首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-Selectin, a leukocyte adhesion molecule, mediates leukocyte rolling on the endothelium and plays a critical role in leukocyte recruitment at inflammatory sites as well as in lymphocyte homing. We have previously shown that L-selectin reactive chondroitin sulfate and heparan sulfate proteoglycans (HSPGs) are both expressed in the distal tubules of the kidney and that versican is one of the chondroitin sulfate-type ligands. In the present study, we characterized the heparan sulfate-type ligand(s) in more detail. The molecular sizes of HSPGs were approximately 600 kDa with core protein sizes of 160 and 180 kDa. Western blotting analysis showed that L-selectin reactive HSPGs were neither agrin nor perlecan, major basement membrane HSPGs in the kidney. The binding to L-selectin was mediated by the lectin domain of L-selectin in a Ca2+-dependent manner and required heparan sulfate side chains, but not sialic acid. To our knowledge, this is the first biochemical characterization of the L-selectin reactive heparan sulfate proteoglycan(s) in the distal tubules of the kidney.  相似文献   

2.
Cell surface heparan sulfate proteoglycans (HSPGs) participate in molecular events that regulate cell adhesion, migration, and proliferation. The present study demonstrates that soluble heparin-binding proteins or cross-linking antibodies induce the aggregation of cell surface HSPGs and their distribution along underlying actin filaments. Immunofluorescence and confocal microscopy and immunogold and electron microscopy indicate that, in the absence of ligands, HSPGs are irregularly distributed on the fibroblast cell surface, without any apparent codistribution with the actin cytoskeleton. In the presence of ligand (lipoprotein lipase) or antibodies against heparan sulfate, HSPGs aggregate and colocalize with the actin cytoskeleton. Triton X-100 extraction and immunoelectron microscopy have demonstrated that in this condition HSPGs were clustered and associated with the actin filaments. Crosslinking experiments that use biotinylated lipoprotein lipase have revealed three major proteoglycans as binding sites at the fibroblast cell surface. These cross-linked proteoglycans appeared in the Triton X-100 insoluble fraction. Platinum/carbon replicas of the fibroblast surface incubated either with lipoprotein lipase or antiheparan sulfate showed large aggregates of HSPGs regularly distributed along cytoplasmic fibers. Quantification of the spacing between HSPGs by confocal microscopy confirmed that the nonrandom distribution of HSPG aggregates along the actin cytoskeleton was induced by ligand binding. When cells were incubated either with lipoprotein lipase or antibodies against heparan sulfate, the distance between immunofluorescence spots was uniform. In contrast, the spacing between HSPGs on fixed cells not incubated with ligand was more variable. This highly organized spatial relationship between actin and proteoglycans suggests that cortical actin filaments could organize the molecular machinery involved in signal transduction and molecular movements on the cell surface that are triggered by heparin-binding proteins.  相似文献   

3.
The presentation of secreted axon guidance factors plays a major role in shaping central nervous system (CNS) connectivity. Recent work suggests that heparan sulfate (HS) regulates guidance factor activity; however, the in vivo axon guidance roles of its carrier proteins (heparan sulfate proteoglycans, or HSPGs) are largely unknown. Here we demonstrate through genetic analysis in vivo that the HSPG Syndecan (Sdc) is critical for the fidelity of Slit repellent signaling at the midline of the Drosophila CNS, consistent with the localization of Sdc to CNS axons. sdc mutants exhibit consistent defects in midline axon guidance, plus potent and specific genetic interactions supporting a model in which HSPGs improve the efficiency of Slit localization and/or signaling. To test this hypothesis, we show that Slit distribution is altered in sdc mutants and that Slit and its receptor bind to Sdc. However, when we compare the function of the transmembrane Sdc to a different class of HSPG that localizes to CNS axons (Dallylike), we find functional redundancy, suggesting that these proteoglycans act as spatially specific carriers of common HS structures that enable growth cones to interact with and perceive Slit as it diffuses away from its source at the CNS midline.  相似文献   

