首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypoglycemic effects of high dose salicylates in the treatment of diabetes were documented before the advent of insulin. However, the molecular mechanisms by which salicylates exert these anti-diabetic effects are not well understood. In this study, we analyzed the effects of aspirin (acetylsalicylic acid) on serine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells treated with tumor necrosis factor (TNF)-alpha. Phosphorylation of IRS-1 at Ser307, Ser267, and Ser612 was monitored by immunoblotting with phospho-specific IRS-1 antibodies. In 3T3-L1 and Hep G2 cells, phosphorylation of IRS-1 at Ser307 in response to TNF-alpha treatment correlated with phosphorylation of JNK, c-Jun, and degradation of IkappaBalpha. Moreover, phosphorylation of IRS-1 at Ser307 in embryo fibroblasts derived from either JNK or IKK knockout mice was reduced when compared with that in the wild-type controls. Taken together, these data suggest that serine phosphorylation of IRS-1 in response to TNF-alpha is mediated, in part, by JNK and IKK. Interestingly, aspirin treatment inhibited the phosphorylation of IRS-1 at Ser307 as well as the phosphorylation of JNK, c-Jun, and degradation of IkappaBalpha. Furthermore, other serine kinases including Akt, extracellular regulated kinase, mammalian target of rapamycin, and PKCzeta were also activated by TNF-alpha (as assessed by phospho-specific antibodies). Phosphorylation of IRS-1 at Ser267 and Ser612 correlated with the activation of these kinases. Phosphorylation of Akt and the mammalian target of rapamycin (but not extracellular regulated kinase or PKCzeta) in response to TNF-alpha was inhibited by aspirin treatment. Finally, aspirin rescued insulin-induced glucose uptake in 3T3-L1 adipocytes pretreated with TNF-alpha. We conclude that aspirin may enhance insulin sensitivity by protecting IRS proteins from serine phosphorylation catalyzed by multiple kinases.  相似文献   

2.
Insulin resistance contributes importantly to the pathophysiology of type 2 diabetes mellitus. One mechanism mediating insulin resistance may involve the phosphorylation of serine residues in insulin receptor substrate-1 (IRS-1), leading to impairment in the ability of IRS-1 to activate downstream phosphatidylinositol 3-kinase-dependent pathways. Insulin-resistant states and serine phosphorylation of IRS-1 are associated with the activation of the inhibitor kappaB kinase (IKK) complex. However, the precise molecular mechanisms by which IKK may contribute to the development of insulin resistance are not well understood. In this study, using phosphospecific antibodies against rat IRS-1 phosphorylated at Ser(307) (equivalent to Ser(312) in human IRS-1), we observed serine phosphorylation of IRS-1 in response to TNF-alpha or calyculin A treatment that paralleled surrogate markers for IKK activation. The phosphorylation of human IRS-1 at Ser(312) in response to tumor necrosis factor-alpha was significantly reduced in cells pretreated with the IKK inhibitor 15 deoxy-prostaglandin J(2) as well as in cells derived from IKK knock-out mice. We observed interactions between endogenous IRS-1 and IKK in intact cells using a co-immunoprecipitation approach. Moreover, this interaction between IRS-1 and IKK in the basal state was reduced upon IKK activation and increased serine phosphorylation of IRS-1. Data from in vitro kinase assays using recombinant IRS-1 as a substrate were consistent with the ability of IRS-1 to function as a direct substrate for IKK with multiple serine phosphorylation sites in addition to Ser(312). Taken together, our data suggest that IRS-1 is a novel direct substrate for IKK and that phosphorylation of IRS-1 at Ser(312) (and other sites) by IKK may contribute to the insulin resistance mediated by activation of inflammatory pathways.  相似文献   

