首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast alcohol dehydrogenase (YADH) plays an important role in the conversion of alcohols to aldehydes or ketones. YADH-1 is a zinc-containing protein, and it accounts for the major part of ADH activity in growing baker's yeast. To gain insight into how oxidative modification of the enzyme affects its function, we exposed YADH-1 to hydrogen peroxide in vitro and assessed the oxidized protein by LC-MS/MS analysis of proteolytic cleavage products of the protein and by measurements of enzymatic activity, zinc release, and thiol/thiolate loss. The results illustrated that Cys43 and Cys153, which reside at the active site of the protein, could be selectively oxidized to cysteine sulfinic acid (Cys-SO2H) and cysteine sulfonic acid (Cys-SO3H). In addition, H2O2 induced the formation of three disulfide bonds: Cys43-Cys153 in the catalytic domain, Cys103-Cys111 in the noncatalytic zinc center, and Cys276-Cys277. Therefore, our results support the notion that the oxidation of cysteine residues in the zinc-binding domain of proteins can go beyond the formation of disulfide bond(s); the formation of Cys-SO2H and Cys-SO3H is also possible. Furthermore, most methionines could be oxidized to methionine sulfoxides. Quantitative measurement results revealed that, among all the cysteine residues, Cys43 was the most susceptible to H2O2 oxidation, and the major oxidation products of this cysteine were Cys-SO2H and Cys-SO3H. The oxidation of Cys43 might be responsible for the inactivation of the enzyme upon H2O2 treatment.  相似文献   

2.
3.
Treatment of purified Rubisco with agents that specifically oxidize cysteine-thiol groups causes catalytic inactivation and increased proteolytic sensitivity of the enzyme. It has been suggested that these redox properties may sustain a mechanism of regulating Rubisco activity and turnover during senescence or stress. Current research efforts are addressing the structural basis of the redox modulation of Rubisco and the identification of critical cysteines. Redox shifts result in Rubisco conformational changes as revealed by the alteration of its proteolytic fragmentation pattern upon oxidation. In particular, the augmented susceptibility of Rubisco to proteases is due to increased exposure of a small loop (between Ser61 and Thr68) when oxidized. Progressive oxidation of Rubisco cysteines using disulphide/thiol mixtures at different ratios have shown that inactivation occurs under milder oxidative conditions than proteolytic sensitization, suggesting the involvement of different critical cysteines. Site-directed mutagenesis of conserved cysteines in the Chlamydomonas reinhardtii Rubisco identified Cys449 and Cys459 among those involved in oxidative inactivation, and Cys172 and Cys192 as the specific target for arsenite. The physiological importance of Rubisco redox regulation is supported by the in vivo response of the cysteine mutants to stress conditions. Substitution of Cys172 caused a pronounced delay in stress-induced Rubisco degradation, while the replacement of the functionally redundant Cys449-Cys459 pair resulted in an enhanced catabolism with a faster high-molecular weight polymerization and translocation to membranes. These results suggest that several cysteines contribute to a sequence of conformational changes that trigger the different stages of Rubisco catabolism under increasing oxidative conditions.  相似文献   

4.
5.
Mamoon NM  Smith JK  Chatti K  Lee S  Kundrapu K  Duhé RJ 《Biochemistry》2007,46(51):14810-14818
The redox regulation of Janus kinase 2 (JAK2) is poorly understood, and there are contradictory reports as to whether the enzyme's activity is inhibited or stimulated by oxidizing conditions in the cell. Here we demonstrate that multiple cysteine residues within the JAK2 catalytic domain may be crucial for enzymatic activity. The enzyme is catalytically inactive when oxidized; activity can be restored via reduction to the thiol state. A series of recombinant variants of JAK2 were overproduced using the baculoviral expression vector system. A truncated variant of JAK2, GST/(NDelta661)rJAK2, provided evidence that the amino-terminal autoinhibitory domain was not essential for direct redox regulation and that only nine cysteine residues were potentially involved. The effect of individually and combinatorially altering these nine cysteines was examined via cysteine-to-serine mutagenesis. This identified four cysteine residues in the catalytic domain (Cys866, Cys917, Cys1094, and Cys1105) that cooperatively maintain JAK2's catalytic competency. Our data are consistent with a direct mechanism for redox regulation of JAK2 via oxidation and reduction of critical cysteine residues.  相似文献   

