首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1993,123(5):1207-1222
The time course of molecular events that accompany degeneration and death after nerve growth factor (NGF) deprivation and neuroprotection by NGF and other agents was examined in cultures of NGF-dependent neonatal rat sympathetic neurons and compared to death by apoptosis. Within 12 h after onset of NGF deprivation, glucose uptake, protein synthesis, and RNA synthesis fell precipitously followed by a moderate decrease of mitochondrial function. The molecular mechanisms underlying the NGF deprivation-induced decrease of protein synthesis and neuronal death were compared and found to be different, demonstrating that this decrease of protein synthesis is insufficient to cause death subsequently. After these early changes and during the onset of neuronal atrophy, inhibition of protein synthesis ceased to halt neuronal degeneration while readdition of NGF or a cAMP analogue remained neuroprotective for 6 h. This suggests a model in which a putative killer protein reaches lethal levels several hours before the neurons cease to respond to readdition of NGF with survival and become committed to die. Preceding loss of viability by 5 h and concurrent with commitment to die, the neuronal DNA fragmented into oligonucleosomes. The temporal and pharmacological characteristics of DNA fragmentation is consistent with DNA fragmentation being part of the mechanism that commits the neuron to die. The antimitotic and neurotoxin cytosine arabinoside induced DNA fragmentation in the presence of NGF, supporting previous evidence that it mimicked NGF deprivation-induced death closely. Thus trophic factor deprivation- induced death occurs by apoptosis and is an example of programmed cell death.  相似文献   

2.
3.
《The Journal of cell biology》1996,135(5):1341-1354
Sympathetic neurons undergo programmed cell death (PCD) when deprived of NGF. We used an inhibitor to examine the function of interleukin-1 beta-converting enzyme (ICE) family proteases during sympathetic neuronal death and to assess the metabolic and genetic status of neurons saved by such inhibition. Bocaspartyl(OMe)-fluoromethylketone (BAF), a cell-permeable inhibitor of the ICE family of cysteine proteases, inhibited ICE and CPP32 (IC50 approximately 4 microM) in vitro and blocked Fas-mediated apoptosis in thymocytes (EC50 approximately 10 microM). At similar concentrations, BAF also blocked the NGF deprivation-induced death of rat sympathetic neurons in culture. Compared to NGF-maintained neurons, BAF-saved neurons had markedly smaller somas and maintained only basal levels of protein synthesis; readdition of NGF restored growth and metabolism. Although BAF blocked apoptosis in sympathetic neurons, it did not prevent the fall in protein synthesis or the increase in the expression of c-jun, c- fos, and other mRNAs that occur during neuronal PCD, implying that the ICE-family proteases function downstream of these events during PCD.NGF and BAF rescued sympathetic neurons with an identical time course, suggesting that NGF, in addition to inhibiting metabolic and genetic events associated with neuronal PCD, can act posttranslationally to abort apoptosis at a time point indistinguishable from the activation of cysteine proteases. Both poly-(ADP ribose) polymerase and pro-ICE and Ced-3 homolog-1 (ICH-1) appear to be cleaved in a BAF-inhibitable manner, although the majority of pro-CPP32 appears unchanged, suggesting that ICH-1 is activated during neuronal PCD. Potential implications of these findings for anti-apoptotic therapies are discussed.  相似文献   

4.
SK-N-BE neuroblastoma cell clones transfected with p75(NTR) and lacking Trk neurotrophin receptors, previously reported to undergo extensive spontaneous apoptosis and to be protected by nerve growth factor (NGF) (Bunone, G., Mariotti, A., Compagni, A., Morandi, E., and Della Valle, G. (1997) Oncogene 14, 1463-1470), are shown to exhibit (i) increased levels of the pro-apoptotic lipid metabolite ceramide and (ii) high activity of caspases, the proteases of the cell death cascade. In the p75(NTR)-expressing cells, these parameters were partially normalized by prolonged NGF treatment, which, in addition, decreased apoptosis, similar to caspase blockers. Conversely, exogenous ceramide increased caspase activity and apoptosis in both wild-type and p75(NTR)-expressing cells. A new p75(NTR)-expressing clone characterized by low spontaneous apoptosis exhibited high endogenous ceramide and low caspase levels. A marked difference between the apoptotic and resistant clones concerned the very low and high activities of nitric-oxide (NO) synthase, respectively. Protection from apoptosis by NO was confirmed by results with the NO donor S-nitrosoacetylpenicillamine and the NO-trapping agent hemoglobin. We conclude that the p75(NTR) receptor, while free of NGF, triggers a cascade leading to apoptosis; the cascade includes generation of ceramide and increased caspase activity; and the protective role of NO occurs at step(s) in between the latter events.  相似文献   