4.
Retinal ganglion cell axons grow towards the optic fissure in close contact with the basal membrane, an excellent growth substratum. One of the ligands of receptor tyrosine phosphatase CRYPalpha is located on the retinal and tectal basal membranes. To analyze the role of this RPTP and its ligand in intraretinal growth and guidance of ganglion cell axons, we disrupted ligand- receptor interactions on the retinal basal membrane in culture. Antibodies against CRYPalpha strongly reduced retinal axon growth on the basal membrane, and induced a dramatic change in morphology of retinal growth cones, reducing the size of growth cone lamellipodia. A similar effect was observed by blocking the ligand with a CRYPalpha ectodomain fusion protein. These effects did not occur, or were much reduced, when axons were grown either on laminin-1, on matrigel or on basal membranes with glial endfeet removed. This indicates that a ligand for CRYPalpha is located on glial endfeet. These results show for the first time in vertebrates that the interaction of a receptor tyrosine phosphatase with its ligand is crucial not only for promotion of retinal axon growth but also for maintenance of retinal growth cone lamellipodia on basal membranes.  相似文献   

5.
The response of neuronal growth cones to axon guidance cues depends on the developmental context in which these cues are encountered. We show here that the transmembrane protein semaphorin 5A (Sema5A) is a bifunctional guidance cue exerting both attractive and inhibitory effects on developing axons of the fasciculus retroflexus, a diencephalon fiber tract associated with limbic function. The thrombospondin repeats of Sema5A physically interact with the glycosaminoglycan portion of both chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPGs). CSPGs function as precisely localized extrinsic cues that convert Sema5A from an attractive to an inhibitory guidance cue. Therefore, glycosaminoglycan bound guidance cues provide a molecular mechanism for CSPG-mediated inhibition of axonal extension. Further, axonal HSPGs are required for Sema5A-mediated attraction, suggesting that HSPGs are components of functional Sema5A receptors. Thus, neuronal responses to Sema5A are proteoglycan dependent and interpreted according to the biological context in which this membrane bound guidance cue is presented.  相似文献   

6.
During development of the nervous system receptor tyrosine kinases and receptor protein tyrosine phosphatases act in a coordinate way during axon growth and guidance. In the developing avian retinotectal system, many different receptor protein tyrosine phosphatases are expressed. Most of them have unknown functions. Retinal ganglion cells express at least three different members of this receptor family on their axons and growth cones: CRYPalpha, CRYP-2 and PTPmu. CRYPalpha interacts heterophilically with at least two different ligands found in the basal membranes of the retina and the optic tectum. To analyze the role of the CRYPalpha-ligand interaction, retinal ganglion cell axons were grown on retinal basal membranes (inner limiting membrane) and the receptor-ligand interaction was blocked from both the receptor side (by receptor specific antibodies) and from the ligand side by using a receptor-alkaline phosphatase fusion protein. Both of these treatments reduced average retinal axon length and induced a dramatic change in morphology of retinal ganglion cell growth cones on basal membranes, but not on other substrates like laminin, N-cadherin, matrigel- and detergent-treated basal membranes. These results suggest that CRYPalpha and its ligand act as growth-promoting molecules during intraretinal axon growth.  相似文献   

7.
Heparan sulfate proteoglycans (HSPGs), a class of glycosaminoglycan-modified proteins, control diverse patterning events via their regulation of growth-factor signaling and morphogen distribution. In C. elegans, zebrafish, and the mouse, heparan sulfate (HS) biosynthesis is required for normal axon guidance, and mutations affecting Syndecan (Sdc), a transmembrane HSPG, disrupt axon guidance in Drosophila embryos. Glypicans, a family of glycosylphosphatidylinositol (GPI)-linked HSPGs, are expressed on axons and growth cones in vertebrates, but their role in axon guidance has not been determined. We demonstrate here that the Drosophila glypican Dally-like protein (Dlp) is required for proper axon guidance and visual-system function. Mosaic studies revealed that Dlp is necessary in both the retina and the brain for different aspects of visual-system assembly. Sdc mutants also showed axon guidance and visual-system defects, some that overlap with dlp and others that are unique. dlp+ transgenes were able to rescue some sdc visual-system phenotypes, but sdc+ transgenes were ineffective in rescuing dlp abnormalities. Together, these findings suggest that in some contexts HS chains provide the biologically critical component, whereas in others the structure of the protein core is also essential.  相似文献   

