首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以藏嵩草沼泽化草甸为研究对象,利用磷脂脂肪酸(PLFA)技术,研究连续6年N素添加对地上植被群落数量特征、土壤微生物群落结构的影响。结果表明:①藏嵩草沼泽化草甸群落生物量、枯枝落叶对施肥处理无明显响应,且莎草科植物对土壤氮素的吸收和利用率较低。②施肥增加了0-10 cm土壤微生物类群PLFAs丰富度尤其细菌和革兰氏阳性菌PLFAs,降低了10-20 cm PLFAs丰富度;③磷脂脂肪酸饱和脂肪酸/单烯不饱和脂肪酸、细菌PLFAs/真菌PLFAs的比值随土壤层次增加而增加;④0-10 cm土层革兰氏阳性菌、真菌PLFAs含量与pH、土壤速效磷、速效氮、土壤有机质显著正相关(P0.05或P0.01);10-20 cm土层,细菌、革兰氏阳性菌、真菌和总PLFAs含量与土壤有机质含量显著正相关(P0.05或P0.01)。表明藏嵩草沼泽化草甸微生物PLFAs含量和丰富度对施肥的响应存在明显的土层梯度效应,土壤微生物PLFAs含量和丰富度主要受表层土壤初始养分含量的影响。  相似文献   

2.
牛磊  刘颖慧  李悦  欧阳胜男   《生态学杂志》2015,26(8):2298-2306
以不同放牧方式下那曲高寒草甸为研究对象,通过比较土壤化学性质和土壤磷脂脂肪酸(PLFA)研究土壤微生物群落结构的变化.结果表明: 土壤化学性质(总有机碳、全磷和硝态氮含量)和微生物生物量碳总体表现为休牧7年>自由放牧>禁牧;除真菌细菌比外,土壤PLFA总值、细菌PLFA值、真菌PLFA值、革兰氏阴性菌和革兰氏阳性菌PLFA值均表现为休牧7年>禁牧5年>自由放牧>禁牧7和9年.主成分分析(PCA)表明:第1主成分(PC1=74.6%)主要由单烯脂肪酸、多烯脂肪酸、支链饱和脂肪酸组成;第2主成分(PC2=13.2%)主要由直链脂肪酸和部分单烯脂肪酸组成.土壤微生物生物量碳(MBC)和PLFA总值之间有较好的相关性.与禁牧方式相比,休牧最适宜于那曲高寒草甸健康稳定,轻度放牧也有利于高寒草甸的稳定.  相似文献   

3.
Abstract The microbial biomass and community structure of eight Chinese red soils with different fertility and land use history was investigated. Two community based microbiological measurements, namely, community level physiological profiling (CLPP) using Biolog sole C source utilization tests and phospholipid fatty acid (PLFA) profiles, were used to investigate the microbial ecology of these soils and to determine how land use alters microbial community structure. Microbial biomass-C and total PLFAs were closely correlated to organic carbon and total nitrogen, indicating that these soil microbial measures are potentially good indices of soil fertility in these highly weathered soils. Metabolic quotients and C source utilization were not correlated with organic carbon or microbial biomass. Multivariate analysis of sole carbon source utilization patterns and PLFAs demonstrated that land use history and plant cover type had a significant impact on microbial community structure. PLFAs showed these differences more than CLPP methods. Consequently, PLFA analysis was a better method for assessing broad-spectrum community differences and at the same time attempting to correlate changes with soil fertility. Soils from tea orchards were particularly distinctive in their CLPP. A modified CLPP method, using absorbance readings at 405 nm and different culture media at pH values of 4.7 and 7.0, showed that the discrimination obtained can be influenced by the culture conditions. This method was used to show that the distinctive microbial community structure in tea orchard soils was not, however, due to differences in pH alone. Received: 1 December 1999; Accepted: 6 June 2000; Online Publication: 28 August 2000  相似文献   

