首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Leucine-rich repeats and immunoglobulin-like domains 3 (Lrig3) was identified by microarray analysis among genes that show differential expression during gastrulation in Xenopus laevis. Lrig3 was expressed in the neural plate and neural crest (NC) at neurula stages, and in NC derivatives and other dorsal structures during tailbud stages. A prominent consequence of the morpholino-induced inhibition of Lrig3 expression was impaired NC formation, as revealed by the suppression of marker genes, including Slug, Sox9 and Foxd3. In the NC induction assay involving Chordin plus Wnt3a-injected animal caps, Lrig3 morpholino inhibited expression of Slug, Sox9 and Foxd3, but not of Pax3 and Zic1. In line with this, Lrig3 knockdown prevented NC marker induction by Pax3 and Zic1, suggesting that Lrig3 acts downstream of these two genes in NC formation. Injection of Lrig3 and Wnt3a led to low-level induction of NC markers and enhanced induction of Fgf3, Fgf4 and Fgf8 in animal caps, suggesting a positive role for Lrig3 in Wnt signaling. Lrig3 could attenuate Fgf signaling in animal caps, did interact with Fgf receptor 1 in cultured cells and, according to context, decreased or increased the induction of NC markers by Fgf. We suggest that Lrig3 functions in NC formation in Xenopus by modulating the Wnt and Fgf signaling pathways.  相似文献   

3.
A biotin-streptavidin-based technique was developed for high affinity, unidirectional, and specific immobilization of synthetic peptides to a solid phase. Biotinylated 23-mer carboxamide peptides corresponding to the three immunoreceptor tyrosine-based activation motifs (ITAMs) of the T cell antigen receptor associated ζ-chain (TCR-ζ) in their bis-, mono-, or unphosphorylated forms were used to study the binding of cellular proteins from human Jurkat T cells to these signal transduction motifs. The protein tyrosine kinase ZAP-70 bound specifically to all bisphosphorylated peptides but not to the mono- or unphosphorylated peptides. In contrast, Shc, phosphatidylinositol 3-kinase (P13K), Grb2, and Ras-GTPase activating protein (GAP) bound with different affinities to the bis- or monophosphorylated peptides, while the Src family protein tyrosine kinase (PTK) Fyn did not bind specifically to any of the tested peptides. The different preferences of the studied signaling molecules for distinct ITAMs, and in particular the binding of some of them preferentially to monophosphorylated peptides, suggests that the TCR-ζ may bind multiple signaling molecules with each ITAM binding a unique set of such molecules. In addition, partial phosphorylation of the ITAMs may result in recruitment of different proteins compared to double phosphorylation. This may be crucial for coupling of the TCR to various effector functions under different conditions of receptor triggering. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The identification of cell cycle control and signal transduction components on the centrosome has fostered the idea that the centrosome is more than a microtubule-organizing center. Indeed, recent molecular evidence suggests that the centrosome plays an active role not only in the regulation of microtubule nucleation activity, but also in the coordination of centrosome duplication with cell cycle progression, in stress response and in cell cycle checkpoint control. To achieve these roles, it interacts with a multitude of signal transduction molecules. The specificity of the interactions is mediated through anchoring proteins that bring centrosomal components and regulatory proteins into close proximity. The molecular composition and organization of the centrosome thus reflects its multiple functions.  相似文献   

5.
6.
多发性骨髓瘤(multiple myeloma,MM)发病机理十分复杂,寻找有效的治疗方法仍是世界性的难题。以往的研究表明,MM细胞的存活、增殖、迁移及耐药性与多种信号通路有着密切的联系。最近的研究不断发现与MM细胞扩散和生存密切相关的信号通路新分子靶点,并据此提出了针对性的治疗方案,使MM的治疗逐步改善。本文根据以往的研究成果以及最新的研究动态,对已知的MM靶向治疗通路及相关药物做一综述。  相似文献   

7.
The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125FAK-, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.  相似文献   