3.
Caffeine decreases insulin sensitivity and insulin-stimulated glucose transport in skeletal muscle; however, the precise mechanism responsible for this deleterious effect is not understood fully. We investigated the effects of incubation with caffeine on insulin signaling in rat epitrochlearis muscle. Caffeine (≥1 mM, ≥15 min) suppressed insulin-stimulated insulin receptor substrate (IRS)-1 Tyr(612) phosphorylation in a dose- and time-dependent manner. These responses were associated with inhibition of the insulin-stimulated phosphorylation of phosphatidylinositol 3-kinase (PI3K) Tyr(458), Akt Ser(473), and glycogen synthase kinase-3β Ser(9) and with inhibition of insulin-stimulated 3-O-methyl-d-glucose (3MG) transport but not with inhibition of the phosphorylation of insulin receptor-β Tyr(1158/62/63). Furthermore, caffeine enhanced phosphorylation of IRS-1 Ser(307) and an IRS-1 Ser(307) kinase, inhibitor-κB kinase (IKK)-α/β Ser(176/180). Blockade of IKK/IRS-1 Ser(307) by caffeic acid ameliorated the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation and 3MG transport. Caffeine also increased the phosphorylation of IRS-1 Ser(789) and an IRS-1 Ser(789) kinase, 5'-AMP-activated protein kinase (AMPK). However, inhibition of IRS-1 Ser(789) and AMPK phosphorylation by dantrolene did not rescue the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation or 3MG transport. In addition, caffeine suppressed the phosphorylation of insulin-stimulated IRS-1 Ser(636/639) and upstream kinases, including the mammalian target of rapamycin and p70S6 kinase. Intravenous injection of caffeine at a physiological dose (5 mg/kg) in rats inhibited the phosphorylation of insulin-stimulated IRS-1 Tyr(612) and Akt Ser(473) in epitrochlearis muscle. Our results indicate that caffeine inhibits insulin signaling partly through the IKK/IRS-1 Ser(307) pathway, via a Ca(2+)- and AMPK-independent mechanism in skeletal muscle.  相似文献   

4.
S6K1 (p70S6K) is a serine kinase downstream from Akt in the insulin signaling pathway that is involved in negative feedback regulation of insulin action. S6K1 is also activated by TNF-alpha, a pro-inflammatory cytokine. However, its role remains to be characterized. In the current study, we elucidated a mechanism for S6K1 to mediate TNF-alpha-induced insulin resistance in adipocytes and hepatocytes. S6K1 was phosphorylated at Thr-389 in response to TNF-alpha. This led to phosphorylation of IRS-1 by S6K1 at multiple serine residues including Ser-270, Ser-307, Ser-636, and Ser-1101 in human IRS-1 (Ser-265, Ser-302, Ser-632, and Ser-1097, in rodent IRS-1). Direct phosphorylation of these sites by S6K1 was observed in an in vitro kinase assay using purified IRS-1 and S6K1. Phosphorylation of all these serines was increased in the adipose tissue of obese mice. RNAi knockdown demonstrated an important role for S6K1 in mediating TNF-alpha-induced IRS-1 inhibition that led to impaired insulin-stimulated glucose uptake in adipocytes. A point mutant of IRS-1 (S270A) impaired association of IRS-1 with S6K1 resulting in diminished phosphorylation of IRS-1 at three other S6K1 phosphorylation sites (Ser-307, Ser-636, and Ser-1101). Expression of a dominant negative S6K1 mutant prevented TNF-induced Ser-270 phosphorylation and IRS-1 protein degradation. Moreover, in IKK2 (but not IKK1)-null cells, TNF-alpha treatment did not result in Thr-389 phosphorylation of S6K1. We present a new mechanism for TNF-alpha to induce insulin resistance that involves activation of S6K by an IKK2-dependent pathway. S6K directly phosphorylates IRS-1 on multiple serine residues to inhibit insulin signaling.  相似文献   

5.
6.
Serine phosphorylation of insulin receptor substrate-1 (IRS-1) inhibits insulin signal transduction in a variety of cell backgrounds, which might contribute to peripheral insulin resistance. However, because of the large number of potential phosphorylation sites, the mechanism of inhibition has been difficult to determine. One serine residue located near the phosphotyrosine-binding (PTB) domain in IRS-1 (Ser(307) in rat IRS-1 or Ser(312) in human IRS-1) is phosphorylated via several mechanisms, including insulin-stimulated kinases or stress-activated kinases like JNK1. During a yeast tri-hybrid assay, phosphorylation of Ser(307) by JNK1 disrupted the interaction between the catalytic domain of the insulin receptor and the PTB domain of IRS-1. In 32D myeloid progenitor cells, phosphorylation of Ser(307) inhibited insulin stimulation of the phosphatidylinositol 3-kinase and MAPK cascades. These results suggest that inhibition of PTB domain function in IRS-1 by phosphorylation of Ser(307) (Ser(312) in human IRS-1) might be a general mechanism to regulate insulin signaling.  相似文献   