8.
Fibroblast growth factors (FGFs) require heparan sulfate proteoglycans (HSPGs) as cofactors for signaling. The heparan sulfate chains (HS) mediate stable high affinity binding of FGFs to their receptor tyrosine kinases (FR) and may specifically regulate FGF activity. A novel in situ binding assay was developed to examine the ability of HSPGs to promote FGF/FR binding using a soluble FR fusion construct (FR1-AP). This fusion protein probe forms a dimer in solution, simulating the dimerization or oligomerization that is thought to occur at the cell surface physiologically. In frozen sections of human skin, FGF-2 binds to keratinocytes and basement membranes of epidermis and dermal blood vessels. In contrast, in skin preincubated with FGF-2, FR1-AP binds avidly to FGF-2 immobilized on keratinocyte cell surfaces, but fails to bind to basement membranes at the dermo-epidermal junction or dermal microvessels despite the fact that these structures bind large amounts of FGF-2. Apparently, basement membrane and cell surface HSPGs differ in their ability to mediate the assembly of a FGF/FR signaling complex presumably due to structural differences of the heparan sulfate chains.  相似文献   

9.
Nephronectin is a basement membrane protein comprising five N-terminal epidermal growth factor (EGF)-like repeats, a central linker segment containing an Arg-Gly-Asp (RGD) motif and a C-terminal meprin-A5 protein-receptor protein tyrosine phosphatase μ (MAM) domain. Nephronectin has been shown to interact with α8β1 integrin through the central linker segment, but its interactions with other molecules remain to be elucidated. Here, we examined the binding of nephronectin to a panel of glycosaminoglycan (GAG) chains. Nephronectin bound strongly to heparin and chondroitin sulfate (CS)-E and moderately to heparan sulfate (HS), but failed to bind to CS-A, CS-C, CS-D, dermatan sulfate and hyaluronic acid. Deletion of the MAM domain severely impaired the binding of nephronectin to heparin but not CS-E, whereas deletion of the EGF-like repeats reduced its binding to CS-E but not heparin, suggesting that nephronectin interacts with CS-E and heparin through the EGF-like repeats and MAM domain, respectively. Consistent with these results, nephronectin bound to agrin and perlecan, which are heparan sulfate proteoglycans (HSPGs) in basement membranes, in HS-dependent manners. Site-directed mutagenesis of the MAM domain revealed that multiple basic amino acid residues in the putative loop regions were involved in the binding of the MAM domain to agrin. The binding of nephronectin to basement membrane HSPGs was further confirmed by in situ nephronectin overlay assays using mouse frozen tissue sections. Taken together, these findings indicate that nephronectin is capable of binding to HSPGs in basement membranes via the MAM domain, and thereby raise the possibility that interactions with basement membrane HSPGs may be involved in the deposition of nephronectin onto basement membranes.  相似文献   

10.
Nearly all vertebrate cells have been shown to express heparan sulfate proteoglycans (HSPGs) at the cell surface. The HSPGs bind to many secreted signaling proteins, including numerous growth factors, cytokines, and morphogens, to affect their tissue distribution and signaling. The heparan sulfate (HS) chains may have variable length and may differ with regard to both degree and pattern of sulfation. As the sulfation pattern of HS chains in most cases will determine if an interaction with a potential ligand will take place, as well as the affinity of the interaction, a key to understanding the function of HSPGs is to clarify how HS biosynthesis is regulated in different biological contexts. This review provides an introduction to the current understanding of HS biosynthesis and its regulation, and identifies research areas where more knowledge is needed to better understand how the HS biosynthetic machinery works.  相似文献   

