首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
1. Riparian vegetation in dry regions is influenced by low‐flow and high‐flow components of the surface and groundwater flow regimes. The duration of no‐flow periods in the surface stream controls vegetation structure along the low‐flow channel, while depth, magnitude and rate of groundwater decline influence phreatophytic vegetation in the floodplain. Flood flows influence vegetation along channels and floodplains by increasing water availability and by creating ecosystem disturbance. 2. On reference rivers in Arizona's Sonoran Desert region, the combination of perennial stream flows, shallow groundwater in the riparian (stream) aquifer, and frequent flooding results in high plant species diversity and landscape heterogeneity and an abundance of pioneer wetland plant species in the floodplain. Vegetation changes on hydrologically altered river reaches are varied, given the great extent of flow regime changes ranging from stream and aquifer dewatering on reaches affected by stream diversion and groundwater pumping to altered timing, frequency, and magnitude of flood flows on reaches downstream of flow‐regulating dams. 3. As stream flows become more intermittent, diversity and cover of herbaceous species along the low‐flow channel decline. As groundwater deepens, diversity of riparian plant species (particularly perennial species) and landscape patches are reduced and species composition in the floodplain shifts from wetland pioneer trees (Populus, Salix) to more drought‐tolerant shrub species including Tamarix (introduced) and Bebbia. 4. On impounded rivers, changes in flood timing can simplify landscape patch structure and shift species composition from mixed forests composed of Populus and Salix, which have narrow regeneration windows, to the more reproductively opportunistic Tamarix. If flows are not diverted, suppression of flooding can result in increased density of riparian vegetation, leading in some cases to very high abundance of Tamarix patches. Coarsening of sediments in river reaches below dams, associated with sediment retention in reservoirs, contributes to reduced cover and richness of herbaceous vegetation by reducing water and nutrient‐holding capacity of soils. 5. These changes have implications for river restoration. They suggest that patch diversity, riparian plant species diversity, and abundance of flood‐dependent wetland tree species such as Populus and Salix can be increased by restoring fluvial dynamics on flood‐suppressed rivers and by increasing water availability in rivers subject to water diversion or withdrawal. On impounded rivers, restoration of plant species diversity also may hinge on restoration of sediment transport. 6. Determining the causes of vegetation change is critical for determining riparian restoration strategies. Of the many riparian restoration efforts underway in south‐western United States, some focus on re‐establishing hydrogeomorphic processes by restoring appropriate flows of surface water, groundwater and sediment, while many others focus on manipulating vegetation structure by planting trees (e.g. Populus) or removing trees (e.g. Tamarix). The latter approaches, in and of themselves, may not yield desired restoration outcomes if the tree species are indicators, rather than prime causes, of underlying changes in the physical environment.  相似文献   

2.
Managed flooding is increasingly being used to maintain and restore the ecological values of floodplain wetlands. However, evidence for its effectiveness is sometimes inconsistent and water available for environmental purposes often limited. We experimentally inundated a floodplain wetland (or “billabong”) in late spring by pumping water from its adjacent creek, aiming to promote the native wetland flora and suppress terrestrial exotics. Vegetation was surveyed before (spring) and after (late summer) the managed flood in the experimental billabong and in three control billabongs. Floodplain water levels were continuously monitored. Wet conditions caused two of the control billabongs to also flood, but to a lesser extent than the experimental billabong. We therefore assessed vegetation changes relative to flooding duration. With increasing flooding duration, the cover of wetland vegetation (amphibious and aquatic species) increased and the cover of terrestrial and exotic vegetation decreased, with these effects largest in the deliberately flooded billabong. Flooding durations greater than 20 days generally resulted in increased cover of wetland plants and restricted the growth of terrestrial plants. Reinstatement of more appropriate flooding regimes can thus promote native wetland plants, while suppressing terrestrial exotic species. Our study also provides evidence for the use of modest water allocations to augment the benefits of natural flooding in the maintenance and restoration of native wetland plant communities.  相似文献   