7.
Insulin stimulation produced a reliable 3-fold increase in glucose uptake in primary neonatal rat myotubes, which was accompanied by a similar effect on GLUT4 translocation to plasma membrane. Tumor necrosis factor (TNF)-alpha caused insulin resistance on glucose uptake and GLUT4 translocation by impairing insulin stimulation of insulin receptor (IR) and IR substrate (IRS)-1 and IRS-2 tyrosine phosphorylation, IRS-associated phosphatidylinositol 3-kinase activation, and Akt phosphorylation. Because this cytokine produced sustained activation of stress and proinflammatory kinases, we have explored the hypothesis that insulin resistance by TNF-alpha could be mediated by these pathways. In this study we demonstrate that pretreatment with PD169316 or SB203580, inhibitors of p38 MAPK, restored insulin signaling and normalized insulin-induced glucose uptake in the presence of TNF-alpha. However, in the presence of PD98059 or SP600125, inhibitors of p42/p44 MAPK or JNK, respectively, insulin resistance by TNF-alpha was still produced. Moreover, TNF-alpha produced inhibitor kappaB kinase (IKK)-beta activation and inhibitor kappaB-beta and -alpha degradation in a p38 MAPK-dependent manner, and treatment with salicylate (an inhibitor of IKK) completely restored insulin signaling. Furthermore, TNF-alpha produced serine phosphorylation of IR and IRS-1 (total and on Ser(307) residue), and these effects were completely precluded by pretreatment with either PD169316 or salicylate. Consequently, TNF-alpha, through activation of p38 MAPK and IKK, produces serine phosphorylation of IR and IRS-1, impairing its tyrosine phosphorylation by insulin and the corresponding activation of phosphatidylinositol 3-kinase and Akt, leading to insulin resistance on glucose uptake and GLUT4 translocation.  相似文献   

8.
In 3T3-L1 adipocytes, hyperosmotic stress was found to inhibit insulin signaling, leading to an insulin-resistant state. We show here that, despite normal activation of insulin receptor, hyperosmotic stress inhibits both tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1-associated phosphoinositide 3 (PI 3)-kinase activity in response to physiological insulin concentrations. Insulin-induced membrane ruffling, which is dependent on PI 3-kinase activation, was also markedly reduced. These inhibitory effects were associated with an increase in IRS-1 Ser307 phosphorylation. Furthermore, the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented the osmotic shock-induced phosphorylation of IRS-1 on Ser307. The inhibition of mTOR completely reversed the inhibitory effect of hyperosmotic stress on insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase activation. In addition, prolonged osmotic stress enhanced the degradation of IRS proteins through a rapamycin-insensitive pathway and a proteasome-independent process. These data support evidence of new mechanisms involved in osmotic stress-induced cellular insulin resistance. Short-term osmotic stress induces the phosphorylation of IRS-1 on Ser307 by an mTOR-dependent pathway. This, in turn, leads to a decrease in early proximal signaling events induced by physiological insulin concentrations. On the other hand, prolonged osmotic stress alters IRS-1 function by inducing its degradation, which could contribute to the down-regulation of insulin action.  相似文献   

9.
Inducible nitric oxide synthetase plays an essential role in insulin resistance induced by a high-fat diet. The reaction of nitric oxide with superoxide leads to the formation of peroxynitrite (ONOO-), which can modify several proteins. In this study, we investigated whether peroxynitrite impairs insulin-signalling pathway. Our experiments showed that 3-(4-morpholinyl)sydnonimine hydrochloride (SIN-1), a constitutive producer of peroxynitrite, dose-dependently inhibited insulin-stimulated glucose uptake. While SIN-1 did not affect the insulin receptor protein level and tyrosine phosphorylation, it reduced the insulin receptor substrate-1 (IRS-1) protein level, and IRS-1 associated phosphatidylinositol-3 kinase (PI-3 kinase) activity. Although SIN-1 did not induce Ser307 phosphorylation of IRS-1, tyrosine nitration of IRS-1 was detected in SIN-1-treated-Rat1 fibroblasts expressing human insulin receptors. Mass spectrometry showed that peroxynitrite induced at least four nitrated tyrosine residues in rat IRS-1, including Tyr939, which is critical for association of IRS-1 with the p85 subunit of PI-3 kinase. Our results suggest that peroxynitrite reduces the IRS-1 protein level and decreases phosphorylation of IRS-1 concurrent with nitration of its tyrosine residues.  相似文献   