8.
9.
Ciliary neurotrophic factor (CNTF) has a variety of actions within the nervous system. While some of the actions of leukemia inhibitory factor (LIF) on neurons resemble those of CNTF, LIF also has broad actions outside of the nervous system that in many cases mimic those of interleukin-6 (IL-6). Comparison of the tyrosine phosphorylations and gene activations induced by CNTF and LIF in neuron cell lines reveals that they are indistinguishable and also very similar to signaling events that characterize LIF and IL-6 responses in hematopoietic cells. We provide a basis for the overlapping actions of these three factors by demonstrating that the shared CNTF and LIF signaling pathways involve the IL-6 signal transducing receptor component gp130. Thus, the receptor system for CNTF is surprisingly unlike those used by the nerve growth factor family of neurotrophic factors, but is instead related to those used by a subclass of hematopoietic cytokines.  相似文献   

10.
11.
Long-term estrogen deprivation causes hypersensitivity of MCF-7 cells to the mitogenic effect of estradiol (E2) which is associated with activation of mitogen-activated protein kinase (MAPK). However, several lines of evidence indicate that MAPK activation is not the exclusive mechanism for E2 hypersensitivity and multiple signal pathways might be involved. The current study explores the possible role of the PI3 kinase (PI3K) pathway in development of E2 hypersensitivity. Basal PI3K activity in long-term estrogen deprived MCF-7 cells (LTED) was elevated as evidenced by increased phosphorylation of three downstream effectors, Akt, p70 S6 kinase, and eukaryotic initiation factor-4E binding protein (4E-BP1), which was blocked by the specific inhibitor of PI3K, LY294002. Dual blockade of both MAPK and PI3K completely reversed E2 hypersensitivity of LTED cells. Enhancement in aromatase activity is another phenomenon accompanied with E2 hypersensitivity. In aromatase over-expressing MCF-7 cells, aromatase activity was reduced by inhibitors of MAPK and PI3K suggesting the involvement of protein phosphorylation in the regulation of aromatase activity. Our data suggest that in addition to the MAP kinase pathway, activation of the PI3 kinase pathway is involved in E2 hypersensitivity, which develops during adaptation of MCF-7 cells to the low estrogen environment.  相似文献   

12.
13.
The vascular smooth muscle phenotype is regulated by environmental factors, such as mechanical forces, that exert effects on signaling to differentiation and growth. We used the mouse portal vein in organ culture to investigate stretch-dependent activation of Akt, ERK, and focal adhesion kinase (FAK), which have been suggested to be involved in the regulation of stretch-dependent protein synthesis. The role of actin polymerization in these signaling events was examined using the actin-stabilizing agent jasplakinolide. Stretch caused a biphasic activation of FAK at 5–15 min and 24–72 h, which may reflect first a direct phosphorylation of preexisting focal adhesions followed by a rearrangement of focal adhesions to accommodate for the increased mechanical load. Phosphorylation of ERK was increased by acute stretch but then decreased, and Akt did not have a distinct peak in stretch-induced phosphorylation. Inhibition of ERK, phosphatidylinositol 3-kinase, or mammalian target of rapamycin reduced global but not contractile protein synthesis with maintained stretch sensitivity. Stabilization of actin filaments with jasplakinolide, in unstretched portal veins, resulted in increased ERK phosphorylation and global protein synthesis as well as the synthesis of contractile proteins. In contrast, stretch during culture with jasplakinolide did not affect FAK phosphorylation or contractility. Therefore, remodeling of smooth muscle cells to adapt to stretch requires a dynamic cytoskeleton. actin polymerization; mitogen-activated protein kinase; phosphatidylinositol 3-kinase; focal adhesion kinase; protein synthesis  相似文献   