3.
Our objective was to detect environmental and disturbance factors that determine plant species composition in a downstream riverside floodplain of the Shinano River, where both natural flooding and artificial fire disturbances predominate. We classified the natural vegetation into five types by physiognomy, i.e., burnt field, intact (unburnt) field, early-successional forest, later-successional forest, and margin of channel. We deployed 14 transect belts containing 713 plots of 1 m × 1 m at these sites. In the plots, we determined plant occurrences and values of five environmental (soil moisture, soil texture, relative elevation above the river, horizontal distance from the river, and light conditions) and two disturbance factors (scouring of plants by flooding and fire). Plant species compositions and environmental and disturbance factors were different among the sites. Logistic regression analysis showed that burning stimulated the occurrences of herbaceous annuals and conversely constrained those of woody and fern species, suggesting that fire disturbance resets the succession. Scouring of plants by flooding also affected the occurrences of many species, and had a positive influence on that of herbaceous winter annuals in particular. Canonical correspondence analysis indicated that the distributional characteristics of the plant species in the riverside floodplain were influenced primarily by distance from the river, reflecting the magnitude of flood disturbance. We conclude that (1) magnitude of flood disturbance is the primary factor determining plant species composition, and (2) burning maintains early successional vegetation and simultaneously creates a unique plant species composition by stimulating the germination of buried viable seeds transported by flood.  相似文献   

4.
1. This paper explores soil seed bank composition and its contribution to the vegetation dynamics of a hydrologically variable desert floodplain in central Australia: the Cooper Creek floodplain. We investigated patterns in soil seed bank composition both temporally, in response to flooding (and drying), and spatially, with relation to flood frequency. Correlations between extant vegetation and soil seed bank composition are explored with respect to flooding. 2. A large and diverse germinable soil seed bank was detected comprising predominantly annual monocot and annual forb species. Soil seed bank composition did not change significantly in response to a major flood event but some spatial patterns were detected along a broad flood frequency gradient. Soil seed bank samples from frequently flooded sites had higher total germinable seed abundance and a greater abundance of annual monocots than less frequently flooded sites. In contrast, germinable seeds of perennial species belonging to the Poaceae family were most abundant in soil seed bank samples from rarely flooded sites. 3. Similarity between the composition of the soil seed bank and extant vegetation increased following flooding and was greatest in more frequently flooded areas of the floodplain, reflecting the establishment of annual species. The results indicate that persistent soil seed banks enable vegetation in this arid floodplain to respond to unpredictable patterns of flooding and drying.  相似文献   

5.

Alluvial floodplain forests became rare in many parts of Europe, due to anthropogenic changes. Therefore, restoration of floodplain forests is important, but a difficult task because of the complex environmental conditions. The zonation of woody species in floodplains is mainly determined by hydrological conditions, not only within one year but also during the previous years. Tolerance to flooding can be regarded as a key factor for the successful establishment. We examined whether a previous flooding showed an increased flooding tolerance of saplings from eight woody floodplain forest species after a recurrent flooding under controlled common garden conditions at the research station Gießen-Leihgestern (Germany). This would indicate a stress memory towards flooding stress. The individuals of the experiment already experienced a partial flooding of three different durations (three, six or nine weeks) or no flooding in the previous year. After nine months of recovery, these fourteen-month-old saplings were again either exposed to a partial flooding of nine weeks or no flooding. We assessed foliar injury and growth in terms of plant height, number of leaves and stem diameter three weeks (short-term recovery) and nine months (medium-term recovery) after flooding. The saplings showed no increased tolerance to a recurrent flooding irrespective of the previous experienced flooding duration. Therefore, no immediate stress memory towards flooding stress could be observed. To recover after flooding seems to be the better option compared to forming a stress memory, which explained that most species showed a decreased foliar injury after medium-term compared to short-term recovery period.

