首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, ATP has gained much interest as an extracellular messenger involved in the communication of calcium signals between cells. The mechanism of ATP release is, however, still a matter of debate. In the present study we investigated the possible contribution of connexin hemichannels or ion channels in the release of ATP in GP8, a rat brain endothelial cell line. Release of ATP was triggered by photoactivation of InsP(3) or by reducing the extracellular calcium concentration. Both trigger protocols induced ATP release significantly above baseline. InsP(3)-triggered ATP release was completely blocked by alpha-glycyrrhetinic acid (alpha-GA), the connexin mimetic peptides gap 26 and 27, and the trivalent ions gadolinium and lanthanum. ATP release triggered by zero calcium was, in addition to these substances, also blocked by flufenamic acid (FFA), niflumic acid, and NPPB. Gap 27 selectively blocked zero calcium-triggered ATP release in connexin-43 transfected HeLa cells, while having no effect in wild-type and connexin-32 transfected cells. Of all the agents used, only alpha-GA, FFA and NPPB significantly reduced gap junctional coupling. In conclusion, InsP(3) and zero calcium-triggered ATP release show major similarities but also some differences in their sensitivity to the agents applied. It is suggested that both stimuli trigger ATP release through the same mechanism, which is connexin-dependent, permeable in both directions, potently blocked by connexin mimetic peptides, and consistent with the opening of connexin hemichannels.  相似文献   

2.
Many cells coordinate their activities by transmitting rises in intracellular calcium from cell to cell. In nonexcitable cells, there are currently two models for intercellular calcium wave propagation, both of which involve release of inositol trisphosphate (IP3)- sensitive intracellular calcium stores. In one model, IP3 traverses gap junctions and initiates the release of intracellular calcium stores in neighboring cells. Alternatively, calcium waves may be mediated not by gap junctional communication, but rather by autocrine activity of secreted ATP on P2 purinergic receptors. We studied mechanically induced calcium waves in two rat osteosarcoma cell lines that differ in the gap junction proteins they express, in their ability to pass microinjected dye from cell to cell, and in their expression of P2Y2 (P2U) purinergic receptors. ROS 17/2.8 cells, which express the gap junction protein connexin43 (Cx43), are well dye coupled, and lack P2U receptors, transmitted slow gap junction-dependent calcium waves that did not require release of intracellular calcium stores. UMR 106-01 cells predominantly express the gap junction protein connexin 45 (Cx45), are poorly dye coupled, and express P2U receptors; they propagated fast calcium waves that required release of intracellular calcium stores and activation of P2U purinergic receptors, but not gap junctional communication. ROS/P2U transfectants and UMR/Cx43 transfectants expressed both types of calcium waves. Gap junction–independent, ATP-dependent intercellular calcium waves were also seen in hamster tracheal epithelia cells. These studies demonstrate that activation of P2U purinergic receptors can propagate intercellular calcium, and describe a novel Cx43-dependent mechanism for calcium wave propagation that does not require release of intracellular calcium stores by IP3. These studies suggest that gap junction communication mediated by either Cx43 or Cx45 does not allow passage of IP3 well enough to elicit release of intracellular calcium stores in neighboring cells.  相似文献   

3.
The breaching of the blood-brain barrier is an essential aspect in the pathogenesis of neuroinflammatory diseases, in which tumour necrosis factor alpha (TNF-alpha) as well as endothelial calcium ions play a key role. We investigated whether TNF-alpha could influence the communication of calcium signals between brain endothelial cells (GP8 and RBE4). Intercellular calcium waves triggered by mechanical stimulation or photoliberation of InsP3 in single cells were significantly reduced in size after TNF-alpha exposure (1000 U/mL, 2 and 24 h). Calcium signals are communicated between cells by means of gap junctional and paracrine purinergic signalling. TNF-alpha significantly inhibited gap junctional coupling, stimulated the basal release of ATP, and dose-dependently blocked the triggered component of ATP release. The cytokine displayed similar effects on the uptake of a fluorescent reporter dye into the cells. Previous work with connexin mimetic peptides demonstrated that the triggered ATP release in these cells is connexin-related; these peptides did, however, not influence the elevated basal ATP release caused by TNF-alpha. We conclude that TNF-alpha depresses calcium signal communication in blood-brain barrier endothelial cells, by reducing gap junctional coupling and by inhibiting triggered ATP release. The cytokine thus inhibits connexin-related communication pathways like gap junctions and connexin hemichannels.  相似文献   