4.
水田改果园后土壤性质的变化及其特征   总被引:3,自引:0,他引:3  
杨东伟  章明奎 《生态学报》2015,35(11):3825-3835
近年来,水田改作经济林地,在我国南方地区非常普遍。为深入了解这一转变对土壤质量的影响,以浙江省典型水稻土(青粉泥田)及其改果园不同年限的系列表层土壤(0—15 cm)为研究对象,应用磷脂脂肪酸生物标记等方法,研究了水田改果园后土壤理化性质和微生物群落结构等性质的变化以及它们之间的关系。结果表明,水田改果园后,土壤中大于0.25 mm水稳定性团聚体、盐基饱和度、p H值、有机质、全氮和碱解氮等随着改果园年限的延长而显著降低(P0.05)。土壤微生物生物量碳氮、微生物商和土壤呼吸强度随改果园年限增加而显著下降(P0.01)。土壤微生物群落结构也发生明显变化:磷脂脂肪酸总量显著降低(P0.01),微生物种类减少,原生动物在土壤微生物中所占比例增加,革兰氏阴性细菌与革兰氏阳性细菌比值降低(P0.01),好氧细菌/厌氧细菌和甲烷氧化菌/细菌增加(P0.01),表征养分胁迫的环丙基脂肪酸/前体物和异式脂肪酸/反异支链脂肪酸显著增加(P0.01)。冗余分析表明,土壤含水率、有机质和碱解氮是决定水田和果园土壤微生物群落结构差异的最重要因子(P0.01);改果园后,土壤微生物群落结构发生了阶段性变化,不同利用方式对微生物群落结构的影响程度要大于同一利用方式耕作不同年限对微生物群落结构的影响。研究表明,水田改果园后土壤理化性质以及生物学性质发生退化,土壤质量下降;而水田中微生物数量和种类都比较丰富,因而认为水田是土壤(地)可持续利用的一种有效方式。  相似文献   

5.
王雪芹  张奇春  姚槐应 《生态学报》2012,32(5):1412-1418
研究了典型毛竹林毛竹高速生长期间土壤碳氮动态及其微生物生态特性。结果表明:毛竹高速生长期间,3个试验地土壤全氮、碱解氮、铵态氮、硝态氮及总有机碳和水溶性有机碳(DOC)的含量均有不同幅度的下降,其中25℃蒸馏水提取DOC(25℃DOC)降幅分别达到51%、22%和223%,且25℃DOC下降幅度明显大于80℃DOC的下降幅度。随毛竹生长,土壤全氮和有机碳含量变化较为明显,相关分析表明两者呈极显著的正相关(R2=0.89**)。同时,土壤微生物量碳含量大幅度降低,由原来的800 mg/kg降到了525 mg/kg。采用PLFA法对土壤微生物群落结构进行了分析,代表细菌的饱和脂肪酸(14:0,16:0,18:0,20:0,i15:0,i16:0,i17:0,i18:0,a15:0,a17:0)基本上都分布在载荷图的右侧;代表真菌的不饱和脂肪酸(18:2w6,9c/18:0ANTE)分布在主成分载荷图的左侧,表明随着毛竹生长,土壤中细菌含量减少,真菌含量增加。说明毛竹的高速生长消耗了土壤中的碳氮,同时对土壤微生物群落结构产生了明显的影响。  相似文献   

6.
Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic.  相似文献   

7.

Background and aims

Tundra soils, which usually contain low concentrations of soil nutrients and have a low pH, store a large proportion of the global soil carbon (C) pool. The importance of soil nitrogen (N) availability for microbial activity in the tundra has received a great deal of attention; however, although soil pH is known to exert a considerable impact on microbial activities across ecosystems, the importance of soil pH in the tundra has not been experimentally investigated.

Methods

We tested a hypothesis that low nutrient availability and pH may limit microbial biomass and microbial capacity for organic matter degradation in acidic tundra heaths by analyzing potential extracellular enzyme activities and microbial biomass after 6 years of factorial treatments of fertilization and liming.

Results

Increasing nutrients enhanced the potential activity of β-glucosidase (synthesized for cellulose degradation). Increasing soil pH, in contrast, reduced the potential activity of β-glucosidase. The soil phospholipid fatty acid concentrations (PLFAs; indicative of the amount of microbial biomass) increased in response to fertilization but were not influenced by liming.

