首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In muscle strips of the guinea-pig large intestine, haloperidol and clotrimazole increased spontaneous electrical and contractile activities and decreased ATP-evoked hyperpolarization of smooth-muscle cells and the amplitude of inhibitory synaptic potentials. The pattern of effects of haloperidol on hyperpolarization induced by intramural stimulation of muscle strips was preserved under conditions of pre-incubation of the preparations in Krebs solutions containing pyridoxal-5′-phosphate, Nω-nitro-L-arginine, or apamin, as well as both apamin and tetraethylammonium. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 412–415, July–October, 2007.  相似文献   

2.
3.
4.
5.
In experiments on isolated segments of the rat femoral artery, we demonstrated that a donor of nitric oxide, nitroglycerine (NG), suppresses KCl-and phenylephrine-induced contractions of smooth muscles (SMs) of the vascular wall in a dose-dependent manner. The relaxing effect of NG on SMs is based on several mechanisms. In a series of experiments on intact preparations, we found that potassium channels of two types, Ca-dependent big-conductance and inward rectifying channels, are involved in the relaxing effect of NG. Experiments on skinned preparations showed that interaction between the contractile apparatus of SM cells and calcium ions is disturbed under the action of NG. Neirofiziologiya/Neurophysiology, Vol. 39, No. 3, pp. 208–213, May–June, 2007.  相似文献   

6.
7.
Tropical peatlands have accumulated huge soil carbon over millennia. However, the carbon pool is presently disturbed on a large scale by land development and management, and consequently has become vulnerable. Peat degradation occurs most rapidly and massively in Indonesia, because of fires, drainage, and deforestation of swamp forests coexisting with tropical peat. Peat burning releases carbon dioxide (CO2) intensively but occasionally, whereas drainage increases CO2 emission steadily through the acceleration of aerobic peat decomposition. Therefore, tropical peatlands present the threat of switching from a carbon sink to a carbon source to the atmosphere. However, the ecosystem‐scale carbon exchange is still not known in tropical peatlands. A long‐term field experiment in Central Kalimantan, Indonesia showed that tropical peat ecosystems, including a relatively intact peat swamp forest with little drainage (UF), a drained swamp forest (DF), and a drained burnt swamp forest (DB), functioned as net carbon sources. Mean annual net ecosystem CO2 exchange (NEE) (± a standard deviation) for 4 years from July 2004 to July 2008 was 174 ± 203, 328 ± 204 and 499 ± 72 gC m?2 yr?1, respectively, for the UF, DF, and DB sites. The carbon emissions increased according to disturbance degrees. We found that the carbon balance of each ecosystem was chiefly controlled by groundwater level (GWL). The NEE showed a linear relationship with GWL on an annual basis. The relationships suggest that annual CO2 emissions increase by 79–238 gC m?2 every 0.1 m of GWL lowering probably because of the enhancement of oxidative peat decomposition. In addition, CO2 uptake by vegetation photosynthesis was reduced by shading due to dense smoke from peat fires ignited accidentally or for agricultural practices. Our results may indicate that tropical peatland ecosystems are no longer a carbon sink under the pressure of human activities.  相似文献   

8.
The respiration of dissolved organic matter (DOM) by aerobic heterotrophic bacterioplankton in boreal surface waters is one of the major factors that regulate CO2 exchange of lakes and rivers with the atmosphere in arctic and subarctic zones. The DOM that originates from topsoil leaching and vegetation degradation is brought to the lakes by surface flow and is subjected to coagulation and degradation by heterotrophic bacteria, which are well-established processes in the majority of boreal aquatic settings. The behavior of colloids and organic complexes of trace metals during this process is virtually unknown. In this work, we studied the interaction of two model heterotrophic bacteria, soil Pseudomonas aureofaciens and aquatic Pseudomonas reactans, with peat and Sphagnum moss leachates from the permafrost region under controlled laboratory conditions in nutrient-free media. The moss leachate was the better substrate for bacterial survival, with P. reactans exhibiting an order of magnitude higher live cell number compared with P. aureofaciens. In eight-day experiments, we analyzed organic carbon and ~40 major and trace elements (TEs) during heterotrophic bacteria growth. The total net decrease in the concentration of dissolved organic carbon (DOC) was similar for both bacteria and ranged from 30 mg gwet?1 to ≤10 mg gwet?1 during 8 days for the moss and peat leachate, respectively. Despite significant evolutions of pH, DOC, dissolved inorganic carbon (DIC), and cell number, most major (Mg, K, and Ca) and TEs remained nearly constant (within ±30% of the control). Only Fe, Al, P, Zn, Mn, Co, and Ba and to a much lesser extent Cd, Pb, Rare Earth Elements (REEs), U, Ti, and Zr were affected (p??1 to µg L?1 and followed the order DOC >> P >> Ba > Zn ≥ Fe ≥ Al > Mn > Cu ≥ Sr > Zr ≥ Ti > Ni ≥ Co > REEs ≥ U > Hf~Th, which reflected the abundance of the elements in the two substrates. Generally, the soil exopolysaccharide producing bacterium P. aureofaciens in the peat leachate had the greatest impact of the four combinations investigated in this study (two bacteria with two substrates). Under ongoing environmental changes in the boreal zone, the autochthonous processes of bacterioplankton activity are able to decrease the concentrations of a very limited number of TEs, including mainly Fe and several macro- (P) and micro- (Zn, Mn, and Ba) nutrients.  相似文献   

