RASSF1A and MOAP-1 are still not understood. We have now detailed recruitment to death receptors (tumor necrosis factor receptor 1 [TNF-R1] and TRAIL-R1/DR4) and identified domains of RASSF1A and MOAP-1 that are required for death receptor interaction. Upon TNF-alpha stimulation, the C-terminal region of MOAP-1 associated with the death domain of TNF-R1; subsequently, RASSF1A was recruited to MOAP-1/TNF-R1 complexes. Prior to recruitment to TNF-R1/MOAP-1 complexes, RASSF1A homodimerization was lost. RASSF1A associated with the TNF-R1/MOAP-1 or TRAIL-R1/MOAP-1 complex via its N-terminal cysteine-rich (C1) domain containing a potential zinc finger binding motif. Importantly, TNF-R1 association domains on both MOAP-1 and RASSF1A were essential for death receptor-dependent apoptosis. The association of RASSF1A and MOAP-1 with death receptors involves an ordered recruitment to receptor complexes to promote cell death and inhibit tumor formation.  相似文献   

18.
The adapter protein Crk contains an SH2 domain and two SH3 domains. Through binding of particular ligands to the SH2 domain and the N-terminal SH3 domain, Crk has been implicated in a number of signaling processes, including regulation of cell growth, cell motility, and apoptosis. We report here that the C-terminal SH3 domain, never shown to bind any specific signaling molecules, contains a binding site for the nuclear export factor Crm1. We find that a mutant Crk protein, deficient in Crm1 binding, promotes apoptosis. Moreover, this nuclear export sequence mutant [NES(-) Crk] interacts strongly, through its SH2 domain, with the nuclear tyrosine kinase, Wee1. Collectively, these data suggest that a nuclear population of Crk bound to Wee1 promotes apoptotic death of mammalian cells.  相似文献   

19.
The myxoma virus tumor necrosis factor (TNF) receptor homolog, M-T2, is expressed both as a secreted glycoprotein that inhibits the cytolytic activity of rabbit TNF-alpha and as an endoglycosidase H-sensitive intracellular species that prevents myxoma virus-infected CD4+ T lymphocytes from undergoing apoptosis. To compare the domains of M-T2 mediating extracellular TNF inhibition and intracellular apoptosis inhibition, recombinant myxoma viruses expressing nested C-terminal truncations of M-T2 protein were constructed. One mutant, deltaL113, containing intact copies of only two cysteine-rich domains, was not secreted and was incapable of binding rabbit TNF-alpha yet retained full ability to inhibit virus-induced apoptosis of RL-5 cells. Thus, the minimal domain of intracellular M-T2 protein required to inhibit apoptosis is distinct from that required by the extracellular M-T2 for functional TNF-alpha binding and inhibition. This is the first report of a virus-encoded immunomodular protein with two distinct antiimmune properties.  相似文献   

20.
Inhibitor of apoptosis proteins (IAPs) prevent apoptosis through direct inhibition of caspases. The serine protease HtrA2/Omi has an amino-terminal IAP interaction motif like that found in Reaper, which displaces IAPs from caspases, leading to enhanced caspase activity. The cell death-promoting properties of HtrA2/Omi are not only exerted through its capacity to oppose IAP inhibition of caspases but also through its integral serine protease activity. We have used peptide libraries to determine the optimal substrate sequence for cleavage by HtrA2 and also the preferred binding sequence for its PDZ domain. Using these peptides, we show that the PDZ domain of HtrA2/Omi suppresses the proteolytic activity unless it is engaged by a binding partner. Subjecting HtrA2/Omi to heat shock treatment also increases its protease activity. Unexpectedly, binding of X-linked inhibitor of apoptosis protein (XIAP) to the Reaper motif of HtrA2/Omi results in a marked increase in proteolytic activity, suggesting a new role for IAPs. When HtrA2/Omi is released from mitochondria following an apoptotic stimulus, binding to IAPs may switch their function from caspase inhibition to serine protease activation. Thus although IAP overexpression can suppress caspase activation, it could have the opposite effect on HtrA2/Omi-dependent cell death. This, together with the ability of HtrA2/Omi to degrade IAPs, may limit the overall cellular protection that can be provided by these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号