4.
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP(3) elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.  相似文献   

5.
Bao L  Locovei S  Dahl G 《FEBS letters》2004,572(1-3):65-68
Intercellular calcium wave propagation initiated by mechanical stress is a phenomenon found in nearly all cell types. The waves utilize two pathways: transfer of InsP3 directly from cell to cell through gap junction channels and release of ATP onto extracellular purinergic receptors. The conduit for ATP has remained elusive and both a vesicular and a channel mediated release have been considered. Here, we describe the properties of single pannexin 1 channels. They have a wide expression spectrum, they are of large conductance and permeant for ATP, and they are mechanosensitive. Hence, pannexins are candidates for the release of ATP to the extracellular space upon mechanical stress.  相似文献   

6.
The regulation of bone turnover is a complex and finely tuned process. Many factors regulate bone remodeling, including hormones, growth factors, cytokines etc. However, little is known about the signals coupling bone formation to bone resorption, and how mechanical forces are translated into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other mechanism involves the passage of a small messenger through gap junctions to the cytoplasm of the neighboring cells, inducing depolarization of the plasma membrane with subsequent opening of membrane bound voltage-operated calcium channels. Next, we found that osteoblasts can propagate these signals to osteoclasts as well. We demonstrated that paracrine action of ATP was responsible for the wave propagation, but now the purinergic P2X7 receptor was involved. Thus, the studies demonstrate that calcium signals can be propagated not only among osteoblasts, but also between osteoblasts and osteoclasts in response to mechanical stimulation. Thus, intercellular calcium signaling can be a mechanism by which mechanical stimuli on bone are translated into biological signals in bone cells, and propagated through the network of cells in bone. Further, the observations offer new pharmacological targets for the modulation of bone turnover, and perhaps even for the treatment of bone metabolic disorders.  相似文献   

7.
Inositol 1,4,5-trisphosphate (IP(3)) is an important second messenger that can trigger a Ca(2+) wave prolongated between cells. This intercellular signaling was found defective in some gap junction connexin deafness mutants. In this study, the mechanism underlying IP(3) intercellular signaling in the cochlea was investigated. A gap junction channel is composed of two hemichannels. By using a fluorescence polarization technique to measure IP(3) concentration, the authors found that IP(3) could be released by gap junction hemichannels in the cochlea. The IP(3) release was increased about three- to fivefold by the reduction of extracellular Ca(2+) concentration or by mechanical stress. This incremental release could be blocked by gap junction blockers but not eliminated by a purinergic P2x receptor antagonist and verapamil, which is a selective P-glycoprotein inhibitor inhibiting the ATP-binding cassette transporters. The authors also found that IP(3) receptors were extensively expressed in the cochlear sensory epithelium, including on the cell surface. Extracellular application of IP(3) could trigger cellular Ca(2+) elevation. This Ca(2+) elevation was eliminated by the gap junction hemichannel blocker. These data reveal that IP(3) can pass through hemichannels acting as an extracellular mediator to participate in intercellular signaling. This hemichannel-mediated extracellular pathway may play an important role in long-distance intercellular communication in the cochlea, given that IP(3) only has a short lifetime in the cytoplasm.  相似文献   

8.
Locovei S  Wang J  Dahl G 《FEBS letters》2006,580(1):239-244
The ability for long-range communication through intercellular calcium waves is inherent to cells of many tissues. A dual propagation mode for these waves includes passage of IP3 through gap junctions as well as an extracellular pathway involving ATP. The wave can be regenerative and include ATP-induced ATP release via an unknown mechanism. Here, we show that pannexin 1 channels can be activated by extracellular ATP acting through purinergic receptors of the P2Y group as well as by cytoplasmic calcium. Based on its properties, including ATP permeability, pannexin 1 may be involved in both initiation and propagation of calcium waves.  相似文献   

9.
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP3 elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.  相似文献   