5.
Sympathetic neurons depend on nerve growth factor (NGF) for their survival both in vivo and in vitro. In culture, the neurons die after NGF withdrawal by an autonomous cell death program but whether these neurons die by apoptosis is under debate. Using vital DNA stains and in situ nick translation, we show here that extensive chromatin condensation and DNA fragmentation occur before plasma membrane breakdown during the death of NGF-deprived rat sympathetic neurons in culture. Furthermore, kinetic analysis of chromatin condensation events within the cell population is consistent with a model which postulates that after NGF deprivation nearly all of the neurons die in this manner. Although the dying neurons display membrane blebbing, cell fragmentation into apoptotic bodies does not occur. Apoptotic events proceed rapidly at around the time neurons become committed to die, regardless of neuronal culture age. However the duration of NGF deprivation required to commit neurons to die, and the rate at which apoptosis occurs, increase with culture age. Thus, within the first week of culture, apoptosis is the predominant form of cell death in sympathetic neurons.  相似文献   

6.
Recent studies have shown that nitric oxide (NO) donors can trigger apoptosis of neurons, and growth factors such as insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) can protect against NO-induced neuronal cell death. The purpose of this study was to elucidate the possible mechanisms of NO-mediated neuronal apoptosis and the neuroprotective action of these growth factors. Both IGF-1 and bFGF prevented apoptosis induced by NO donors, sodium nitroprusside (SNP) or 3-morpholinosydnonimin (SIN-1) in hippocampal neuronal cultures. Incubation of neurons with SNP induced caspase-3-like activation following downregulation of Bcl-2 and upregulation of Bax protein levels in cultured neurons. Treatment of neurons with a bax antisense oligonucleotide inhibited the caspase-3-like activation and neuronal death induced by SNP. In addition, treatment of neurons with an inhibitor of caspase-3, Ac-DEVD-CHO, together with SNP did not affect the changes in the protein levels, although it inhibited NO-induced cell death. Pretreatment of cultures with either IGF-1 or bFGF prior to NO exposure inhibited caspase-3-like activation together with the changes in Bcl-2 and Bax protein levels. These results suggest that the changes in Bcl-2 and Bax protein levels followed by caspase-3-like activation are a component in the cascade of NO-induced neuronal apoptosis, and that the neuroprotective actions of IGF-1 and bFGF might be due to inhibition of the changes in the protein levels of the Bcl-2 family.  相似文献   

7.
Binding of nerve growth factor (NGF) to the p75 neurotrophin receptor (p75) in cultured hippocampal neurons has been reported to cause seemingly contrasting effects, namely ceramide-dependent axonal outgrowth of freshly plated neurons, versus Jun kinase (Jnk)-dependent cell death in older neurons. We now show that the apoptotic effects of NGF in hippocampal neurons are observed only from the 2nd day of culture onward. This switch in the effect of NGF is correlated with an increase in p75 expression levels and increasing levels of ceramide generation as the cultures mature. NGF application to neuronal cultures from p75(exonIII-/-) mice had no effect on ceramide levels and did not affect neuronal viability. The neutral sphingomyelinase inhibitor, scyphostatin, inhibited NGF-induced ceramide generation and neuronal death, whereas hippocampal neurons cultured from acid sphingomyelinase(-/-) mice were as susceptible to NGF-induced death as wild type neurons. The acid ceramidase inhibitor, (1S,2R)-d-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol, enhanced cell death, supporting a role for ceramide itself and not a downstream lipid metabolite. Finally, scyphostatin inhibited NGF-induced Jnk phosphorylation in hippocampal neurons. These data indicate an initiating role of ceramide generated by neutral sphingomyelinase in the diverse neuronal responses induced by binding of neurotrophins to p75.  相似文献   