  相似文献   

6.
Aim of this study was to evaluate the influence of flood pulse regime attributes (pulse frequency, pulse average intensity and amplitude, and flooded days) on the floristic differentiation of the Argentinian Middle Parana river floodplain vegetation in a 39-year period. Besides on floristic composition richness, diversity, evenness, percentage of woody species and topographic position were assessed for 7 communities. Pulse regime attributes were evaluated for each community taking into account different topographic positions and hydrological levels of the Parana River. Our result showed that fluvial vegetation is not floristically differentiated according to its topographic position and there is a weak relation between pulse regime attributes and diversity of woody and herbaceous species. Because of the same topographic position has been colonized by different vegetation communities, floristically different communities share similar pulse frequency, pulse average intensity and amplitude, and flooded days. Pulse regime effects on fluvial vegetation are dependent on more than the topographic position; other aspects of the dynamics of fluvial systems such as the geomorphologic architecture, sediment load and channel dynamics should be included in order to explain the floristic differentiation of the Parana River floodplain vegetation.  相似文献   

7.
Abstract. We assessed the significance of flooding for the floristic composition of seed banks in flood‐meadows of the northern valley of the Upper Rhine. We compared three hydrological compartments of the alluvial plain, consisting of the regularly flooded land between the river and low summer dykes (functional flood‐plain), the occasionally flooded land between summer dykes and high winter dykes (hybrid floodplain) and the land behind the winter dykes, which is now only submerged by ascending groundwater (fossil flood‐plain). Due to their different flooding regime, the three compartments should differ with respect to the prevailing conditions of diaspore input. The seed density of soil samples increased with the duration of flooding in the three compartments, while species richness and the proportion of species not occurring in the vegetation was constant. The increase in seed density can be largely attributed to an increase of disturbance indicators, which are present in the above‐ground vegetation and capable of forming a long‐term persistent seed bank. No effects of flooding on the composition of seed banks in the three flood‐plain compartments were found. The differences in seed bank composition can be largely explained by corresponding differences in above‐ground vegetation and former and present‐day meadow management. Seeds of species absent from above‐ground vegetation can be attributed to the local species pool present in the immediate vicinity of the study plots. We discuss consequences of the results for the restoration of species‐rich flood‐plain meadows.  相似文献   

8.
Question: Do severe winter flood events lift the nutrient limitation of biomass production in a river floodplain? How does this affect plant species richness? How long do the effects last? Location: Floodplain grassland on calcareous sandy loam near river Rhine in The Netherlands. Methods: Plots were fertilised with four treatments (control, N, P, N+P) for 21 years; plant species composition, vegetation biomass and tissue nutrient concentrations were determined every year between 1985 and 2005. Results: Fertilisation with N generally increased biomass production and reduced species richness, but these effects varied over time. During the first four years of the experiment, biomass production appeared to be co‐limited by N and P, while N fertilisation dramatically reduced plant species richness; these effects became weaker subsequently. Following two extreme winter floods in 1993–94 and 1994–95 and a drought in spring 1996, the effects of fertilisation disappeared between 1998 and 2001 and then appeared again. Flooding caused an overall reduction in species richness (from c. 24 to 15 species m‐2) and an increase in biomass production, which were only partly reversed after ten years. Conclusions: Long time series are necessary to understand vegetation dynamics and nutrient limitation in river floodplains, since they are influenced by occasional flood and drought events, whose effects may persist for more than ten years. A future increase in flooding frequency might be detrimental to species richness in floodplain grasslands.  相似文献   