6.
Elongation factor G (EF-G), a key protein in translational elongation, is known to be particularly susceptible to oxidation in Escherichia coli. However, neither the mechanism of the oxidation of EF-G nor the influence of its oxidation on translation is fully understood. In the present study, we investigated the effects of oxidants on the chemical properties and function of EF-G using a translation system in vitro derived from E. coli. Treatment of EF-G with 0.5 mm H(2)O(2) resulted in the complete loss of translational activity. The inactivation of EF-G by H(2)O(2) was attributable to the oxidation of two specific cysteine residues, namely, Cys(114) and Cys(266), and subsequent formation of an intramolecular disulfide bond. Replacement of Cys(114) by serine rendered EF-G insensitive to oxidation and inactivation by H(2)O(2). Furthermore, generation of the translation system in vitro with the mutated EF-G protected the entire translation system from oxidation, suggesting that EF-G might be a primary target of oxidation within the translation system. Oxidized EF-G was reactivated via reduction of the disulfide bond by thioredoxin, a ubiquitous protein that mediates dithiol-disulfide exchange. Our observations indicate that the translational machinery in E. coli is regulated, in part, by the redox state of EF-G, which might depend on the balance between the supply of reducing power and the degree of oxidative stress.  相似文献   

7.
By using a yeast functional complementation assay, we have identified AtTDX, a new Arabidopsis thaliana gene, encoding a two-domain 42-kDa protein. The amino-terminal domain of AtTDX is closely related to the co-chaperone Hsp70-interacting protein HIP, whereas its carboxyl-terminal part contains a thioredoxin domain. Both in vivo and in vitro assays showed that AtTDX is a protein-disulfide reductase. We next found that the HIP domain of AtTDX is capable of interacting with the ATPase domain of Ssb2, a yeast heat-shock protein 70 chaperone. Strikingly, the AtTDX-Ssb2 interaction can be released under oxidative stress, a redox-dependent regulation involving the thioredoxin activity of AtTDX. A mutation inactivating the cysteine 20 of the ATPase domain of Ssb2 was found to stabilize the AtTDX-Ssb2 interaction that becomes redox-insensitive. As cysteine 20 is conserved in virtually all the Hsp70 chaperones, our results suggest that this residue might be more generally the target of redox regulations of chaperone binding activity.  相似文献   

8.
Calcineurin (CaN) is a Ca2+-and calmodulin (CaM)-dependent serine/threonine phosphatase containing a dinuclear Fe-Zn center in the active site. Recent studies have indicated that CaN is a possible candidate for redox regulation. The inactivation of bovine brain CaN and of the catalytic CaN A-subunit from Dictyostelium by the vicinal dithiol reagents phenylarsine oxide (PAO) and melarsen oxide (MEL) and by H2O2 was investigated. PAO and MEL inhibited CaN with an IC50 of 3-8 microM and the inactivation was reversed by 2, 3-dimercapto-1-propane sulfonic acid. The treatment of isolated CaN with hydrogen peroxide resulted in a concentration-dependent inactivation. Analysis of the free thiol content performed on the H2O2 inactivated enzyme demonstrated that only two or three of the 14 Cys residues in CaN are modified. The inactivation of CaN by H2O2 could be reversed with 1,4-dithiothreitol and with the dithiol oxidoreductase thioredoxin. We propose that a bridging of two closely spaced Cys residues in the catalytic CaN A-subunit by PAO/MEL or the oxidative formation of a disulfide bridge by H2O2 involving the same Cys residues causes the inactivation. Our data implicate a possible involvement of thioredoxin in the redox control of CaN activity under physiological conditions. The low temperature EPR spectrum of the native enzyme was consistent with a Fe3+-Zn2+ dinuclear centre. Upon H2O2-mediated inactivation of the enzyme no significant changes in the EPR spectrum were observed ruling out that Fe2+ is present in the active enzyme and that the dinuclear metal centre is the target for the oxidative inactivation of CaN.  相似文献   

9.
Human CuZn superoxide dismutase (HSOD) has two free cysteines: a buried cysteine (Cys6) located in a beta-strand, and a solvent accessible cysteine (Cys111) located in a loop region. The highly homologous bovine enzyme (BSOD) has a single buried Cys6 residue. Cys6 residues in HSOD and BSOD were replaced by alanine and Cys111 residues in HSOD by serine. The mutant enzymes were expressed and purified from yeast and had normal specific activities. The relative resistance of the purified proteins to irreversible inactivation of enzymatic activity by heating at 70 degrees C was HSOD Ala6 Ser111 greater than BSOD Ala6 Ser109 greater than BSOD Cys6 Ser109 (wild type) greater than HSOD Ala6 Cys111 greater than HSOD Cys6 Ser111 greater than HSOD Cys111 (wild type). In all cases, removal of a free cysteine residue increased thermostability.  相似文献   