10.
B Zimmermann  B Walz 《The EMBO journal》1999,18(12):3222-3231
Intercellular Ca2+ signaling in intact salivary glands of the blowfly Calliphora erythrocephala was studied by fluorimetric digital imaging combined with microinjection of putative messenger molecules. Iontophoretic injection of D-myo-inositol 1,4, 5-trisphosphate (InsP3) into salivary gland cells evoked regenerative intercellular Ca2+ waves that spread through the impaled cell and several rows of surrounding cells. Ca2+ increases induced by microinjection of Ca2+ ions were confined to the injected cells and their nearest neighbors. Depletion of intracellular Ca2+ stores by thapsigargin pre-treatment did not alter the time course of the Ca2+ increase caused by Ca2+ injection. However, activation of Ca2+ release became clearly evident when Ca2+ was injected in the presence of serotonin (5-HT). Under these conditions, injection of Ca2+ triggered intercellular Ca2+ waves that consecutively passed through >10 cells. The phospholipase C inhibitor U73122 blocked 5-HT-induced Ca2+ increases but did not affect InsP3-dependent Ca2+ spiking and intercellular Ca2+ wave propagation. The results demonstrate that propagation of agonist-evoked Ca2+ waves in the blowfly salivary gland requires supra-basal [InsP3] but does not depend on feedback activation of phospholipase C. We conclude that the intra- and intercellular transmission of these Ca2+ waves is mediated by diffusion of Ca2+ and Ca2+-induced Ca2+ release via the InsP3 receptor channel.  相似文献   

11.
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP3elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.  相似文献   

12.
Intercellular calcium signals are propagated in multicellular hepatocyte systems as well as in the intact liver. The stimulation of connected hepatocytes by glycogenolytic agonists induces reproducible sequences of intracellular calcium concentration increases, resulting in unidirectional intercellular calcium waves. Hepatocytes are characterized by a gradient of vasopressin binding sites from the periportal to perivenous areas of the cell plate in hepatic lobules. Also, coordination of calcium signals between neighboring cells requires the presence of the agonist at each cell surface as well as gap junction permeability. We present a model based on the junctional coupling of several hepatocytes differing in sensitivity to the agonist and thus in the intrinsic period of calcium oscillations. In this model, each hepatocyte displays repetitive calcium spikes with a slight phase shift with respect to neighboring cells, giving rise to a phase wave. The orientation of the apparent calcium wave is imposed by the direction of the gradient of hormonal sensitivity. Calcium spikes are coordinated by the diffusion across junctions of small amounts of inositol 1,4, 5-trisphosphate (InsP(3)). Theoretical predictions from this model are confirmed experimentally. Thus, major physiological insights may be gained from this model for coordination and spatial orientation of intercellular signals.-Dupont, G., Tordjmann, T., Clair, C., Swillens, S., Claret, M., Combettes, L. Mechanism of receptor-oriented intercellular calcium wave propagation in hepatocytes.  相似文献   

13.
Focal mechanical stimulation of single neonatal mouse cardiac myocytes in culture induced intercellular Ca(2+) waves that propagated with mean velocities of approximately 14 micrometer/s, reaching approximately 80% of the cells in the field. Deletion of connexin43 (Cx43), the main cardiac gap junction channel protein, did not prevent communication of mechanically induced Ca(2+) waves, although the velocity and number of cells communicated by the Ca(2+) signal were significantly reduced. Similar effects were observed in wild-type cardiac myocytes treated with heptanol, a gap junction channel blocker. Fewer cells were involved in intercellular Ca(2+) signaling in both wild-type and Cx43-null cultures in the presence of suramin, a P(2)-receptor blocker; blockage was more effective in Cx43-null than in wild-type cells. Thus gap junction channels provide the main pathway for communication of slow intercellular Ca(2+) signals in wild-type neonatal mouse cardiac myocytes. Activation of P(2)-receptors induced by ATP release contributes a secondary, extracellular pathway for transmission of Ca(2+) signals. The importance of such ATP-mediated Ca(2+) signaling would be expected to be enhanced under ischemic conditions, when release of ATP is increased and gap junction channels conductance is significantly reduced.  相似文献   