8.
Sympathetic neurons undergo apoptosis when deprived of nerve growth factor (NGF). Inhibitors of RNA or protein synthesis block this death, suggesting that gene expression is important for apoptosis in this system. We have identified SM-20 as a new gene that increases in expression in sympathetic neurons after NGF withdrawal. Expression of SM-20 also increases during neuronal death caused by cytosine arabinoside or the phosphatidylinositol 3-kinase inhibitor LY294002. In addition, SM-20 protein synthesis is elevated in NGF-deprived neurons compared with neurons maintained with NGF. Importantly, expression of SM-20 in sympathetic neurons causes cell death in the presence of NGF. These results suggest that SM-20 may function to regulate cell death in neurons.  相似文献   

9.
Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone most intensively studied for its actions on insulin secreting β-cells. GLP-1 and its receptor are also found in brain and accumulating evidence indicates that GLP-1 has neuroprotective actions. Here, we investigated whether GLP-1 protects neuronal cells from death evoked by nerve growth factor (NGF) withdrawal. Compromised trophic factor signaling may underlie neurodegenerative diseases ranging from Alzheimer disease to diabetic neuropathies. We report that GLP-1 provides sustained protection of cultured neuronal PC12 cells and sympathetic neurons from degeneration and death caused by NGF deprivation. Past work shows that NGF deprivation induces the pro-apoptotic protein Bim which contributes to neuron death. Here, we find that GLP-1 suppresses Bim induction promoted by NGF deprivation. Thus, GLP-1 may protect neurons, at least in part, by suppressing Bim induction. Our findings support the idea that drugs that mimic or elevate GLP-1 represent potential therapeutics for neurodegenerative diseases.  相似文献   

10.
The p53 family member p63 is required for nonneural development, but has no known role in the nervous system. Here, we define an essential proapoptotic role for p63 during naturally occurring neuronal death. Sympathetic neurons express full-length TAp63 during the developmental death period, and TAp63 levels increase following NGF withdrawal. Overexpression of TAp63 causes neuronal apoptosis in the presence of NGF, while cultured p63-/- neurons are resistant to apoptosis following NGF withdrawal. TAp63 is also essential in vivo, since embryonic p63-/- mice display a deficit in naturally occurring sympathetic neuron death. While both TAp63 and p53 induce similar apoptotic signaling proteins and require BAX expression and function for their effects, TAp63 induces neuronal death in the absence of p53, but p53 requires coincident p63 expression for its proapoptotic actions. Thus, p63 is essential for developmental neuronal death, likely functioning both on its own, and as an obligate proapoptotic partner for p53.  相似文献   

11.
Young sympathetic neurons die when deprived of nerve growth factor (NGF). Under such circumstances, cell death is appropriate to the developing nervous system and requires RNA and protein synthesis. We have hypothesized the existence of an endogenous death program within neurons that is suppressed by trophic factors. The extent and timing of required changes in the synthetic events that comprise the death program are unknown. In an effort to characterize the biochemical events that mediate the death program further, we performed several experiments on embryonic rat sympathetic neurons in vitro. The death program was blocked with cycloheximide when total protein synthesis was inhibited > or = 80%. When protein synthesis was inhibited within 22 +/- 4 h of NGF deprivation, death was prevented in half the neurons. Hence, we define the commitment point for protein synthesis to be 22 +/- 4 h. Analogously, the commitment point for RNA synthesis was 26 +/- 4 h and that for NGF rescue, 24 +/- 4 h. We tested the ability of a wide variety of chemicals to interfere with the death program. Most compounds tested were unable to prevent neuronal death. Some treatments, however, did save NGF-deprived neurons and were subsequently characterized. These included ultraviolet light and agents that raise intracellular concentrations of cAMP. Finally, we looked for the neuronal expression in vitro and in vivo of genes that have been associated with programmed death in other cell types, including TRPM-2/SGP-2, polyubiquitin, TGF beta-1, c-fos, and c-myc. None of these genes showed significant activation associated with neuronal death.  相似文献   