10.
Insulin resistance associated to obesity: the link TNF-alpha   总被引:2,自引:0,他引:2  
Adipose tissue secretes proteins which may influence insulin sensitivity. Among them, tumour necrosis factor (TNF)-alpha has been proposed as a link between obesity and insulin resistance because TNF-alpha is overexpressed in adipose tissue from obese animals and humans, and obese mice lacking either TNF-alpha or its receptor show protection against developing insulin resistance. The activation of proinflammatory pathways after exposure to TNF-alpha induces a state of insulin resistance in terms of glucose uptake in myocytes and adipocytes that impair insulin signalling at the level of the insulin receptor substrate (IRS) proteins. The mechanism found in brown adipocytes involves Ser phosphorylation of IRS-2 mediated by TNF-alpha activation of MAPKs. The Ser307 residue in IRS-1 has been identified as a site for the inhibitory effects of TNF-alpha in myotubes, with p38 mitogen-activated protein kinase (MAPK) and inhibitor kB kinase being involved in the phosphorylation of this residue. Moreover, up-regulation of protein-tyrosine phosphatase (PTP)1B expression was recently found in cells and animals treated with TNF-alpha. PTP1B acts as a physiological negative regulator of insulin signalling by dephosphorylating the phosphotyrosine residues of the insulin receptor and IRS-1, and PTP1B expression is increased in peripheral tissues from obese and diabetic humans and rodents. Accordingly, down-regulation of PTP1B activity by treatment with pharmacological agonists of nuclear receptors restores insulin sensitivity in the presence of TNF-alpha. Furthermore, mice and cells deficient in PTP1B are protected against insulin resistance induced by this cytokine. In conclusion, the absence or inhibition of PTP1B in insulin-target tissues could confer protection against insulin resistance induced by cytokines.  相似文献   

11.
Angiotensin II (ANG II) has been implicated in the pathogenesis of diabetic micro- and macrovascular disease. In vascular smooth muscle cells (VSMCs), ANG II phosphorylates and degrades insulin receptor substrate-1 (IRS-1). While the pathway responsible for IRS-1 degradation in this system is unknown, c-Jun NH(2)-terminal kinase (JNK) has been linked with serine phosphorylation of IRS-1 and insulin resistance. We investigated the role of JNK in ANG II-induced IRS-1 phosphorylation, degradation, Akt activation, glucose uptake, and hypertrophic signaling, focusing on three IRS-1 phosphorylation sites: Ser302, Ser307, and Ser632. Maximal IRS-1 phosphorylation on Ser632 occurred at 5 min, on Ser307 at 30 min, and on Ser302 at 60 min. The JNK inhibitor SP600125 reduced ANG II-induced IRS-1 Ser307 phosphorylation (by 80%), IRS-1 Ser302 phosphorylation (by 70%), and IRS-1 Ser632 phosphorylation (by 50%). However, JNK inhibition had no effect on ANG II-mediated IRS-1 degradation, nor did it reverse the ANG II-induced decrease in Akt phosphorylation or glucose uptake. Transfection of VSMCs with mutants S307A, S302A, or S632A of IRS-1 did not block ANG II-mediated IRS-1 degradation. In contrast, JNK inhibition attenuated insulin-induced upregulation of collagen and smooth muscle α-actin in ANG II-pretreated cells. We conclude that phosphorylation of Ser307, Ser302, and Ser632 of IRS-1 is not involved in ANG II-mediated IRS-1 degradation, and that JNK alone does not mediate ANG II-stimulated IRS-1 degradation, but rather is responsible for the hypertrophic effects of insulin on smooth muscle.  相似文献   