9.
Of the former extensive peat bog in West Friesland, only small, buried and often cutover remains are left, scattered over a wide region. The results of pollen and macrofossil analyses of the most complete peat profile found to date in this district is presented in this paper. The vegetation development during the final stage of marine sedimentation in the vicinity of the analysed profile is reconstructed in some detail, as well as the subsequent formation of the lower layers of the mire, including the ombrotrophic peat. Apart from these aspects, the study also contributes to our knowledge of the Holocene palaeogeography of the coastal region of the Netherlands.  相似文献   

10.
We found that nonadrenergic inhibitory synaptic potentials (ISP) induced by intramural stimulation in atropine-treated smooth muscles of the guinea-pig large intestine demonstrated no changes upon the influence of an activator of adenylate cyclase, forskolin. This indicates that cAMP-dependent pathways are not involved in the generation of ISP. However, in these muscles with no atropine pretreatment ISP were suppressed by forskolin; intramural stimulation evoked in these smooth muscle cells M-cholinergic excitatory synaptic potentials (ESP) instead of ISP. An increase in the intracellular cAMP concentration due to application of its membrane-penetrating form, dibutyryl-cAMP, did not mimic the above-described effect of forskolin. Hence, it can be supposed that the effect of forskolin on inhibitory synaptic transmission in the atropine-untreated smooth muscles is not related to changes in the intracellular cAMP level; this effect is determined by other mechanisms. The above differences between the effects of forskolin on ISP in the atropine-treated and atropine-untreated smooth muscle strips indicate that the interaction of intracellular signal pathways (probably, through protein Gq/11), which is observed with activation of adenylate cyclase, occurs under conditions of simultaneous activation of M cholinoreceptors and purinoreceptors. The pattern of adenylate cyclase-mediated modulation of inhibitory effects of purinergic neurons on smooth muscles does not allow us to rule out the possibility of involvement of interstitial cells of Cajal as a relay link providing this synaptic effect. Transmission of excitation from cholinergic nerve terminals to smooth muscles is realized without the participation of the interstitial cells of Cajal.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 438–445, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

11.
The human ear is a complex biomechanical system and is divided into three parts: outer, middle and inner ear. The middle ear is formed by ossicles (malleus, incus and stapes), ligaments, muscles and tendons, which transfers sound vibrations from the eardrum to the inner ear, linking with mastoid and Eustachian tube. In this work, a finite element modelling of the tympano-ossicular system of the middle ear was developed. A dynamic study based on a structural response to harmonic vibrations, for a sound pressure level (SPL) of 110, 120 and 130 dB SPL applied in the eardrum, is presented. The connection between the ossicles is made using a contact formulation. The model includes the different ligaments considering its hyperelastic behaviour. The activation of the muscles is based on the constitutive model proposed by previous work. The harmonic responses of displacement and pressure obtained on the stapes footplate, for a frequency range between 100 Hz and 10 kHz, are obtained simulating the muscle activation. The results are compared considering the passive and active states. The results are discussed and they are in accordance with audiological data published with reference to the effects of the middle ear muscles contraction.  相似文献   

