首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A modified refractometric method (compensation in sucrose solution) was used for measuring the suction force (water potential) of active roots ofFraxinas excelsior L. in pot experiments and in the field under natural humidity conditions in two soil types. It was shown that if one part of the root system was in soil with low humidity as compared with the remaining predominant part, the suction force of roots in the “dry” soil did not rise in proportion with the rise of the suction force of the drying soil but, due to gradients of suction forces between these root parts, water was translocated into roots in the “dry” soil and thus their suction force was decreased to the relatively lowest value of suction force within the whole root system. The suction force of roots surrounded by soil of humidity below the availability limit was in these cases very low or else its value changed in parallel with changes of the suction force of the remaining part of the root system. It was completely independent of the soil water content in which it existed. The root system is thus a hydrodynamic unit, the individual parts of which do not respond to changes in soil humidity separately by changes in their suction force, but rather in mutual relationship which is brought about by gradients in suction force. These gradients are the cause of water translocation between individual branches of the root system.  相似文献   

2.
 依据盆栽试验数据,利用植物稳定性碳同位素分辨率的理论模型,研究了水分和氮磷营养对小麦叶片碳同位素分辨率(Carbon-isotope discrimination △)的影响。结果表明:水分差异引起碳同位素分辨率较大变异,碳同位素分辨率随土壤相对含水量(Soil relative water content)的提高而提高,在土壤相对含水量为60%~70%条件下碳同位素分辨率最高。缺水时磷水平提高,碳同位素分辨率提高。水分利用效率(Water use efficiency)与碳同位素分辨率关系受土壤水分和养分水平的影响。缺水条件下水分利用效率与碳同位素分辨率之间为负相关,充分供水下为正相关;在低氮水平下的关系不明显,施氮150kg·hm-2时相关性显著。  相似文献   

3.
荒漠草原两种类型土壤的水分动态对比   总被引:1,自引:0,他引:1  
基于2017—2018年的定位监测数据,分析了宁夏东部的盐池荒漠草原2种不同类型土壤(灰钙土和风沙土)的水分时空动态特征。结果表明:2017和2018年生长季(5—10月),研究区降雨量分别为208.2和274.8 mm,降雨在各月份的分配差异较大。2018年除5月存在极端降雨事件(129.6 mm)外,其余各月降雨量均低于2017年。土壤水分变化的季节动态规律大致可以分为两个阶段:土壤水分补偿期(5月初至6月初)和土壤水分波动期(6月中旬至9月底)。0~20 cm土层土壤含水量在降雨后呈骤增骤减的脉冲式特点,深层土壤含水量较稳定。灰钙土土壤含水量随土层加深表现为"升-降-升"的变化,风沙土土壤含水量在0~60 cm土层出现井喷式增加,而后增加缓慢,但随着土层深度的增加土壤含水量逐渐增大。2017年,灰钙土全剖面(0~100 cm)土壤水分表现为积累型,风沙土表现为消耗型;2018年,两种类型的土壤水分在全剖面均表现为消耗型。两种土壤类型土壤水分的时间稳定性随土壤深度的增加而增强,灰钙土和风沙土全剖面的平均土壤含水量代表性土层分别为80~100和40~60 cm。2种类型土壤的土壤水分...  相似文献   

4.
Krumm  M.  Moazami  V.  Martin  P. 《Plant and Soil》1990,125(2):281-284
An apparatus was made for automatic replenishment of water lost by evapotranspiration in pot experiments. The system can handle 80 pots. The upper and lower weight limit for each pot, and the weighing frequency can be set. In this way, constant soil moisture levels as well as fluctuations can be arranged. The apparatus can be programmed for continuous cycling, thus minimizing position effects within an experiment. Cumulative daily water use per pot or transpiration per plant is recorded on tape and printed. Special applications, e.g. controlled nutrient dosage and determination of transpiration coefficients are discussed.  相似文献   