11.
The repulsive guidance molecule (RGM) is a membrane-bound protein originally isolated as an axon guidance molecule in the visual system. Recently, the transmembrane protein, neogenin, has been identified as the RGM receptor. In vitro analysis with retinal explants showed that RGM repels temporal retinal axons and collapses their growth cones through neogenin-mediated signaling. However, RGM and neogenin are also broadly expressed at the early embryonic stage, suggesting that they do not only control the guidance of visual axons. Gene expression perturbation experiments in chick embryos showed that neogenin induces cell death, and its ligand, RGM, blocks the pro-apoptotic activity of neogenin. Thus, RGM/neogenin is a novel dependence ligand/receptor couple as well as an axon guidance molecular complex.  相似文献   

12.
Fibroblast growth factor-2 (FGF2) is a potent angiogenic factor in gliomas. Heparan sulfate promotes ligand binding to receptor tyrosine kinase and regulates signaling. The goal of this study was to examine the contribution of heparan sulfate proteoglycans (HSPGs) to glioma angiogenesis. Here we show that all brain endothelial cell HSPGs carry heparan sulfate chains similarly capable of forming a ternary complex with FGF2 and fibroblast growth factor receptor-1c and of promoting a mitogenic signal. Immunohistochemical analysis revealed that glypican-1 was overexpressed in glioma vessel endothelial cells, whereas this cell-surface HSPG was consistently undetectable in normal brain vessels. To determine the effect of increased glypican-1 expression on FGF2 signaling, we transfected normal brain endothelial cells, which express low base-line levels of glypican-1, with this proteoglycan. Glypican-1 expression enhanced growth of brain endothelial cells and sensitized them to FGF2-induced mitogenesis despite the fact that glypican-1 remained a minor proteoglycan. In contrast, overexpression of syndecan-1 had no effect on growth or FGF2 sensitivity. We conclude that the glypican-1 core protein has a specific role in FGF2 signaling. Glypican-1 overexpression may contribute to angiogenesis and the radiation resistance characteristic of this malignancy.  相似文献   

13.
Our previous studies demonstrated that the cell culture-grown hepatitis C virus of genotype 2a (HCVcc) uses apolipoprotein E (apoE) to mediate its attachment to the surface of human hepatoma Huh-7.5 cells. ApoE mediates HCV attachment by binding to the cell surface heparan sulfate (HS) which is covalently attached to the core proteins of proteoglycans (HSPGs). In the present study, we further determined the physiological importance of apoE and HSPGs in the HCV attachment using a clinical HCV of genotype 1b (HCV1b) obtained from hepatitis C patients and human embryonic stem cell-differentiated hepatocyte-like cells (DHHs). DHHs were found to resemble primary human hepatocytes. Similar to HCVcc, HCV1b was found to attach to the surface of DHHs by the apoE-mediated binding to the cell surface HSPGs. The apoE-specific monoclonal antibody, purified HSPGs, and heparin were all able to efficiently block HCV1b attachment to DHHs. Similarly, the removal of heparan sulfate from cell surface by treatment with heparinase suppressed HCV1b attachment to DHHs. More significantly, HCV1b attachment was potently inhibited by a synthetic peptide derived from the apoE receptor-binding region as well as by an HSPG-binding peptide. Likewise, the HSPG-binding peptide prevented apoE from binding to heparin in a dose-dependent manner, as determined by an in vitro heparin pull-down assay. Collectively, these findings demonstrate that HSPGs serve as major HCV attachment receptors on the surface of human hepatocytes to which the apoE protein ligand on the HCV envelope binds.  相似文献   

14.
The location and chemical composition of anionic sites in Bruch's membrane (BM) were examined using cationic probe molecules demonstrable in electron microscopic preparations and tissue digestion with specific degradative enzymes. Ruthenium red and native lysozyme revealed densities distributed at regular intervals in two major components of BM: the basal laminae of the retinal pigment epithelium (RPE) and choriocapillary endothelium (EN). Staining was not observed with succinylated lysozyme (anionic). Colloidal iron also failed to stain BM components. Following crude heparinase treatment at 43 degrees C (specific for heparan sulfate) anionic sites in the RPE basal lamina were not demonstrable with either ruthenium red or native lysozyme. Sites in the EN basal lamina were not affected. Chondroitinase treatment removed almost all of the ruthenium red-positive material in the EN basal lamina; lysozyme binding here was markedly reduced. No changes were observed in the RPE basal lamina after chondroitinase digestion. There was no morphological evidence for site removal by either neuraminidase or leech hyaluronidase, although a detachment of the RPE from BM often occurred after incubation of eye tissue in the latter. Pronase E removed all stainable material. These findings indicate that anionic sites in BM consist to a large extent of chondroitin sulfates and heparan sulfate.  相似文献   