9.
This study analyzed macrophyte richness, biomass, and composition under flooding of brief duration (less than 3 days) and drawdown events over an annual cycle in a floodplain palustrine wetland in the south of Brazil. The study was carried out to test the hypothesis that floods of brief and very brief duration are not long enough to compromise the richness and the biomass of aquatic macrophytes and that the alternation between wet and drawdown phases may cause variations in the macrophyte richness and composition. A total of 26 aquatic macrophyte species were observed from April 2003 to May 2004: 13 species were observed during the wet phase, and 24 during the drawdown phase. The mean richness was higher during the drawdown phase than during the wet phase, however, the mean biomass was similar in both phases. Although macrophyte richness was not modified after the three flooding events, mean biomass was modified after two events. The number of macrophyte species of which the biomass was modified after the first flooding event increased with subsequent floods. These results illustrate the importance of the dynamics between brief floods and drawdown events to the aquatic plant community in floodplain wetlands in southern Brazil.  相似文献   

10.
The forests in the Spa?va Basin are a complex of lowland forests in the region of Slavonia (eastern Croatia). The present state of the forests is strongly influenced by intensive exploitation and hydro-ameliorative activities carried out in the past. The aim of this study was to consider the extent of changes in species composition, and the extent of environmental changes in forest communities of the Spa?va Basin in relation to research conducted between 1969 and 1971. The species composition of four communities (Carpino betuli-Quercetum roboris, Genisto elatae-Quercetum roboris aceretosum tatarici, and caricetosum remotae, and Leucojo-Fraxinetum angustifoliae) is studied by comparing 41 old and 57 new relevés. Changes were estimated using ordinations (RDA, CCA, DCA) and changes in species frequency and cover. A general trend of moisture reduction was noticeable among all communities. All vegetation types are becoming floristically more similar. An increase in frequency and cover of flood intolerant woody species (such as Carpinus betulus, Cornus sanguinea, Tilia tomentosa, and Acer tataricum) as well as a decrease of vernal species related to wet habitats are particularly evident. The succession of all studied communities is resulting in loss of the mosaic community pattern characteristic of lowland alluvial forests.  相似文献   

11.
In 2005 and 2006, the United States Army Corps of Engineers released experimental flows to mimic natural spring flooding on the highly regulated lower Savannah River in the Southeastern US. We used vegetation, invertebrate, and fish communities to assess how past regulation and current experimental releases were affecting the ecological conditions on floodplains. The nearby Altamaha River, of similar size but retaining near-natural spring pulses, served as a reference. We did not find that past flow regulation of the Savannah River had significantly altered floodplain forest structure. However, numbers of tree seedlings in bottomland hardwood forests were higher during a year with an artificial pulse than one without. Analyses of invertebrate and fish communities suggested some limited differences in floodplain community structure between rivers, with differences being most pronounced for predaceous Dytiscidae beetles and Esox spp. fishes. Artificial re-creation of small spring flood pulses down the Savannah River in 2005 and 2006 elicited some responses from fish and invertebrates, but did not shift species assemblages towards those occurring on Altamaha River floodplains.  相似文献   

12.
Spatial and temporal patterns of riverine woodlands in arid regions of Africa are poorly documented despite their considerable conservation value. We studied 1540 ha of riverine woodland in the lower Turkwel River floodplain, Kenya, between 1990 and 1998. Forty‐one woodland patches were mapped and their soil physical and chemical characteristics, tree species diversity, woody cover, tree density, wood volume and woodland regeneration were determined. The riverine woodland comprised nine vegetation types and a total of 14 woody species. Woodland patch mosaics were associated with microtopographical features and selected soil attributes. The most important woody species were Hyphaene compressa H. Wendl., Acacia tortilis (Forssk.) Hayne and Cadaba rotundifolia Forssk. The exotic Prosopis chilensis (Mol.) St. was invading parts of the riverine woodland. Overall, woody species diversity was low compared to similar riverine woodlands in East Africa. Tree density, wood volume and woody plant regeneration declined over the 8‐year study period, while woody cover was unchanged. Reduced tree density, wood volume and regeneration of woody species might be linked to changes in river flood patterns following the impoundment of the Turkwel Gorge Dam. It is suggested that spatially heterogeneous and temporally stochastic regeneration events, together with occasional tree mortality caused by channel abandonment, create the complex pattern of woodland patches in the lower Turkwel River floodplain. The mapped woodland patches may serve as monitoring units, which in future could reveal the interplay between changes in flooding patterns as a result of dam impoundment, anthropogenic disturbance and the well‐being of the riverine woodlands.  相似文献   