5.
黄土旱塬区冬小麦土壤水库动态   总被引:3,自引:0,他引:3  
李鹏展  王力  王棣 《生态学杂志》2017,28(11):3653-3662
土壤水库是旱作农业区粮食稳产和可持续发展的基础.本文结合长期田间定位试验,通过对黄土高原南部长武旱塬2012—2015年冬小麦土壤水分变化的研究,分析了土壤水库的年际与年内变化特征和动态规律.结果表明: 研究区冬小麦田间平均土壤含水量垂直分布曲线均呈“双峰双谷”形,第1处峰点在10~20 cm土层,第1处谷点在50 cm左右,第2处峰点在100 cm左右,第2处谷点在280 cm左右.无论何种降水年型下,土壤水库对降水的响应滞后且滞后的程度一致.降水年型对土壤水库的年际与年内动态变化影响较大.与丰水年相比,枯水年、平水年土壤水库对大气干旱的调节能力降低,表现为主要供水层上移;枯水年、平水年降水量虽少,但对土壤水分的补充作用较丰水年明显;丰水年土壤水库有较大盈余(84.2 mm),水分平衡出现正补偿,枯水年土壤水库稍有亏缺(1.5 mm),水分平衡出现负补偿,平水年土壤水库稍有盈余(9.5 mm),水分平衡出现正补偿.长武旱塬冬小麦田间土壤水分动态可分为4个时期:苗期耗水期、缓慢消耗期、大量消耗期、收获期,整体蒸散耗水大小顺序为:大量消耗期>苗期耗水期>收获期>缓慢消耗期.  相似文献   

6.
Although seasonal snow is recognized as an important component in the global climate system, the ability of snow to affect plant production remains an important unknown for assessing climate change impacts on vegetation dynamics at high‐latitude ecosystems. Here, we compile data on satellite observation of vegetation greenness and spring onset date, satellite‐based soil moisture, passive microwave snow water equivalent (SWE) and climate data to show that winter SWE can significantly influence vegetation greenness during the early growing season (the period between spring onset date and peak photosynthesis timing) over nearly one‐fifth of the land surface in the region north of 30 degrees, but the magnitude and sign of correlation exhibits large spatial heterogeneity. We then apply an assembled path model to disentangle the two main processes (via changing early growing‐season soil moisture, and via changing the growth period) in controlling the impact of winter SWE on vegetation greenness, and suggest that the “moisture” and “growth period” effect, to a larger extent, result in positive and negative snow–productivity associations, respectively. The magnitude and sign of snow–productivity association is then dependent upon the relative dominance of these two processes, with the “moisture” effect and positive association predominating in Central, western North America and Greater Himalaya, and the “growth period” effect and negative association in Central Europe. We also indicate that current state‐of‐the‐art models in general reproduce satellite‐based snow–productivity relationship in the region north of 30 degrees, and do a relatively better job of capturing the “moisture” effect than the “growth period” effect. Our results therefore work towards an improved understanding of winter snow impact on vegetation greenness in northern ecosystems, and provide a mechanistic basis for more realistic terrestrial carbon cycle models that consider the impacts of winter snow processes.  相似文献   

7.
依托3年大田定位试验(2015—2017),设置周年全膜覆盖(PM)和裸地(CK)2个处理,分析半干旱冷凉区土壤温湿度梯度和水热运动的关系。结果表明: PM和CK冻融过程均为单向冻结、双向融通。与CK相比,PM冻结期滞后,冻结速率减慢,冻结深度浅20 cm,但融化速率加快,融化期缩短6~7 d。冻结期PM和CK土壤温度梯度均为正值,热量向上层土壤传导,但PM传导强度大于CK;融化期PM温度梯度为正值,热量向上层传导,而CK则相反。土壤水分运移表现为:PM在整个冻结期向上运动,CK则表现为“向下-向上-向下”的运动方式;融化期PM水分向上层运移,而CK融化初期向上层运移,融化中后期则向下层运移。在冻结期PM和CK的土壤温度梯度与湿度梯度均呈正相关,但PM相关性大于CK,融化期PM土壤温度梯度与湿度梯度间呈正相关,土壤热量、水分同时向上层运动,CK呈负相关,土壤热量、水分同时向下层运动。在土壤温、湿度梯度驱动下,融通-播前PM 0~10、10~20和20~30 cm土壤温度分别较CK平均提高1.13~1.34、0.96~1.24和0.89~1.32 ℃,土壤含水量分别平均提高3.4%~5.6%、1.4%~2.2%和6.7%~7.8%。可见,PM可为半干旱冷凉区越冬作物返青和春播作物播种、出苗和保苗提供水热保障。  相似文献   