Conclusions

Our results show that soil nutrient availability and pH together control extracellular enzyme activities but with largely differing or even opposing effects. When nutrient limitation was alleviated by fertilization, microbial biomass and enzymatic capacity for cellulose decomposition increased, which likely facilitates greater decomposition of soil organic matter. Increased soil pH, in contrast, reduced enzymatic capacity for cellulose decomposition, which could be related with the bioavailability of organic substrates.  相似文献   

8.
川西亚高山不同林龄云杉人工林土壤微生物群落结构   总被引:4,自引:0,他引:4  
以川西亚高山云杉人工林林地土壤为对象,采用磷脂脂肪酸(PLFA)法研究了4种不同林龄(50、38、27和20年)的人工林土壤微生物多样性和群落结构特征.结果表明: 随着林龄的增加,土壤有机碳和全氮含量逐步增加;土壤微生物Shannon多样性和Pielou均匀度指数则呈现先增后减的趋势.土壤微生物总PLFAs量、细菌PLFAs量、真菌PLFAs量、放线菌PLFAs量以及丛枝菌根真菌PLFAs量均表现为随林龄的增加而增加.主成分分析(PCA)表明,不同林龄人工林的土壤微生物群落结构之间存在显著差异,其中,第1主成分(PC1)和第2主成分(PC2)共同解释了土壤微生物群落结构总变异的66.8%.冗余分析(RDA)表明,对土壤微生物群落结构产生显著影响的环境因子分别为土壤有机碳、全氮、全钾以及细根生物量.随着人工造林时间的延长,土壤肥力和微生物生物量增加,森林生态系统的恢复进程稳定.  相似文献   

9.
南亚热带乡土树种人工纯林及混交林土壤微生物群落结构   总被引:1,自引:2,他引:1  
以我国南亚热带格木、马尾松人工纯林及二者混交林林地土壤为对象,运用磷脂脂肪酸(PLFAs)法研究了3种人工林土壤微生物生物量和群落结构特征.结果表明: 旱季土壤微生物的PLFAs总量及各菌群的PLFAs量显著高于雨季.旱季土壤微生物的PLFAs总量、细菌PLFAs量、真菌PLFAs量、放线菌PLFAs量均为马尾松人工林最高,混交林次之,格木林最低;而雨季格木人工林土壤微生物的PLFAs总量、细菌PLFAs量、真菌PLFAs量、丛枝菌根真菌PLFAs量高于混交林,并显著高于马尾松人工林.主成分分析表明,土壤微生物群落结构组成受林分类型和季节的双重影响.冗余分析表明,土壤温湿度、pH值、全氮及铵态氮含量与特征磷脂脂肪酸之间呈显著相关关系.在全年水平上,混交林土壤真菌/细菌比值始终高于格木林和马尾松林,表明格木与马尾松混交更有利于提高土壤生态系统的稳定性.  相似文献   

10.
Global warming is considered one of the most serious environmental issues, substantially mediating abrupt climate changes, and has stronger impacts in the Arctic ecosystems than in any other regions. In particular, thawing permafrost in the Arctic region with warming can be strongly contributing the emission of greenhouse gases (CO2 and CH4) that are produced from microbial decomposition of preserved soil organic matter (SOM) or are trapped in frozen permafrost soils, consequently accelerating global warming and abrupt climate changes. Therefore, understanding chemical and physical properties of permafrost SOM is important for interpreting the chemical and biological decomposability of SOM. In this study, we investigated dissolved organic matter (DOM) along the soil depth profile in moist acidic tussock tundra to better understand elemental compositions and distributions of the arctic SOM to evaluate their potential decomposability under climate change. To achieve ultra-high resolution mass profiles, the soil extracts were analyzed using a 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer in positive and negative ion modes via electrospray ionization. The results of this analysis revealed that the deeper organic soil (2Oe1 horizon) exhibits less CHON class and more aromatic class compounds compared to the surface organic soils, thus implying that the 2Oe1 horizon has undergone a more decomposition process and consequently possessed the recalcitrant materials. The compositional features of DOM in the Arctic tundra soils are important for understanding the changes in biogeochemical cycles caused from permafrost changes associated with global warming and climate change.  相似文献   

11.
Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high‐arctic tundra heath sites in NE‐Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above‐ and belowground tundra carbon turnover, possibly governed by microbial resource availability.  相似文献   