12.
Abstract: We examined the ability of ceramide and sphingomyelinase (SMase) to prevent neuronal programmed cell death (PCD). We found that a cell-permeable ceramide analogue prevented neuronal PCD when applied to established sympathetic neuron primary cultures at the time of nerve growth factor (NGF) deprivation. Other amphiphilic lipids such as oleic acid failed to prevent cell death. Exogenous SMase also showed the same effect, probably by raising the intracellular ceramide level by sphingomyelin (SM) breakdown. Phosphocholine, another hydrolytic product of SM by SMase, did not prevent cell death. Other phospholipases, such as phospholipase C and phospholipase A2, could not prevent cell death. Given the recent findings that the SM cycle is activated to increase the intracellular ceramide level on NGF binding to the low-affinity NGF receptor (LNGFR) and that NGF binding to LNGFR suppresses apoptosis in neural cell lines, our results suggest the possibility of the SM cycle as a signaling mechanism transducing the PCD-preventing activity of NGF.  相似文献   

13.
Cyclosporin A (CsA) and FK506 (Tacrolimus) are short polypeptides which block the activation of lymphocytes and other immune system cells. Immunosuppressants exert neuroprotective and neurotrophic action in traumatic brain injury, sciatic nerve injury, focal and global ischemia in animals. Their neuroprotective actions are not understood and many hypotheses have been formed to explain such effects. We discuss a role of drug target - calcineurin in neuroprotective action of immunosuppressants. Protein dephosphorylation by calcineurin plays an important role in neuronal signal transduction due to its ability to regulate the activity of ion channels, glutamate release, and synaptic plasticity. In vitro FK506 protects cortex neurons from NMDA-induced death, augments NOS phosphorylation inhibiting its activity and NO synthesis. However, in vivo experiments demonstrated that FK506 in neuroprotective doses did not block excitotoxic cell death nor did it alter NO production during ischemia/reperfusion. Tissue damage in ischemia is the result of a complex pathophysiological cascade, which comprises a variety of distinct pathological events. Resident non-neuronal brain cells respond rapidly to neuronal cell death and may have both deleterious and useful role in neuronal damage. There is increasing evidence that reactive gliosis and post-ischemic inflammation involving microglia contribute to ischemic damage. We have demonstrated that FK506 modulates hypertrophic/proliferative responses and proinflammatory cytokine expression in astrocytes and microglia in vitro and in focal transient brain ischemia. Our findings suggest that astrocytes and microglia are direct targets of FK506 and modulation of glial response and inflammation is a possible mechanism of FK506-mediated neuroprotection in ischemia.  相似文献   

14.
Naturally occurring sympathetic neuron death is the result of two apoptotic signaling events: one normally suppressed by NGF/TrkA survival signals, and a second activated by the p75 neurotrophin receptor. Here we demonstrate that the p53 tumor suppressor protein, likely as induced by the MEKK-JNK pathway, is an essential component of both of these apoptotic signaling cascades. In cultured neonatal sympathetic neurons, p53 protein levels are elevated in response to both NGF withdrawal and p75NTR activation. NGF withdrawal also results in elevation of a known p53 target, the apoptotic protein Bax. Functional ablation of p53 using the adenovirus E1B55K protein inhibits neuronal apoptosis as induced by either NGF withdrawal or p75 activation. Direct stimulation of the MEKK-JNK pathway using activated MEKK1 has similar effects; p53 and Bax are increased and the subsequent neuronal apoptosis can be rescued by E1B55K. Expression of p53 in sympathetic neurons indicates that p53 functions downstream of JNK and upstream of Bax. Finally, when p53 levels are reduced or absent in p53+/− or p53−/− mice, naturally occurring sympathetic neuron death is inhibited. Thus, p53 is an essential common component of two receptor-mediated signal transduction cascades that converge on the MEKK-JNK pathway to regulate the developmental death of sympathetic neurons.  相似文献   