13.
Phase I of the Kissimmee River Restoration Project (KRRP) reestablished intermittent inundation of the river's floodplain by backfilling 12 km of the C‐38 flood control canal in 2001. We compared floodplain vegetation maps based on 2003 and 2008 aerial imagery (2 and 7 years following completion of Phase I, respectively) to vegetation maps from 1954 (pre‐channelization), 1974 (3 years after channelization), and 1996 (25 years after channelization) to evaluate broad‐scale vegetation responses to Phase I restoration. Results indicate that the extent of wetland plant communities expanded rapidly, more than doubling in area within 2 years after completion of Phase I, and that by 2008 wetlands had nearly recovered to pre‐channelization levels. However, full reestablishment of the pre‐channelization wetland mosaic has not yet occurred. Prior to channelization, much of the floodplain was dominated by a broadleaf marsh (BLM) community associated with extended, deep annual flooding, while shorter‐hydroperiod communities dominated the floodplain in 2003 and 2008. Prior to restoration construction, the reestablishment of BLM was predicted to be slow because suitable hydrology is dependent on project components that will not be in place until all restoration components are completed (projected for 2019). Hydrologic data indicate that the duration and variability of floodplain inundation have not yet achieved restoration targets over the entire Phase I study area. Other factors affecting vegetation responses are likely involved, including the age and viability of soil seed banks, the rarity of relict propagule sources following the channelized period, and competition from an invasive wetland shrub species.  相似文献   

14.
《Ecological Engineering》2007,29(3):223-231
Urbanization alters stream hydrology, hence flooding frequency and duration in floodplain wetlands. Potential impacts include shifts in species composition and survival, making restoration and selection of wetland species difficult. Cephalanthus occidentalis, Fraxinus pennsylvanica, and Quercus shumardii seedlings were subjected to experimental flooding regimes typical of floodplain forests in rural and urban settings. Treatments included a rural flood regime with three 7-day floods, an Urban-short flood regime with six 4-day floods, and an Urban-long flood regime with six 10-day floods over a growing season. Specific responses, measured by stem length, leaf area, and leaf, stem, and root biomass, varied between species from different wetland indicator classes. C. occidentalis, a wetland obligate, was well adapted to both urban flooding regimes, whereas productivity of F. pennsylvanica, a facultative wetland species, and Q. shumardii, a facultative species, was significantly reduced by the Urban-long treatment. Growth rates also varied over time, indicating the importance of temporal flooding patterns on species productivity. Because urban flooding regimes directly and selectively alter species productivity, proper restoration methods in urbanizing environments should include species selection based on current and potential future hydrologic conditions and use of reference standards from reference sites subjected to similar urban hydrologic regimes.  相似文献   

15.
A survey of fluvial landforms was conducted at Widden Brook, an unregulated sand‐bed stream in the Hunter Valley, New South Wales (NSW), Australia, to investigate the physical factors associated with vegetation pattern in Riverine Oak Forest. Groundwater depth and chemistry (pH, dissolved oxygen and electrical conductivity) were measured using piezometers and submersible data loggers on three fluvial landforms (i.e. toe of bank, top of bank and floodplain) along five transects. Floristic composition, canopy cover, bare ground and leaf litter were assessed within 45 quadrats on the three landforms along the five transects. Elevation above the bed and flood return period were determined by cross‐sectional survey and flood frequency analysis, while flow duration was determined from the gauge record. Canonical correspondence analysis demonstrated that vegetation composition was associated with average watertable depth and flood variables to a similar extent. The relative importance of these factors would be expected to vary with flood‐ and drought‐dominated climatic periods on a scale of several decades. Floristic composition was moderately associated with the canopy cover of the dominant woody species, Casuarina cunninghamiana (Miq.), but weakly correlated with bare ground and groundwater chemistry. Suites of species were associated with particular fluvial landforms and their corresponding flood and watertable conditions. The reach examined has characteristics similar to both the semi‐arid and mesic riparian ecosystems of the USA. The coarse sediments, high flood variability, short flood duration and dominance by a pioneer tree that relies on groundwater are similar to riparian ecosystems in the western USA, while the relatively broad floodplain and the development of a forest canopy that is associated with the distribution of understorey plants are similar to the mesic riparian systems in the eastern USA.  相似文献   