12.
耕作方式对潮土土壤团聚体微生物群落结构的影响   总被引:1,自引:0,他引:1  
为探究不同耕作方式对潮土土壤团聚体微生物群落结构和多样性的影响,采用磷脂脂肪酸(PLFA)法测定了土壤团聚体中微生物群落。试验设置4个耕作处理,分别为旋耕+秸秆还田(RT)、深耕+秸秆还田(DP)、深松+秸秆还田(SS)和免耕+秸秆还田(NT)。结果表明:与RT相比,DP处理显著提高了原状土壤和>5 mm粒级土壤团聚体中真菌PLFAs量和真菌/细菌,为真菌的繁殖提供了有利条件,有助于土壤有机质的贮存,提高了土壤生态系统的缓冲能力;提高了5~2 mm粒级土壤团聚体中细菌PLFAs量,降低了土壤革兰氏阳性菌/革兰氏阴性菌,改善了土壤营养状况;提高了<0.25 mm粒级土壤团聚体中微生物丰富度指数。总的来说,深耕+秸秆还田(DP)对土壤团聚体细菌和真菌生物量有一定的提高作用,并且在一定程度上改善了土壤团聚体微生物群落结构,有利于增加土壤固碳能力和保持土壤微生物多样性。冗余分析结果表明,土壤团聚体总PLFAs量、细菌、革兰氏阴性菌和放线菌PLFAs量与土壤有机碳相关性较强,革兰氏阳性菌PLFAs量与总氮相关性较强。各处理较大粒级土壤团聚体微生物群落主要受碳氮比、含水量、pH值和团聚体质量分数的影响,较小粒级土壤团聚体微生物群落则主要受土壤有机碳和总氮的影响。  相似文献   

13.
Microbial characteristics of soils on a latitudinal transect in Siberia   总被引:2,自引:0,他引:2  
Soil microbial properties were studied from localities on a transect along the Yenisei River, Central Siberia. The 1000 km‐long transect, from 56°N to 68°N, passed through tundra, taiga and pine forest characteristic of Northern Russia. Soil microbial properties were characterized by dehydrogenase activity, microbial biomass, composition of microbial community (PLFAs), respiration rates, denitrification and N mineralization rates. Relationships between vegetation, latitude, soil quality (pH, texture), soil organic carbon (SOC) and the microbial properties were examined using multivariate analysis. In addition, the temperature responses of microbial growth (net growth rate) and activity (soil respiration rate) were tested by laboratory experiments. The major conclusions of the study are as follows: 1. Multivariate analysis of the data revealed significant differences in microbial activity. SOC clay content was positively related to clay content. Soil texture and SOC exhibited the dominant effect on soil microbial parameters, while the vegetation and climatic effects (expressed as a function of latitude) were weaker but still significant. The effect of vegetation cover is linked to SOC quality, which can control soil microbial activity. 2. When compared to fine‐textured soils, coarse‐textured soils have (i) proportionally more SOC bound in microbial biomass, which might result in higher susceptibility of SOC transformation to fluctuation of environmental factors, and (ii) low mineralization potential, but with a substantial part of the consumed C being transformed to microbial products. 3. The soil microbial community from the northernmost study region located within the permafrost zone appears to be adapted to cold conditions. As a result, microbial net growth rate became negative when temperature rose above 5 °C and C mineralization then exceeded C accumulation.  相似文献   

14.
为探明旱区山地不同海拔梯度土壤氨基糖积累特征,明确氨基糖对土壤有机碳库的贡献以及影响因素。以2021年8月在贺兰山西坡不同海拔(1848-2940 m)采集的土壤为研究对象,分析土壤理化性质、微生物群落结构、氨基糖含量、氨基糖对土壤有机碳贡献变化特征以及引起该变化的驱动因素。结果表明:沿海拔梯度上升,土壤理化性质表现出显著差异,土壤含水率、有机碳、全氮表现为升高趋势,pH和容重表现为降低趋势,全磷无明显变化规律。沿海拔梯度上升,土壤真菌、细菌、放线菌以及丛枝菌根真菌磷脂脂肪酸(Phospholipid fatty acids,PLFAs)含量表现为先增加后减少的趋势,在中海拔区域(2110-2360 m)微生物PLFAs含量更高。沿海拔梯度上升,总氨基糖含量和氨基糖单体(氨基葡萄糖、氨基半乳糖、胞壁酸和氨基甘露糖)分别表现为持续增加和先减少后增加的变化趋势,并且总氨基糖和氨基糖单体含量均在最高海拔达到峰值,中海拔区域真菌和细菌残体碳对土壤有机碳的贡献率均小于高海拔(2707-2940 m)和低海拔(1848-1910 m),且在不同海拔梯度上真菌残体碳对土壤有机碳贡献率占据主导地位。方差分解结果显示,土壤理化性质和微生物PLFAs含量共同解释了土壤氨基糖含量及对有机碳贡献率的55.2%,其中土壤理化性质解释变异的52.9%,微生物PLFAs含量解释变异的26.9%,冗余分析同步验证土壤理化性质是影响氨基糖及氨基糖对土壤有机碳贡献率的主要因素。本研究结果揭示了贺兰山西坡微生物驱动土壤有机碳存储与转化机制,可为进一步研究旱区山地微生物残体对土壤有机碳的贡献提供理论依据。  相似文献   