15.
HSP70 is a member of the family of heat‐shock proteins that are known to be up‐regulated in neurons following injury and/or stress. HSP70 over‐expression has been linked to neuroprotection in multiple models, including neurodegenerative disorders. In contrast, less is known about the neuroprotective effects of HSP70 in neuronal apoptosis and with regard to modulation of programmed cell death (PCD) mechanisms in neurons. We examined the effects of HSP70 over‐expression by transfection with HSP70‐expression plasmids in primary cortical neurons and the SH‐SY5Y neuronal cell line using four independent models of apoptosis: etoposide, staurosporine, C2‐ceramide, and β‐Amyloid. In these apoptotic models, neurons transfected with the HSP70 construct showed significantly reduced induction of nuclear apoptotic markers and/or cell death. Furthermore, we demonstrated that HSP70 binds and potentially inactivates Apoptotic protease‐activating factor 1, as well as apoptosis‐inducing factor, key molecules involved in development of caspase‐dependent and caspase‐independent PCD, respectively. Markers of caspase‐dependent PCD, including active caspase‐3, caspase‐9, and cleaved PARP were attenuated in neurons over‐expressing HSP70. These data indicate that HSP70 protects against neuronal apoptosis and suggest that these effects reflect, at least in part, to inhibition of both caspase‐dependent and caspase‐independent PCD pathways.  相似文献   

16.
We have previously shown that nerve growth factor (NGF) withdrawal-induced death requires the activity of the small GTP-binding protein Cdc42 and that overexpression of an active form of Cdc42 is sufficient to mediate neuronal apoptosis via activation of the c-Jun pathway. Recently, a new mitogen-activated protein (MAP) kinase kinase kinase, apoptosis signal-regulating kinase 1 (ASK1) which activates both the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways and plays pivotal roles in tumor necrosis factor- and Fas-induced apoptosis, has been identified. Therefore, we investigated the role of ASK1 in neuronal apoptosis by using rat pheochromocytoma (PC12) neuronal cells and primary rat sympathetic neurons (SCGs). Overexpression of ASK1-DeltaN, a constitutively active mutant of ASK1, activated JNK and induced apoptosis in differentiated PC12 cells and SCG neurons. Moreover, in differentiated PC12 cells, NGF withdrawal induced a four- to fivefold increase in the activity of endogenous ASK1. Finally, expression of a kinase-inactive ASK1 significantly blocked both NGF withdrawal- and Cdc42-induced death and activation of c-jun. Taken together, these results demonstrate that ASK1 is a crucial element of NGF withdrawal-induced activation of the Cdc42-c-Jun pathway and neuronal apoptosis.  相似文献   

17.
Oxidative stress, induced by various neurodegenerative diseases, initiates a cascade of events leading to apoptosis, and thus plays a critical role in neuronal injury. In this study, we have investigated the potential neuroprotective effect of the octadecaneuropeptide (ODN) on 6‐hydroxydopamine (6‐OHDA)‐induced oxidative stress and apoptosis in cerebellar granule neurons (CGN). ODN, which is produced by astrocytes, is an endogenous ligand for both central‐type benzodiazepine receptors (CBR) and a metabotropic receptor. Incubation of neurons with subnanomolar concentrations of ODN (10?18 to 10?12 M) inhibited 6‐OHDA‐evoked cell death in a concentration‐dependent manner. The effect of ODN on neuronal survival was abrogated by the metabotropic receptor antagonist, cyclo1–8[DLeu5]OP, but not by a CBR antagonist. ODN stimulated polyphosphoinositide turnover and ERK phosphorylation in CGN. The protective effect of ODN against 6‐OHDA toxicity involved the phospholipase C/ERK MAPK transduction cascade. 6‐OHDA treatment induced an accumulation of reactive oxygen species, an increase of the expression of the pro‐apoptotic gene Bax, a drop of the mitochondrial membrane potential and a stimulation of caspase‐3 activity. Exposure of 6‐OHDA‐treated cells to ODN blocked all the deleterious effects of the toxin. Taken together, these data demonstrate for the first time that ODN is a neuroprotective agent that prevents 6‐OHDA‐induced oxidative stress and apoptotic cell death.  相似文献   