12.
A rapid means for restoring soil fertility could be addition of peat to the plough layer. The impact of cultivation of eight different crops (the joint impact of plant and the management tailored for each plant), with and without soil amendment by peat treatment on soil microbiological, physical and chemical properties was assessed for two consecutive growing seasons. As a measure of the functional diversity of soil microbial community we estimated the activity of several different extracellular soil enzymes using the ZymProfiler® test kit. ATP content was measured to yield information on the amount of the active microbial biomass, and phospholipid fatty acid (PLFA) profiles were analysed to reveal the microbial community structure. The enzyme activity patterns of the soil samples indicated several differences due to the different crops and years but ATP content and PLFA profiles were rather stable. However, microbial biomass as total amount of PLFAs depended on the plant and peat treatment and ATP content varied between the years. The effects of the peat treatments were less clearly indicated by the biological parameters one or two years after the amendment, as only arylsulphatase and β-xylosidase activities were affected in both the years. Soil moisture, affecting enzyme activities, depended on the year and crop plant and peat addition increased it. Abbreviations: AMC – 7-amino-4-methylcoumarin; AP – aminopeptidase; ATP – adenosine triphosphate; Cmic– microbial biomass carbon; DNA – deoxyribonucleic acid; EC – electrical conductivity; FAME – fatty acid methyl ester; fw – fresh weight; MUF – 4-methylumbelliferyl; na – not added; Nmic– microbial biomass nitrogen; PDE – phosphodiesterase; PLFA – phospholipid fatty acid; PME – phosphomonoesterase; SOM – soil organic matter  相似文献   

13.
In strips of smooth muscles of the human colon, haloperidol (Hal) and clotrimazole (Clo), in contrast to pyridoxal-5′-phosphate (PP), suppressed spontaneous electrical and contractile activities of these strips and also post-inhibitory excitation developing after inhibitory synaptic potentials (ISPs). Haloperidol, Clo, PP, and PP applied against the background of the action of Nω-nitro-L-arginine noticeably changed the parameters of ISPs. The pattern of effect of Hal on synaptic inhibition in smooth muscles was preserved against the background of the action of PP, and that of PP was preserved against the background of the action of Hal. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 408–411, July–October, 2007.  相似文献   

14.
Methane (CH4) is the most important greenhouse gas next to CO2 and as such it contributes to the enhanced greenhouse effect. Peat soils are often considered as sources of CH4. Grasslands on the other hand are generally considered to be a net sink for atmospheric CH4. The aim of this study was twofold: (i) to quantify the net CH4 emission of intensively managed grasslands on peat soil in the Netherlands; and (ii) to assess the effects of grassland management, i.e. drainage, nitrogen (N) fertilization, and grazing versus mowing, on CH4 emission rates. Net CH4 emissions were measured weekly or biweekly for one year with vented closed flux chambers at two sites, one with a mean ground water level of 22 cm below surface and one with a mean ground water level of 42 cm. On each site there were three treatments: mowing without N application, mowing with N application, and grazing with N application. The dominating species was perennial ryegrass (Lolium perenne L.). Net CH4 emissions were low, in general in the range of -0.2 to 0.2 mg CH4 m-2 d-1. In the relatively warm summer of 1994, consumption of atmospheric CH4 peaked at 0.4 mg m-2 d-1. On an annual basis, the sites were net consumers of atmospheric CH4. However, the consumption was small: 0.31 to 0.08 kg CH4 ha-1 yr-1. Effect of mean ground water level was significant, but small. There were no significant effects of withholding N fertilization for some years and grazing versus mowing on net CH4 emissions. We conclude that grassland management of intensively managed grasslands on peat soil is not a suitable tool for reducing net CH4 emissions.  相似文献   

15.
The aim of the presented studies was to evaluate which classes of compounds of peat ingredients could be responsible for the partial agonistic effect of aqueous peat extract on the alpha2 adreno and D2 dopamine receptors of smooth muscles, which we have reported from former investigations. Based on the different solubility of peat ingredients, water-soluble components of fulvic and ulmic acids were separated according to the pH-value and chemical structure of the solvent. The biological activity of these acids was examined in peat baths using smooth muscle fibers of guinea pig stomach. The results demonstrate that the water-soluble components of fulvic and ulmic acids have a partially agonistic effect on the alpha2 adreno and D2 dopamine receptors, but at the same time quite different effects in terms of their influence on the spontaneous contractile activity (SCA) of smooth muscles have to be noted. From these investigations, we can conclude that aqueous peat extract and the water-soluble components of fulvic acid exhibit similar partial agonistic effects on the alpha2 adreno and D2 dopamine receptors. Therefore it is likely that the mentioned effects of the peat extract derive from the fulvic- and ulmic acids only. The water-soluble component of ulmic acid also showed partial agonistic effects on alpha2 adreno and D2 dopamine receptors. In this case, another substance group is involved, which has a faster blocking effect on these receptors, but was barely soluble in water at a normal pH-value (pH 7).  相似文献   