10.
The mitochondrial presequence protease (PreP) is a member of the pitrilysin class of metalloproteases. It degrades the mitochondrial targeting presequences of mitochondria-localized proteins as well as unstructured peptides such as amyloid-β peptide. The specific activity of PreP is reduced in Alzheimer patients and animal models of Alzheimer disease. The loss of activity can be mimicked in vitro by exposure to oxidizing conditions, and indirect evidence suggested that inactivation was due to methionine oxidation. We performed peptide mapping analyses to elucidate the mechanism of inactivation. None of the 24 methionine residues in recombinant human PreP was oxidized. We present evidence that inactivation is due to oxidation of cysteine residues and consequent oligomerization through intermolecular disulfide bonds. The most susceptible cysteine residues to oxidation are Cys34, Cys112, and Cys119. Most, but not all, of the activity loss is restored by the reducing agent dithiothreitol. These findings elucidate a redox mechanism for regulation of PreP and also provide a rational basis for therapeutic intervention in conditions characterized by excessive oxidation of PreP.  相似文献   

11.
12.
We present a study of the interaction between thioredoxin and the model enzyme pI258 arsenate reductase (ArsC) from Staphylococcus aureus. ArsC catalyses the reduction of arsenate to arsenite. Three redox active cysteine residues (Cys10, Cys82 and Cys89) are involved. After a single catalytic arsenate reduction event, oxidized ArsC exposes a disulphide bridge between Cys82 and Cys89 on a looped-out redox helix. Thioredoxin converts oxidized ArsC back towards its initial reduced state. In the absence of a reducing environment, the active-site P-loop of ArsC is blocked by the formation of a second disulphide bridge (Cys10-Cys15). While fully reduced ArsC can be recovered by exposing this double oxidized ArsC to thioredoxin, the P-loop disulphide bridge is itself inaccessible to thioredoxin. To reduce this buried Cys10-Cys15 disulphide-bridge in double oxidized ArsC, an intra-molecular Cys10-Cys82 disulphide switch connects the thioredoxin mediated inter-protein thiol-disulphide transfer to the buried disulphide. In the initial step of the reduction mechanism, thioredoxin appears to be selective for oxidized ArsC that requires the redox helix to be looped out for its interaction. The formation of a buried disulphide bridge in the active-site might function as protection against irreversible oxidation of the nucleophilic cysteine, a characteristic that has also been observed in the structurally similar low molecular weight tyrosine phosphatase.  相似文献   

13.
DNAJA1 (DJA1/Hdj2) and DNAJA2 (DJA2) are the major J domain partners of human Hsp70/Hsc70 chaperones. Although they have overall similarity with the well characterized type I co-chaperones from yeast and bacteria, they are biologically distinct, and their functional mechanisms are poorly characterized. We identified DJA2-specific activities in luciferase folding and repression of human ether-a-go-go-related gene (HERG) trafficking that depended on its expression levels in cells. Mutations in different internal domains of DJA2 abolished these effects. Using purified proteins, we addressed the mechanistic defects. A mutant lacking the region between the zinc finger motifs (DJA2-Δm2) was able to bind substrate similar to wild type but was incapable of releasing substrate during its transfer to Hsc70. The equivalent mutation in DJA1 also abolished its substrate release. A DJA2 mutant (DJA-221), which had its C-terminal dimerization region replaced by that of DJA1, was inactive but retained its ability to release substrate. The release mechanism required the J domain and ATP hydrolysis by Hsc70, although the nucleotide dependence diverged between DJA2 and DJA1. Limited proteolysis suggested further conformational differences between the two wild-type co-chaperones and the mutants. Our results demonstrate an essential role of specific DJA domains in the folding mechanism of Hsc70.  相似文献   

14.
CFTRDeltaF508 exhibits a correctable protein-folding defect that leads to its misfolding and premature degradation, which is the cause of cystic fibrosis (CF). Herein we report on the characterization of the CFTRDeltaF508 biogenic intermediate that is selected for proteasomal degradation and identification of cellular components that polyubiquitinate CFTRDeltaF508. Nonubiquitinated CFTRDeltaF508 accumulates in a kinetically trapped, but folding competent conformation, that is maintained in a soluble state by cytosolic Hsc70. Ubiquitination of Hsc70-bound CFTRDeltaF508 requires CHIP, a U box containing cytosolic cochaperone. CHIP is demonstrated to function as a scaffold that nucleates the formation of a multisubunit E3 ubiquitin ligase whose reconstituted activity toward CFTR is dependent upon Hdj2, Hsc70, and the E2 UbcH5a. Inactivation of the Hsc70-CHIP E3 leads CFTRDeltaF508 to accumulate in a nonaggregated state, which upon lowering of cell growth temperatures, can fold and reach the cell surface. Inhibition of CFTRDeltaF508 ubiquitination can increase its cell surface expression and may provide an approach to treat CF.  相似文献   