8.
Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.  相似文献   

9.
Partial root-zone irrigation creates a dynamic heterogeneous distribution of soil moisture that may affect the numbers and activities of soil microorganisms. In this study, three irrigation methods, i.e. conventional irrigation (CI), alternate partial root-zone irrigation (APRI, alternate watering on both sides of the pot) and fixed partial root-zone irrigation (FPRI, fixed watering on one side of the pot), and three watering levels, i.e. well-watered, mild and severe water deficit, were applied on pot-grown maize. Numbers of soil microorganisms, plant height, stalk diameter, leaf area and biomass accumulation were monitored over the treatment period. A quadratic parabola relationship between the number of soil microorganisms and soil water content was found, indicating the number of soil microorganisms reached a peak at the mild soil water deficit condition, possibly due to better soil aeration. The peak number of soil microorganism was obtained when soil water content was 66, 79 and 75% of field capacity for CI, FPRI and APRI, respectively. Soil microorganisms were evenly distributed in both sides of APRI and their total numbers were always higher than those under other two irrigation methods for the same soil water content. The count of soil microorganisms in the dry root zone of FPRI was reduced by a lack of water. Maximum biomass accumulation was obtained under well watered condition but severe water deficit led to a 50% reduction in the CI treatment. Such reduction was much smaller under APRI and therefore the highest water use efficiency was obtained. Our results suggest that APRI maintained the best aeration and moisture condition in the soil and enhanced the activities of soil microorganisms, which might also have benefited the plant growth.  相似文献   

10.
The Jornada del Muerto basin of the Chihuahuan Desert of southern New Mexico, USA, has undergone a marked transition of plant communities. Shrubs such as mesquite (Prosopis glandulosa) have greatly increased or now dominate in areas that were previously dominated by perennial grasses. The replacement of grasses by shrubs requires an establishment phase where small shrubs must compete directly with similar-sized grass plants. This is followed by a phase in which large, established shrubs sequester nutrients and water within their biomass and alter soil resources directly under their canopy, creating “islands” of fertility. We hypothesized that these two phases were associated with shrubs having different physiological response capacities related to their age or size and the resource structure of the environment. As a corollary, we hypothesized that responses of small shrubs would be more tightly coupled to variation in soil moisture availability compared to large shrubs. To test these hypotheses, we studied gas exchange and water relations of small (establishing) and large (established) shrubs growing in the Jornada del Muerto as a function of varying soil moisture during the season. The small shrubs had greater net assimilation, stomatal conductance, transpiration, and xylem water potential than large shrubs following high summer rainfall in July, and highest seasonal soil moisture at 0.3 m. High rates of carbon assimilation and water use would be an advantage for small shrubs competing with grasses when shallow soil moisture was plentiful. Large shrubs had greater net assimilation and water-use efficiency, and lower xylem water potential than small shrubs following a dry period in September, when soil moisture at 0.3 m was lowest. Low xylem water potentials and high water-use efficiency would allow large shrubs to continue acquiring and conserving water as soil moisture is depleted. Although the study provides evidence of differences in physiological responses of different-sized shrubs, there was not support for the hypothesis that small shrubs are more closely coupled to variation in soil moisture availability than large shrubs. Small shrubs may actually be less coupled to soil moisture than large shrubs, and thus avoid conditions when continued transpiration could not be matched by equivalent water uptake.  相似文献   

11.
为了阐明根区交替控制灌溉(CRDAI)条件下玉米根系吸水规律,通过田间试验,在沟灌垄植模式下采用根区交替控制灌溉研究玉米根区不同点位(沟位、坡位和垄位)的根长密度(RLD)及根系吸水动态。研究表明,根区土壤水分的干湿交替引起玉米RLD的空间动态变化,在垄位两侧不对称分布,并存在层间差异;土壤水分和RLD是根区交替控制灌溉下根系吸水速率的主要限制因素。在同一土层,根系吸水贡献率以垄位最大,沟位最低;玉米营养生长阶段,10—30 cm土层的根系吸水速率最大;玉米生殖生长阶段,20—70 cm为根系吸水速率最大的土层,根系吸水贡献率为43.21%—55.48%。研究阐明了交替控制灌溉下根系吸水与土壤水分、RLD间相互作用的动态规律,对控制灌溉下水分调控机理研究具有理论意义。  相似文献   