16.
The seasonal flood pulse in Amazonia can be considered a primary driver of community structure in floodplain environments. Although this natural periodic disturbance is part of the landscape dynamics, the seasonal inundation presents a considerable challenge to organisms that inhabit floodplain forests. The present study investigated the effect of seasonal flooding on fruit-feeding butterfly assemblages in different forest types and strata in central Amazonia. We sampled fruit-feeding butterflies in the canopy and the understory using baited traps in adjacent upland (unflooded forests—terra firme), white and blackwater floodplain forests (várzea and igapó, respectively) during the low- and high-water seasons. Butterfly abundance decreased in the high-water season, especially of dominant species in várzea, but the number of species was similar between seasons in the three forest types. Species composition differed between strata in all forest types. However, the flood pulse only affected butterfly assemblages in várzea forest. The β-diversity components also differed only in várzea. Species replacement (turnover) dominated the spatial β-diversity in igapó and terra firme in both seasons and várzea in the high-water season. Nonetheless, nestedness was relatively higher in várzea forests during the low-water season, mainly due to the effect of dominant species. These results emphasize the importance of seasonal flooding to structure butterfly assemblages in floodplain forests and reveal the idiosyncrasy of butterfly community responses to flooding in different forest types. Our results also suggest that any major and rapid changes to the hydrological regime could severely affect floodplain communities adapted to this natural seasonal hydrological cycle, threatening the existence of these unique environments.  相似文献   

17.
In order to reduce flood risk, river management policies advise floodplain restoration and the recreation of water retention areas. These measures may also offer opportunities for the restoration of species-rich floodplain habitats through rewetting and the restoration of flood dynamics. The potential to enhance biodiversity in such flood restoration areas is, however, still subject to debate. In this paper we investigate whether flooding along a small altered lowland river can contribute to the potential and realised species richness of semi-natural meadows. We compare the seed bank and vegetation composition of flooded and non-flooded semi-natural meadows and test the hypothesis that flooding contributes to an input of diaspores into the meadow seed banks, thereby promoting seed density and potential species richness. Furthermore we hypothesise that, where habitat conditions are suitable, flooding leads to a higher realised species richness. Results showed that seed densities in flooded meadows were significantly higher than in non-flooded meadows. The seed banks of flooded meadows also contained a higher proportion of exclusively hydrochorous species. However, the seed bank species richness, as well as the species richness realised in the vegetation did not differ significantly between flooded and non-flooded meadows. Finally, the seed bank and standing vegetation of flooded sites showed larger differences in species composition and Ellenberg nitrogen distribution than non-flooded sites. From these results we conclude that, although flooding does contribute to the density and composition of the seed bank, most imported seeds belong to only a few species. Therefore, it is unlikely that flooding substantially enhances the potential species richness. Furthermore, even if new species are imported as seeds into the seed bank, it seems unlikely that they would be able to establish in the standing vegetation. However, it is unclear which factors impede the establishment of imported species in the vegetation. The implications of our findings for flood meadow restoration are discussed.  相似文献   