15.
Characteristics of the chondroitin sulfate/dermatan sulfate proteoglycans (CS/DSPGs) and heparan sulfate proteoglycans (HSPGs) from retinas of 14-day chicken embryos were examined following specific lyase digestion of the HSPG and CS/DSPG glycosaminoglycans, respectively. On the basis of gel exclusion chromatography the prevalent CS/DSPGs in the tissue were above Mr 400 X 10(3) with two or three glycosaminoglycan chains of Mr 60-70 X 10(3). The HSPGs existed in two distinct populations in the tissue. Those in the dominant population appeared to be in the range of Mr 250-300 X 10(3) with 9 to 12 glycosaminoglycan chains of Mr 15-25 X 10(3). The other population consisted of free heparan sulfate chains of Mr 15-25 X 10(3). The HSPGs in the medium tended to be intermediate in size. To examine the distribution of proteoglycans, tissues were sequentially homogenized and extracted in saline and reextracted with 4 M guanidine HCl (GdnHCl) and Triton X-100 (TX), or they were washed in heparin solution and dissociated to single cells with trypsin before sequential extraction in saline and GdnHCl with TX. Through comparison of the results of these two extraction methods, CS/DSPGs were found to be almost entirely within the medium or matrix or loosely associated with the cell surface, and most HSPGs were associated with either the basal lamina or the plasma membrane. The single heparan sulfate glycosaminoglycan chains appeared to be intracellular degradation products. These results support reports that CS/DSPGs may be present in the retina interphotoreceptor matrix and that HSPGs may be present in regions of synaptogenesis, associated with cell membranes.  相似文献   

16.
During mouse embryogenesis, diffusible growth factors, i.e. fibroblast growth factors, Wnt, bone morphogenetic protein and Hedgehog family members, emanating from localized areas can travel through the extracellular space and reach their target cells to specify the cell fate and form tissue architectures in coordination. However, the mechanisms by which these growth factors travel great distances to their target cells and control the signalling activity as morphogens remain an enigma. Recent studies in mice and other model animals have revealed that heparan sulfate proteoglycans (HSPGs) located on the cell surface (e.g. syndecans and glypicans) and in the extracellular matrix (ECM; e.g. perlecan and agrin) play crucial roles in the extracellular distribution of growth factors. Principally, the function of HSPGs depends primarily on the fine features and localization of their heparan sulfate glycosaminoglycan chains. Cell-surface-tethered HSPGs retain growth factors as co-receptors and/or endocytosis mediators, and enzymatic release of HSPGs from the cell membrane allows HSPGs to transport or move multiple growth factors. By contrast, ECM-associated HSPGs function as a reservoir or barrier in a context-dependent manner. This review is focused on our current understanding of the extracellular distribution of multiple growth factors controlled by HSPGs in mammalian development.  相似文献   

17.
Human Papillomaviruses (HPVs) are the etiological agents of cervical cancer, and HPV‐16 is the most prevalent type. Several HPVs require heparan sulfate proteoglycans (HSPGs) for cell binding. Here, we analyse the phenomenon that preincubation of HPV‐16 with increasing concentrations of heparin results in partial restoration rather than more efficient inhibition of infection. While corroborating that the HSPGs are cell‐binding receptors for HPV‐16, heparin‐preincubated virus bound to the extracellular matrix (ECM) via laminin‐332. Furthermore, the interaction of virions with heparin, a representative of the highly sulfated S‐domains of heparan sulfate (HS) chains of HSPGs, allowed HPV‐16 infection in the absence of cell surface HSPGs. Therefore, we concluded that specific glycan moieties but not specific HSPG protein backbones are required for infection. The increased binding of an epitope‐specific antibody to the viral capsid after heparin binding suggested that initial conformational changes in the HPV‐16 virion occur during infection by interaction with‘heparin‐like’ domains of cellular HSPGs. We propose that HS sequences with specific sulfation patterns are required to facilitate HPV‐16 infection.  相似文献   