16.
17.
Because of the interest in the peat extract as a potential therapeutic agent, its effect on the seminiferous epithelium cells was studied. Adult male mice were intraperitoneally injected with peat extract during 34 days. At intervals equal to the duration of the cycle of the seminiferous epithelium (every 8.5 days), gametogenic cells were quantitatively analysed. It was revealed that the peat extract causes a decrease in the production of the A1 spermatogonia, and as a result a decrease in the intensity of spermatogenesis. Besides, in some individuals disturbances of meiosis took place, leading to an increased degeneration of pachytene spermatocytes and formation of diploid spermatids.  相似文献   

18.
Denitrification in the top and sub soil of grassland on peat soils   总被引:2,自引:0,他引:2  
Denitrification is an important process in the nitrogen (N) balance of intensively managed grassland, especially on poorly drained peat soils. Aim of this study was to quantify the N loss through denitrification in the top and sub soil of grassland on peat soils. Sampling took place at 2 sites with both control (0 N) and N fertilised (+ N) treatments. Main difference between the sites was the ground water level. Denitrification was measured on a weekly basis for 2 years with a soil core incubation technique using acetylene (C2H2) inhibition. Soil cores were taken from the top soil (0–20 cm depth) and the sub soil (20–40 cm depth) and incubated in containers for 24 hours. The denitrification rate was calculated from the nitrous oxide production between 4 and 24 hours of incubation. Denitrification capacities of the soils and the soil layers were also determined.The top soil was the major layer for denitrification with losses ranging from 9 to 26 kg N ha–1 yr–1 from the O N treatment. Losses from the top soil of the + N treatment ranged from 13 to 49 kg N ha–1 yr–1. The sub soil contributed, on average, 20% of the total denitrification losses from the 0–40 layer. Losses from the 0–40 cm layer were 2 times higher on the + N treatment than on the O N treatment and totalled up to 70 kg N ha–1 yr–1. Significant correlation coefficients were found between denitrification activity on the one hand, and ground water level, water filled pore space and nitrate content on the other, in the top soil but not in the sub soil. The denitrification capacity experiment showed that the availability of easily decomposable organic carbon was an important limiting factor for the denitrification activity in the sub soil of these peat soils.  相似文献   

19.
20.
The skull and jaw musculature as guides to the ancestry of salamanders   总被引:4,自引:0,他引:4  
The fossil record provides no evidence supporting a unique common ancestry for frogs, salamanders and apodans. The ancestors of the modern orders may have diverged from one another as recently as 250 million years ago, or as long ago as 400 million years according to current theories of various authors. In order to evaluate the evolutionary patterns of the modern orders it is necessary to determine whether their last common ancestor was a rhipidistian fish, a very primitive amphibian, a labyrimhodom or a ‘lissamphibian’. The broad cranial similarities of frogs and salamanders, especially the dominance of the braincase as a supporting element, can be associated with the small size of the skull in their immediate ancestors. Hynobiids show the most primitive cranial pattern known among the living salamander families and “provide a model for determining the nature of the ancestors of the entire order. Features expected in ancestral salamanders include: (1) Emargination of the cheek; (2) Movable suspensorium formed by the quadrate, squamosal and pterygoid; (3) Occipital condyle posterior to jaw articulation; (4) Distinct prootic and opisthotic; (5) Absence ol otic notch; (6) Stapes forming a structural link between braincase and cheek. In the otic region, cheek and jaw suspension, the primitive salamander pattern (resembles most closely the microsaurs among known Paleozoic amphibians, and shows no significant features in common with either ancestral frogs or the majority of labyrinth odonts. The basic pattern of the adductor jaw musculature is consistent within both frogs and salamanders, but major differences are evident between the two groups. The dominance of the adductor mandibulae externus in salamanders can be associated with the open cheek in all members of that order, and the small size of this muscle in frogs can be associated with the large otic notch. The spread of different muscles over the otic capsule, the longus head ol the adductor mandibulae posterior in frogs and the superficial head of the adductor mandibulae internus in salamanders, indicates that fenestration of the skull posterodorsal to the orbit occurred separately in the ancestors of the two groups. Reconstruction of the probable pattern of the jaw musculature in Paleozoic amphibians indicates that frogs and salamanders might have evolved from a condition hypothesized for primitive labyrinthodonts, but the presence of a large otic notch in dissorophids suggests specialization toward the anuran, not the urodele condition. The presence of either an einarginated cheek or an embayment of the lateral surface of the dentary and the absence of an otic notch in microsaurs indicate a salamander-like distribution of die adductor jaw muscles. The ancestors of frogs and salamanders probably diverged from one another in the early Carboniferous, Frogs later evolved from small labyrinthodonts and salamanders from microsaurs. Features considered typical of lissamphibians evolved separately in the two groups in the late Permian andTriassic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号