14.
T Hfer 《Biophysical journal》1999,77(3):1244-1256
Hepatocytes respond with repetitive cytosolic calcium spikes to stimulation by vasopressin and noradrenalin. In the intact liver, calcium oscillations occur in a synchronized fashion as periodic waves across whole liver lobules, but the mechanism of intercellular coupling remains unclear. Recently, it has been shown that individual hepatocytes can have very different intrinsic oscillation frequencies but become phase-locked when coupled by gap junctions. We investigate the gap junction hypothesis for intercellular synchronization by means of a mathematical model. It is shown that junctional calcium fluxes are effective in synchronizing calcium oscillations in coupled hepatocytes. An experimentally testable estimate is given for the junctional coupling coefficient required; it mainly depends on the degree of heterogeneity between cells. Intercellular synchronization by junctional calcium diffusion may occur also in other cell types exhibiting calcium-activated calcium release through InsP(3) receptors, if the gap junctional coupling is strong enough and the InsP(3) receptors are sufficiently sensitized by InsP(3).  相似文献   

15.
Connexin (Cx) proteins are known to play a role in cell-to-cell communication via intercellular gap junction channels or transiently open hemichannels. Previous studies have identified several connexin isoforms in the juxtaglomerular apparatus (JGA), but the vascular connexin isoform Cx45 has not yet been studied in this region. The present work aimed to identify in detail the localization of Cx45 in the JGA and to suggest a functional role for Cx45 in the kidney using conditions where Cx45 expression or function was altered. Using mice that express lacZ coding DNA under the control of the Cx45 promoter, we observed beta-galactosidase staining in cortical vasculature and glomeruli, with specific localization to the JGA region. Renal vascular localization of Cx45 was further confirmed with the use of conditional Cx45-deficient (Cx45fl/fl:Nestin-Cre) mice, which express enhanced green fluorescence protein (EGFP) instead of Cx45 only in cells that, during development, expressed the intermediate filament nestin. EGFP fluorescence was found in the afferent and efferent arteriole smooth muscle cells, in the renin-producing juxtaglomerular cells, and in the extra- and intraglomerular mesangium. Cx45fl/fl:Nestin-Cre mice exhibited increased renin expression and activity, as well as higher systemic blood pressure. The propagation of mechanically induced calcium waves was slower in cultured vascular smooth muscle cells (VSMCs) from Cx45fl/fl:Nestin-Cre mice and in control VSMC treated with a Cx45 gap mimetic peptide that inhibits Cx45 gap junctional communication. VSMCs allowed the cell-to-cell passage of the gap junction permeable dye Lucifer yellow, and calcium wave propagation was not altered by addition of the ATP receptor blocker suramin, suggesting that Cx45 regulates calcium wave propagation via direct gap junction coupling. In conclusion, the localization of Cx45 to the JGA and functional data from Cx45fl/fl:Nestin-Cre mice suggest that Cx45 is involved in the propagation of JGA vascular signals and in the regulation of renin release and blood pressure.  相似文献   

16.
Gap junction channels assembled from connexin protein subunits mediate intercellular transfer of ions and metabolites. Impaired channel function is implicated in several hereditary human diseases. In particular, defective permeation of cAMP or inositol-1,4,5-trisphosphate (InsP(3)) through connexin channels is associated with peripheral neuropathies and deafness, respectively. Here we present a method to estimate the permeability of single gap junction channels to second messengers. Using HeLa cells that overexpressed wild-type human connexin 26 (HCx26wt) as a model system, we combined measurements of junctional conductance and fluorescence resonance energy transfer (FRET) emission ratio of biosensors selective for cAMP and InsP(3). The unitary permeabilities to cAMP (47 x 10(-3) +/- 15 x 10(-3) microm(3)/s) and InsP(3) (60 x 10(-3) +/- 12 x 10(-3) microm(3)/s) were similar, but substantially larger than the unitary permeability to lucifer yellow (LY; 7 +/- 3 x 10(-3) microm(3)/s), an exogenous tracer. This method permits quantification of defects of metabolic coupling and can be used to investigate interdependence of intercellular diffusion and cross-talk between diverse signaling pathways.  相似文献   

17.
Gap junctions are intercellular conduits that are formed in vertebrates by connexin proteins and allow diffusion exchange of intracellular ions and small molecules. At least 20 different connexin genes in the human and mouse genome are cell-type specifically expressed with overlapping expression patterns. A possible explanation for this diversity could be different permeability of biologically important molecules, such as second messenger molecules. We have recently demonstrated that cyclic nucleotide-gated channels can be used to quantify gap junction-mediated diffusion of cyclic AMP. Using this method we have compared the relative permeability of gap junction channels composed of connexin 26, 32, 36, 43, 45, or 47 proteins toward the second messenger cAMP. Here we show that cAMP permeates through the investigated connexin channels with up to 30-fold different efficacy. Our results suggest that intercellular cAMP signaling in different cell types can be affected by the connexin expression pattern.  相似文献   