15.
Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA). Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain): residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass), suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage.  相似文献   

16.
Plant communities, soil organic matter and microbial communities are predicted to be interlinked and to exhibit concordant patterns along major environmental gradients. We investigated the relationships between plant functional type composition, soil organic matter quality and decomposer community composition, and how these are related to major environmental variation in non-acid and acid soils derived from calcareous versus siliceous bedrocks, respectively. We analysed vegetation, organic matter and microbial community compositions from five non-acidic and five acidic heath sites in alpine tundra in northern Europe. Sequential organic matter fractionation was used to characterize organic matter quality and phospholipid fatty acid analysis to detect major variation in decomposer communities. Non-acidic and acidic heaths differed substantially in vegetation composition, and these disparities were associated with congruent shifts in soil organic matter and microbial communities. A high proportion of forbs in the vegetation was positively associated with low C:N and high soluble N:phenolics ratios in soil organic matter, and a high proportion of bacteria in the microbial community. On the contrary, dwarf shrub-rich vegetation was associated with high C:N and low soluble N:phenolics ratios, and a high proportion of fungi in the microbial community. Our study demonstrates a strong link between the plant community composition, soil organic matter quality, and microbial community composition, and that differences in one compartment are paralleled by changes in others. Variation in the forb-shrub gradient of vegetation may largely dictate variations in the chemical quality of organic matter and decomposer communities in tundra ecosystems. Soil pH, through its direct and indirect effects on plant and microbial communities, seems to function as an ultimate environmental driver that gives rise to and amplifies the interactions between above- and belowground systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Escherichia coli O157:H7 survived longer in soils from plastic-greenhouse cultivation than soils from the open field. Soil pH, organic carbon levels, and the ratio of bacterial phospholipid fatty acids (PLFAs) to fungal PLFAs played the significant roles in survival of O157:H7. Greater attention should be paid to the control of pathogen contamination under conditions of plastic-greenhouse cultivation.  相似文献   

18.
长期施肥对红壤水稻土磷脂脂肪酸特性和酶活性的影响   总被引:13,自引:1,他引:12  
对中国科学院红壤生态实验站长期定位试验中不同施肥处理红壤水稻土磷脂脂肪酸(PLFA)特性及酶活性进行了分析.结果表明:不同施肥处理的土壤酶活性、养分、微生物生物量及微生物群落多样性差异较大;施肥处理增加了PLFA的种类和微生物量;施肥土壤的真菌PLFA量大于不施肥土壤,细菌PLFA量小于不施肥土壤,说明真菌较细菌更能适应养分贫瘠的条件.NPK平衡施肥和施有机肥处理的PLFA总量均高于施无机氮肥和未施肥处理,两者分别比未施肥处理高222%和79%,表明NPK平衡施肥和施有机肥更有利于作物生长.施肥还可增加土壤酶活性,其中,土壤脲酶和磷酸酶活性可以作为衡量土壤肥力水平的指标.  相似文献   

19.
以我国南亚热带格木、红椎和马尾松人工林为对象,采用氯仿熏蒸浸提法和磷脂脂肪酸法(PLFA)分析了林地土壤微生物生物量和微生物群落结构组成.结果表明: 林分和季节因素均显著影响土壤微生物生物量、总PLFAs量、细菌PLFAs量和真菌PLFAs量,且干季林分下的土壤微生物生物量、总PLFAs量、单个PLFA量均大于雨季.红椎人工林土壤微生物生物量碳(MBC)和总PLFAs量最高,而格木人工林土壤微生物生物量氮(MBN)最高.土壤pH值对土壤丛枝菌根真菌(16:1ω5c)的影响达到极显著正相关水平.土壤总PLFAs量、革兰氏阳性菌(G+)以及腐生真菌(18:2ω6,9c)、革兰氏阳性菌/革兰氏阴性菌(G+/G-)与土壤有机碳、全氮和全磷显著相关,表明土壤有机碳、全氮、全磷含量是影响该地区土壤微生物数量和种类的重要因素.外生菌根真菌(18:1ω9c)和丛枝菌根真菌与土壤碳氮比值呈极显著相关.  相似文献   

20.
Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号