18.
Reversible tyrosine phosphorylation, catalyzed by receptor tyrosine kinases and receptor tyrosine phosphatases, plays an essential part in cell signaling during axonal development. Receptor protein tyrosine phosphatase-sigma has been implicated in the growth, guidance and repair of retinal axons. This phosphatase has also been implicated in motor axon growth and innervation. Insect orthologs of receptor protein tyrosine phosphatase-sigma are also implicated in the recognition of muscle target cells. A potential extracellular ligand for vertebrate receptor protein tyrosine phosphatase-sigma has been previously localized in developing skeletal muscle. The identity of this muscle ligand is currently unknown, but it appears to be unrelated to the heparan sulfate ligands of receptor protein tyrosine phosphatase-sigma. In this study, we have used affinity chromatography and tandem MS to identify nucleolin as a binding partner for receptor protein tyrosine phosphatase-sigma in skeletal muscle tissue. Nucleolin, both from tissue lysates and in purified form, binds to receptor protein tyrosine phosphatase-sigma ectodomains. Its expression pattern also overlaps with that of the receptor protein tyrosine phosphatase-sigma-binding partner previously localized in muscle, and nucleolin can also be found in retinal basement membranes. We demonstrate that a significant amount of muscle-associated nucleolin is present on the cell surface of developing myotubes, and that two nucleolin-binding components, lactoferrin and the HB-19 peptide, can block the interaction of receptor protein tyrosine phosphatase-sigma ectodomains with muscle and retinal basement membranes in tissue sections. These data suggest that muscle cell surface-associated nucleolin represents at least part of the muscle binding site for axonal receptor protein tyrosine phosphatase-sigma and that nucleolin may also be a necessary component of basement membrane binding sites of receptor protein tyrosine phosphatase-sigma.  相似文献   

19.
Slit, the ligand for the Roundabout (Robo) receptors, is secreted from midline cells of the Drosophila central nervous system (CNS). It acts as a short-range repellent that controls midline crossing of axons and allows growth cones to select specific pathways along each side of the midline. In addition, Slit directs the migration of muscle precursors and ventral branches of the tracheal system, showing that it provides long-range activity beyond the limit of the developing CNS. Biochemical studies suggest that guidance activity requires cell-surface heparan sulfate to promote binding of mammalian Slit/Robo homologs. Here, we report that the Drosophila homolog of Syndecan (reviewed in ), a heparan sulfate proteoglycan (HSPG), is required for proper Slit signaling. We generated syndecan (sdc) mutations and show that they affect all aspects of Slit activity and cause robo-like phenotypes. sdc interacts genetically with robo and slit, and double mutations cause a synergistic strengthening of the single-mutant phenotypes. The results suggest that Syndecan is a necessary component of Slit/Robo signaling and is required in the Slit target cells.  相似文献   

20.
Slits mediate multiple axon guidance decisions, but the mechanisms underlying the responses of growth cones to these cues remain poorly defined. We show here that collapse induced by Slit2-conditioned medium (Slit2-CM) in Xenopus retinal growth cones requires local protein synthesis (PS) and endocytosis. Slit2-CM elicits rapid activation of translation regulators and MAP kinases in growth cones, and inhibition of MAPKs or disruption of heparan sulfate blocks Slit2-CM-induced PS and repulsion. Interestingly, Slit2-CM causes a fast PS-dependent decrease in cytoskeletal F-actin concomitant with a PS-dependent increase in the actin-depolymerizing protein cofilin. Our findings reveal an unexpected link between Slit2 and cofilin in growth cones and suggest that local translation of actin regulatory proteins contributes to repulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号