18.
Young sympathetic neurons die when deprived of nerve growth factor (NGF). Under such circumstances, cell death is appropriate to the developing nervous system and requires RNA and protein synthesis. We have hypothesized the existence of an endogenous death program within neurons that is suppressed by trophic factors. The extent and timing of required changes in the synthetic events that comprise the death program are unknown. In an effort to characterize the biochemical events that mediate the death program further, we performed several experiments on embryonic rat sympathetic neurons in vitro. The death program was blocked with cycloheximide when total protein synthesis was inhibited ≥80%. When protein synthesis was inhibited within 22 ± 4 h of NGF deprivation, death was prevented in half the neurons. Hence, we define the commitment point for protein synthesis to be 22 ± 4 h. Analogously, the commitment point for RNA synthesis was 26 ± 4 h and that for NGF rescue, 24 ± 4 h. We tested the ability of a wide variety of chemicals to interfere with the death program. Most compounds tested were unable to prevent neuronal death. Some treatments, however, did save NGF-deprived neurons and were subsequently characterized. These included ultraviolet light and agents that raise intracellular concentrations of cAMP. Finally, we looked for the neuronal expression in vitro and in vivo of genes that have been associated with programmed death in other cell types, including TRPM-2/SGP-2, polyubiquitin, TGFβ-1, c-fos, and c-myc. None of these genes showed significant activation associated with neuronal death. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
Activation of the high affinity neurotrophin receptor tropomyosin-related kinase A (TrkA) by nerve growth factor (NGF) leads to phosphorylation of intracellular tyrosine residues of the receptor with subsequent activation of signaling pathways involved in neuronal survival such as the phosphoinositide-3-kinase (PI3-K)/protein kinase B (PKB/Akt) pathway and the mitogen-activated protein kinase (MAPK) cascade. In the present study, we tested whether inhibition of protein-tyrosine phosphatases (PTP) by orthovanadate could enhance tyrosine phosphorylation of TrkA thereby stimulating NGF-like survival signaling in embryonic hippocampal neurons. We found that the PTP inhibitor orthovanadate (1 microM) enhanced TrkA phosphorylation and protected neurons against staurosporine (STS)-induced apoptosis in a time-and concentration-dependent manner. Inhibition of PTP enhanced TrkA phosphorylation also in the presence of NGF antibodies indicating that NGF binding to TrkA was not required for the effects of orthovanadate. Moreover, orthovanadate enhanced phosphorylation of Akt and the MAPK Erk1/2 suggesting that the signaling pathways involved in the protective effect were similar to those activated by NGF. Accordingly, inhibition of PI3-K by wortmannin and MAPK-kinase (MEK) inhibition by UO126 abolished the neuroprotective effects. In conclusion, the results indicate that orthovanadate mimics the effect of NGF on survival signaling pathways in hippocampal neurons. Thus, PTP inhibition appears to be an appropriate strategy to trigger neuroprotective signaling pathways downstream of neurotrophin receptors.  相似文献   

20.
The interleukin-1beta converting enzyme (ICE) gene family, (homologues of C. elegans cell death gene product Ced-3) plays an important role in controlling programmed cell death. Nerve growth factor (NGF) promotes survival of cultured embryonic chicken dorsal root ganglion neurons. Ciliary ganglion neurons depend exclusively on ciliary neurotrophic factor (CNTF) for survival. Complete depletion of NGF or CNTF from culture medium induces apoptosis in both types of neurons. We can prevent apoptosis, due either to NGF or CNTF withdrawal and in either type of neuron, by overexpression of a mutant inactive ICE and an ICE inhibitor, the product of cowpox virus gene crmA. Bcl-2 does not prevent apoptosis in CNTF-dependent ciliary neurons or DRG neurons as it does in NGF-dependent neurons. These results suggest that neuronal cell death is mediated through a common effector mechanism involving the Ice family of genes, whereas different suppression mechanisms are engaged depending upon the specific neurotrophic factors present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号