18.
Cxs (connexins), the protein subunits forming gap junction intercellular communication channels, are transported to the plasma membrane after oligomerizing into hexameric assemblies called connexin hemichannels (CxHcs) or connexons, which dock head-to-head with partner hexameric channels positioned on neighbouring cells. The double membrane channel or gap junction generated directly couples the cytoplasms of interacting cells and underpins the integration and co-ordination of cellular metabolism, signalling and functions, such as secretion or contraction in cell assemblies. In contrast, CxHcs prior to forming gap junctions provide a pathway for the release from cells of ATP, glutamate, NAD+ and prostaglandin E2, which act as paracrine messengers. ATP activates purinergic receptors on neighbouring cells and forms the basis of intercellular Ca2+ signal propagation, complementing that occuring more directly via gap junctions. CxHcs open in response to various types of external changes, including mechanical, shear, ionic and ischaemic stress. In addition, CxHcs are influenced by intracellular signals, such as membrane potential, phosphorylation and redox status, which translate external stresses to CxHc responses. Also, recent studies demonstrate that cytoplasmic Ca2+ changes in the physiological range act to trigger CxHc opening, indicating their involvement under normal non-pathological conditions. CxHcs not only respond to cytoplasmic Ca2+, but also determine cytoplasmic Ca2+, as they are large conductance channels, suggesting a prominent role in cellular Ca2+ homoeostasis and signalling. The functions of gap-junction channels and CxHcs have been difficult to separate, but synthetic peptides that mimic short sequences in the Cx subunit are emerging as promising tools to determine the role of CxHcs in physiology and pathology.  相似文献   

19.
Gap junction channels are regarded as a primary pathway for intercellular message transfer, including calcium wave propagation. Our study identified two gap junctional proteins, connexin26 and connexin32, in rat gastric glands by RT-PCR, Western blot analysis, and immunofluorescence. We demonstrated a potential physiological role of the gap junctional channels in the acid secretory process using the calcium indicator fluo-3, and microinjection of Lucifer Yellow. Application of gastrin (10−7 m) to the basolateral membrane resulted in the induction of uniphasic calcium signals in adjacent parietal cells. In addition, single parietal cell microinjections in intact glands with the cell-impermeant dye Lucifer Yellow resulted in a transfer of dye from the injected cell to the adjacent parietal cell following gastrin stimulation, demonstrating gastrin-induced cell-to-cell communication. Both calcium wave propagation and Lucifer Yellow transfer were blocked by the gap junction inhibitor 18α-glycyrrhetinic acid. Our studies demonstrate that functional gap junction channels in gastric glands provide an effective means for rapid cell-to-cell communication and allow for the rapid onset of acid secretion. Received: 4 December 2000/Revised: 5 June 2001  相似文献   

20.
The effect of peptides with sequences derived from connexins, the constituent proteins of gap junctions, on mechanically stimulated intercellular Ca(2+) signaling in tracheal airway epithelial cells was studied. Three peptides with sequences corresponding to connexin extracellular loop regions reversibly restricted propagation of Ca(2+) waves to neighboring cells. Recovery of communication began within 10 min of removal of the peptides, with inhibition totally reversed by 20-40 min. The peptides were shown to be more effective in inhibiting Ca(2+) waves than glycyrrhetinic acid or oleamide. Inhibition of intercellular Ca(2+) waves by connexin mimetic peptides did not affect the Ca(2+) response to extracellular ATP. Although the intracellular Ca(2+) response of tracheal epithelial cells to ATP was greatly reduced by either pretreatment with high doses of ATP or application of apyrase, mechanically stimulated intercellular Ca(2+) signaling was not affected by these agents. We conclude that connexin mimetic peptides are effective and reversible inhibitors of gap junctional communication of physiologically significant molecules that underlie Ca(2+) wave propagation in tracheal epithelial cells and propose a potential mechanism for the mode of action of mimetic peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号