15.
The aggregation of α-synuclein (α-Syn), the primary component of Lewy bodies, into high molecular weight assemblies is strongly associated with Parkinson disease. This event is believed to result from a conformational change within native α-Syn. Molecular chaperones exert critical housekeeping functions in vivo including refolding, maintaining in a soluble state, and/or pacifying protein aggregates. The influence of the stress-induced heat shock protein 70 (Hsp70) on α-Syn aggregation has been notably investigated. The constitutively expressed chaperone Hsc70 acts as an antiaggregation barrier before cells are overwhelmed with α-Syn aggregates and Hsp70 expression induced. Here, we investigate the interaction between Hsc70 and α-Syn, the consequences of this interaction, and the role of nucleotides and co-chaperones Hdj1 and Hdj2 as modulators. We show that Hsc70 sequesters soluble α-Syn in an assembly incompetent complex in the absence of ATP. The affinity of Hsc70 for soluble α-Syn diminishes upon addition of ATP alone or together with its co-chaperones Hdj1 or Hdj2 allowing faster binding and release of client proteins thus abolishing α-Syn assembly inhibition by Hsc70. We show that Hsc70 binds α-Syn fibrils with a 5-fold tighter affinity compared with soluble α-Syn. This suggests that Hsc70 preferentially interacts with high molecular weight α-Syn assemblies in vivo. Hsc70 binding certainly has an impact on the physicochemical properties of α-Syn assemblies. We show a reduced cellular toxicity of α-Syn fibrils coated with Hsc70 compared with "naked" fibrils. Hsc70 may therefore significantly affect the cellular propagation of α-Syn aggregates and their spread throughout the central nervous system in Parkinson disease.  相似文献   

16.
Hsc20 is a 20 kDa J-protein that regulates the ATPase activity and peptide-binding specificity of Hsc66, an hsp70-class molecular chaperone. We report herein the crystal structure of Hsc20 from Escherichia coli determined to a resolution of 1.8 A using a combination of single isomorphous replacement (SIR) and multi-wavelength anomalous diffraction (MAD). The overall structure of Hsc20 consists of two distinct domains, an N-terminal J-domain containing residues 1-75 connected by a short loop to a C-terminal domain containing residues 84-171. The structure of the J-domain, involved in interactions with Hsc66, resembles the alpha-topology of J-domain fragments of Escherichia coli DnaJ and human Hdj1 previously determined by solution NMR methods. The C-terminal domain, implicated in binding and targeting proteins to Hsc66, consists of a three-helix bundle in which two helices comprise an anti-parallel coiled-coil. The two domains make contact through an extensive hydrophobic interface ( approximately 650 A(2)) suggesting that their relative orientations are fixed. Thus, Hsc20, in addition to its role in the regulation of the ATPase activity of Hsc66, may also function as a rigid scaffold to facilitate positioning of the protein substrates targeted to Hsc66.  相似文献   

17.
18.
19.
The Escherichia coli chaperone Hsp33 contains a C-terminal zinc-binding domain that modulates activity by a so-called "redox switch". The oxidized form in the absence of zinc is active, while the reduced form in the presence of zinc is inactive. X-ray crystal structures of Hsp33 invariably omit details of the C-terminal domain, which is truncated in protein constructs that are capable of forming crystals. We report the solution structure of a recombinant 61-residue protein containing the zinc-binding domain (residues 227-287) of Hsp33, in the presence of stoichiometric amounts of Zn2+. The zinc-bound protein is well folded, and forms a novel structure unlike other published zinc-binding domains. The structure consists of two helices at right-angles to each other, a two-stranded B-hairpin and a third helix at the C terminus. The zinc site comprises the side-chains of the conserved cysteine residues 232, 234, 262 and 265, and connects a short sequence before the first helix with the tight turn in the middle of the B-hairpin. The structure of the C-terminal zinc-binding domain suggests a mechanism for the operation of the redox switch: loss of the bound zinc ion disrupts the folded structure, allowing the ligand cysteine residues to be oxidized, probably to disulfide bonds. The observation that the C-terminal domain is poorly structured in the active oxidized form suggests that the loss of zinc and unfolding of the domain precedes the oxidation of the thiolate groups of the cysteine residues, since the formation of disulfides between distant parts of the domain sequence would presumably promote the formation of stable three-dimensional structure in the oxidized form.Hsp33 provides an example of a redox signaling system that utilizes protein folding and unfolding together with chemical modification for transduction of external stimuli, in this case oxidative stress, to activate the machinery of the cell that is designed to deal with that stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号