12.
Insulin-resistant states are commonly associated with both increased circulating levels of tumor necrosis factor (TNF)-alpha and hepatic overproduction of very low density lipoproteins (VLDL). Here, we provide evidence that increased TNF-alpha can directly stimulate the hepatic assembly and secretion of apolipoprotein B (apoB) 100-containing VLDL(1), using the Syrian golden hamster, an animal model that closely resembles humans in hepatic VLDL-apoB100 metabolism. In vivo TNF-alpha infusion for 4 h in chow-fed hamsters induced whole-body insulin resistance on the basis of euglycemic hyperinsulinemic clamp studies. Immunoprecipitation and immunoblotting analysis of livers from TNF-alpha-treated hamsters indicated decreased tyrosine phosphorylation of insulin receptor (IR)-beta, IR substrate-1 (Tyr), Akt (Ser(473)), p38, ERK1/2, and JNK but increased serine phosphorylation of IRS-1 (Ser(307)) and Shc. TNF-alpha infusion also significantly increased hepatic production of total circulating apoB100 and VLDL-apoB100 in both fasting and postprandial (fat load) states. Ex vivo experiments, using cultured primary hepatocytes from hamsters, also showed TNF-alpha-induced VLDL-apoB100 oversecretion, an effect that was blocked by TNF receptor 2 antibody. Unexpectedly, TNF-alpha decreased the sterol regulatory element-binding protein-1c mass and mRNA levels but significantly increased microsomal triglyceride transfer protein mass and mRNA levels in primary hepatocytes. In summary, these data provide direct evidence that TNF-alpha induces whole-body insulin resistance and impairs hepatic insulin signaling accompanied by overproduction of apoB100-containing VLDL particles, an effect likely mediated via TNF receptor 2.  相似文献   

13.
NEMO (NF-kappaB essential modifier)/IKKgamma (IkappaB kinase-gamma) is required for the activation of the IkappaB kinase complex (IKK) by inflammatory stimuli such as tumor necrosis factor (TNF-alpha). Here we show that TNF-alpha stimulates the ubiquitination of NEMO in a manner that does not appear to target it for degradation and that is impaired by mutations in the NEMO zinc finger. Mutations of the zinc finger are found in patients with hypohidrotic ectodermal dysplasia with immunodeficiency (HED-ID) and lead to the impairment of TNF-alpha-stimulated IKK phosphorylation and activation. In addition, the ubiquitination of NEMO is mediated by c-IAP1, an inhibitor of apoptosis protein that is a component of the TNF receptor signaling complex. Thus, the ubiquitination of NEMO mediated by c-IAP1 likely plays an important role in the activation of IKK by TNF-alpha. Also, defective NEMO ubiquitination may be responsible for the impaired cellular NF-kappaB signaling found in patients with HED-ID.  相似文献   

14.
TRAF2 is an adaptor protein that regulates the activation of the c-Jun N-terminal kinase (JNK) and IkappaB kinase (IKK) signaling cascades in response to tumor necrosis factor alpha (TNF-alpha) stimulation. Although the downstream events in TNF-alpha signaling are better understood, the membrane-proximal events are still elusive. Here, we demonstrate that TNF-alpha and cellular stresses induce TRAF2 phosphorylation at serine 11 and that this phosphorylation is required for the expression of a subset of NF-kappaB target genes. Although TRAF2 phosphorylation had a minimal effect on the TNF-alpha-induced rapid and transient IKK activation, it was essential for secondary and prolonged IKK activation. Consistent with this, TRAF2 phosphorylation is not required for its recruitment to the TNFR1 complex in response to TNF-alpha stimulation but is required for its association with a cytoplasmic complex containing RIP1 and IKK. In addition, TRAF2 phosphorylation was essential for the full TNF-alpha-induced activation of JNK. Notably, TRAF2 phosphorylation increased both basal and inducible c-Jun and NF-kappaB activities and rendered cells resistant to stress-induced apoptosis. Moreover, TRAF2 was found to be constitutively phosphorylated in some lymphomas. These results unveil a new, finely tuned mechanism for TNF-alpha-induced IKK activation modulated by TRAF2 phosphorylation and suggest that TRAF2 phosphorylation contributes to elevated levels of basal NF-kappaB activity in certain human cancers.  相似文献   