14.
15.
Evidence has been provided that the 21-amino acid hypertensive peptide endothelin (ET)-1 exerts a potent secretagogue effect on human adrenocortical zona glomerulosa (ZG), acting through two receptor subtypes, called ET(A) and ET(B), the signaling mechanism(s) of which has (have) not yet been investigated. Collagenase dispersed human ZG cells were obtained from normal adrenals of patients undergoing nephrectomy/adrenalectomy for renal cancer. The selective ET(A)- and ET(B)-receptor activation was obtained by exposing dispersed cells to ET-1 plus the ET(B)-receptor antagonist BQ-788 and to the ET(B)-receptor agonist BQ-3020, respectively. The phospholipase (PL) C inhibitor U-73122 abolished ET(A) receptor-mediated secretory response, but only partially prevented the ET(B) receptor-mediated one. The phosphatidylinositol 3-kinase inhibitor wortmannin, the calmodulin inhibitor W-7 and the protein kinase (PK) C inhibitor calphostin-C significantly blunted the secretory responses ensuing from the activation of both receptor subtypes. When added together, calphostin-C and wortmannin or W-7 abolished ET(A)-mediated secretory response, but only decreased ET(B)-mediated one. The ET(B) receptor-, but not the ET(A) receptor-mediated aldosterone response was partially reversed by the cyclooxygenase (COX) inhibitor indomethacin, which when added together with U-73122 abolished it. ET(A)-receptor activation raised inositol triphosphate (IP(3)) production from dispersed ZG cells, while ET(B)-receptor stimulation enhanced both IP(3) and prostaglandin-E(2) production. Collectively, our findings indicate that ETs stimulate aldosterone secretion from human ZG cells, acting through ET(A) receptors exclusively coupled to PLC/PKC-dependent pathway and ET(B) receptors coupled to both PLC/PKC- and COX-dependent cascades.  相似文献   

16.
The c-kit/W gene encodes a transmembrane protein tyrosine kinase, which is the receptor for Steel factor (SLF). SLF shares many general characteristics of hemopoietic growth factors, stimulating the survival, proliferation, and differentiation of stem and progenitor cells. We have investigated the tyrosine phosphorylation events that ensue after SLF binding to the c-kit protein using primary cultures of murine mast cells as a model system and have compared the effects of SLF and IL-3. Proteins that became phosphorylated on tyrosine after treatment of cells with SLF included c-kit itself, and major protein substrates designated p130, p122, p118, p115, p112, p100, p77, p55, p44, and p42. The majority of these proteins were cytosolic and maximally phosphorylated within 2 min of growth factor treatment. Combinations of immunoprecipitation and immunoblotting with antibodies specific for proteins known to be associated with signaling pathways demonstrated that none of the major tyrosine-phosphorylated species correlated with phospholipase C-gamma 1, GTPase activating protein, or phosphatidylinositol 3' kinase. However, stimulation with SLF led to a modest increase in tyrosine phosphorylation of the 85-kDa subunit of the phosphatidylinositol 3' kinase and increased association with a 150-kDa phosphotyrosyl protein, likely to be c-kit. Two species that did correlate with known elements were the 44- and 42-kDa polypeptides, shown to be members of the mitogen-activated protein kinase family. A subset of these proteins (p130, p115/112, p100, p55, p44, p42) were also tyrosine-phosphorylated when cells were stimulated by IL-3. MonoQ ion-exchange chromatography and two dimensional gel analyses were used to demonstrate that at least the p55, p44, and p42 substrates were identical, as well as some more minor species of molecular weights 50, 38, and 36 kDa, thus indicating common pathways of signaling in hemopoietic cells. Whereas in the case of SLF the dose-response characteristics of the proliferative response and the induction of tyrosine phosphorylation were similar, in the case of IL-3, much lower concentrations were required for maximal proliferation than maximal tyrosine phosphorylation. These studies form the basis for further molecular characterization of common components of signal transduction pathways in hemopoietic cells.  相似文献   

17.
18.
The role of nucleotides in intracellular energy provision and nucleic acid synthesis has been known for a long time. In the past decade, evidence has been presented that, in addition to these functions, nucleotides are also autocrine and paracrine messenger molecules that initiate and regulate a large number of biological processes. The actions of extracellular nucleotides are mediated by ionotropic P2X and metabotropic P2Y receptors, while hydrolysis by ecto-enzymes modulates the initial signal. An increasing number of studies have been performed to obtain information on the signal transduction pathways activated by nucleotide receptors. The development of specific and stable purinergic receptor agonists and antagonists with therapeutical potential largely contributed to the identification of receptors responsible for nucleotide-activated pathways. This article reviews the signal transduction pathways activated by P2Y receptors, the involved second messenger systems, GTPases and protein kinases, as well as recent findings concerning P2Y receptor signalling in C6 glioma cells. Besides vertical signal transduction, lateral cross-talks with pathways activated by other G protein-coupled receptors and growth factor receptors are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号