18.
Floodplain lakes along the rivers Lower Rhine and Meuse in TheNetherlands can be categorized according to their hydrologyand geomorphology. The impact of hydrology on the summer planktoncommunity composition in 100 floodplain lakes was studied bymultivariate analyses (TWINSPAN, FLEXCLUS, DCA) of relativeabundance data of plankton. The phyto- and zooplankton communitycomposition in floodplain lakes is clearly related to hydrology,relevant nutritional resources and habitat characteristics,mainly via input of N and P from the eutrophic main channelsduring floods. The plankton species richness was related tothe complexity of habitats formed by the presence of aquaticvegetation. There was a good agreement between the ecologicaland the environmental characterization of site groups. Cyanobacteria,Chlorophyta and filter-feeding zooplankton taxa associated withopen water are characteristic for floodplain lakes with a longannual flood duration, low Si/N and Si/P ratios, and a poorlydeveloped aquatic vegetation. Bacillariophyceae and scrapingzooplankton taxa associated with aquatic macrophytes are characteristicfor floodplain lakes with a short annual flood duration, highSi/N and Si/P ratios, and a well-developed aquatic vegetation.It is concluded that the restoration of connections betweenrarely flooded lakes and the highly eutrophic main channelsof the Lower Rhine and Meuse will result in hypertrophic conditionsand a reduced plankton diversity in these lakes.  相似文献   

19.
1. Large river floodplains are considered key nursery habitats for many species of riverine fish. The lower Volga River floodplains (Russian Federation) are still relatively undisturbed, serving as a suitable model for studying the influence of flooding and temperature on fish recruitment in floodplain rivers. 2. We examined the interannual variability in recruitment success of young‐of‐the‐year (YOY) fish in the lower Volga floodplain in relation to flood pulse characteristics and rising water temperatures in the spring. We sampled four areas with different flooding regimes, in three consecutive years (2006–2008). 3. Extensive areas with a long duration of flooding accommodated high densities of young fish. This suggests that extended inundation improves the recruitment success of river fish. In areas with extensive flooding, the biomass of YOY of most fish species was about three times higher in 2006 and 2007 than in 2008. We hypothesise that low spring temperatures in 2008 may have caused this reduced recruitment and that a flood synchronised with rising temperature enhances recruitment success. 4. Extensive flooding was particularly favourable for species characterised by large body size, delayed maturation, high fecundity and low parental investment, such as pike Esox lucius, roach Rutilus rutilus and ide Leuciscus idus. Gibel carp Carassius gibelio, a species tolerant of high temperature and hypoxia, did particularly well in small waterbodies in the driest parts of the floodplain. 5. Structural characteristics of floodplain waterbodies explained much of YOY fish density. These species–environment associations varied from year to year, but some species such as common bream Abramis brama, roach and gibel carp showed consistent relationships with structural habitat characteristics in all years, despite large interannual fluctuations in flood pulse and spring temperature.  相似文献   

20.
Australian floodplain wetlands are sites of high biodiversity that depend on flows from rivers. Dams, diversions and river management have reduced flooding to these wetlands, altering their ecology, and causing the death or poor health of aquatic biota. Four floodplain wetlands (Barmah‐Millewa Forest and Moira Marshes, Chowilla floodplain, Macquarie Marshes, Gwydir wetlands) illustrate these effects with successional changes in aquatic vegetation, reduced vegetation health, declining numbers of water‐birds and nesting, and declining native fish and invertebrate populations. These effects are likely to be widespread as Australia has at least 446 large dams (>10 m crest height) storing 8.8 × 107 ML (106 L) of water, much of which is diverted upstream of floodplain wetlands. More than 50% of floodplain wetlands on developed rivers may no longer flood. Of all of the river basins in Australia, the Murray‐Darling Basin is most affected with dams which can store 103% of annual runoff and 87% of divertible water extracted (1983–84 data). Some floodplain wetlands are now permanent storages. This has changed their biota from one tolerant of a variable flooding regime, to one that withstands permanent flooding. Plans exist to build dams to divert water from many rivers, mainly for irrigation. These plans seldom adequately model subsequent ecological and hydrological impacts to floodplain wetlands. To avoid further loss of wetlands, an improved understanding of the interaction between river flows and floodplain ecology, and investigations into ecological impacts of management practices, is essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号