15.
16.
Transduction of the insulin signal is mediated by multisite Tyr and Ser/Thr phosphorylation of the insulin receptor substrates (IRSs). Previous studies on the function of single-site phosphorylation, particularly phosphorylation of Ser-302, -307, and -318 of IRS-1, showed attenuating as well as enhancing effects on insulin action. In this study we investigated a possible cross talk of these opposedly acting serine residues in insulin-stimulated skeletal muscle cells by monitoring phosphorylation kinetics, and applying loss of function, gain of function, and combination mutants of IRS-1. The phosphorylation at Ser-302 was rapid and transient, followed first by Ser-318 phosphorylation and later by phosphorylation of Ser-307, which remained elevated for 120 min. Mutation of Ser-302 to alanine clearly reduced the subsequent protein kinase C-zeta-mediated Ser-318 phosphorylation. The Ser-307 phosphorylation was independent of Ser-302 and/or Ser-318 phosphorylation status. The functional consequences of these phosphorylation patterns were studied by the expression of IRS-1 mutants. The E302A307E318 mutant simulating the early phosphorylation pattern resulted in a significant increase in Akt and glycogen synthase kinase 3 phosphorylation. Furthermore, glucose uptake was enhanced. Because the down-regulation of the insulin signal was not affected, this phosphorylation pattern seems to be involved in the enhancement but not in the termination of the insulin signal. This enhancing effect was completely absent when Ser-302 was unphosphorylated and Ser-307 was phosphorylated as simulated by the A302E307E318 mutant. Phospho-Ser-318, sequentially phosphorylated at least by protein kinase C-zeta and a mammalian target of rapamycin/raptor-dependent kinase, was part of the positive as well as of the subsequent negative phosphorylation pattern. Thus we conclude that insulin stimulation temporally generates different phosphorylation statuses of the same residues that exert different functions in insulin signaling.  相似文献   

17.
Insulin receptor substrate-1 (IRS-1) was recently identified as a novel upstream substrate for the insulin-activated protein kinase C (PKC)-zeta. This interaction down-regulates insulin signal transduction under hyper-insulinemic conditions. To clarify the molecular mechanism of this feedback loop, we sought to identify the PKC-zeta phosphorylation sites of IRS-1 and to investigate their biological significance. Upon incubation of recombinant IRS-1 fragments with PKC-zeta, we identified Ser(318) of rat IRS-1 (Ser(323) in human IRS-1) as the major in vitro phosphorylation site (confirmed by mutation of Ser(318) to alanine). To monitor phosphorylation of Ser(318) in cellular extracts, we prepared a polyclonal phosphosite-specific antibody. The biological significance was studied in baby hamster kidney cells stably expressing the insulin receptor (BHK(IR)). Using the phospho-Ser(318)-specific antibody we observed that insulin stimulates phosphorylation of Ser(318) in IRS-1, which is mediated, at least partially, by PKC-zeta. Moreover, we found that the previously described insulin-stimulated, PKC-zeta-mediated inhibition of the interaction of IRS-1 with the insulin receptor and the reduced tyrosine phosphorylation of IRS-1 was abrogated by mutation of IRS-1 Ser(318) to alanine. These results, generated in BHK(IR) cells, suggest that phosphorylation of Ser(318) by PKC-zeta might contribute to the inhibitory effect of prolonged hyperinsulinemia on IRS-1 function.  相似文献   

18.
c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.  相似文献   

19.
The global incidence of diabetes is increasing at epidemic rates. Estimates suggest there are currently 150 million people with diabetes and this number is expected to double in the next 20 years. Type 2 diabetes accounts for 95% of all cases and is characterized in part by impaired sensitivity to insulin or 'insulin resistance'. Defects in the insulin signalling pathways underpin this resistance. In the current article we discuss the regulation of Insulin Receptor Substrate-1 (IRS-1), a protein that plays a pivotal role in insulin signalling and whose function is impaired in subjects with insulin resistance. Coordination of IRS-1 function is multi-faceted, involving phosphorylation of IRS-1 at multiple serine/threonine residues. This controls many aspects of IRS-1, including its interaction with the insulin receptor and subsequent tyrosine phosphorylation, as well as its subcellular distribution and targeting for degradation by the proteasome. Such tight control ensures appropriate transduction and attenuation of the insulin signal, thereby regulating insulin action in healthy individuals. Emerging evidence indicates that 'diabetogenic factors' associated with insulin resistance, such as TNFalpha and elevated circulating fatty acids, impact on insulin signalling at the level of IRS-1 serine/threonine phosphorylation. The expression and/or activity of several kinases, such as IkappaB kinase beta (IKKbeta) and salt-induced kinase 2 (SIK2), and the phosphorylation of IRS-1 at key sites, such as Ser307 and Ser789, are increased in states of insulin resistance. Identifying the pathways by which such factors activate these and other kinases, and defining the precise roles of specific serine/ threonine phosphorylation events in IRS-1 regulation, represent important goals which may eventually provide a rationale for therapeutic intervention.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号