12.
Variability in soil moisture on a steep slope near a ridge in a forested mountain range, Shikoku, Japan, was studied observationally and numerically. Vertically integrated soil moisture, from a depth of ?60 cm to the surface, W, was introduced as a key indicator, and its seasonal variation was analysed on a daily basis from August 2011 to August 2012. The “bucket with a bottom hole” (BBH) model of Teshima et al. (2006) was improved to consider the forest environment in simulating the variation in W. A “big-leaf” model was incorporated into the modified BBH model to estimate transpiration and interception by trees. The simulated soil moisture agreed reasonably with observed values on a daily to inter-seasonal timescale.  相似文献   

13.
Diffusion of ions in the soil depends on soil moisture content. In a dry soil, transport of nutrients towards the root and the concomitant uptake could be reduced. However, pot and field experiments showed that this is not always the case. The objective of this paper was to investigate possible mechanisms of plants to counteract reduced nutrient supply due to water shortage. A split root system was used to investigate P and K inflow of oat and sugar beet at different soil moisture contents (Θ) without water shortage for the plant. The measured average P and K inflows were compared to model calculations considering diffusion, mass-flow, sorption and uptake processes. In the calculations, soil dryness impeded diffusion and decreased nutrient inflow as expected. Measured K inflow was decreased in a similar way indicating that Θ influences K diffusion. In contrast to this, measured P inflow was not influenced by Θ and under-estimated by the model. Low and high molecular exudates were collected at different water supply levels showing that exudation rate of both compounds was increased at water shortage. Especially the high molecular exudates (i.e. mainly mucilage) from water-stressed plants increased P concentration in soil solution under dry conditions in an incubation experiment. Calculated inflow considering this increased P concentration agreed well with measured P inflow indicating that exudation of mucilage could be a mechanism to overcome nutrient transport problems due to soil dryness.  相似文献   

14.
集雨-壤中防渗技术是在起垄覆膜垄沟覆草技术的基础上提出的一项新技术.为了探讨集雨-壤中防渗技术在陕北黄土丘陵区山地果园的应用效果,在米脂县党塔苹果科技示范基地山地红富士苹果园布设对照(CK)、黄绵土夯实防渗(L_1)、红黏土防渗(R_1)、红黏土夯实防渗(R_2)4种处理,测定了不同防渗层类型的土壤容重、稳渗率以及不同处理的土壤水分、果实品质、产量和水分利用率.结果表明:红黏土夯实防渗层防渗效果最好,其土壤容重(1.61g·cm-3)最高,持水量最低,稳定入渗率(0.02 mm·min-1)最小,采用Kostiakov经验公式方程能很好地模拟不同防渗处理水分入渗特征.在整个苹果生长季节,不同防渗处理均能提高集雨沟下0~60 cm土层的土壤含水量,其中,R_2的含水量始终最高,在旱季可以达到苹果树生长发育适宜的含水量标准;壤中防渗处理60 cm土层以下20~30 cm范围内存在一个明显的"低湿层",但低湿层至200 cm土层的土壤含水量变化趋势较为稳定,较CK略有增加;集雨-壤中防渗处理能够提高果实产量和水分利用率、改善品质.其中,R_2处理的产量比CK提高了19.2%,优果率提高了26.5%,水分利用效率提高了24.5%.建议陕北黄土丘陵区山地苹果生产中大力推广集雨-壤中防渗技术.  相似文献   

15.
1. In order to investigate the factors influencing the establishment of seedlings in permanent grassland, the influence of soil moisture and nitrogen fertilization on competition between established plants of Lolium perenne and seedlings of Phleum pratense or Trifolium pratense was studied in two experiments under greenhouse conditions using the 'split-box'-technique.
2. There was no difference in the production of plant dry matter of P. pratense or T. pratense between 30% volumetric soil water content (−0·005 MPa) and 22% (−0·04 MPa), but 15% soil moisture (−0·33 MPa) reduced plant growth. L. perenne yields were linearly reduced by reduced soil moisture content.
3. Shoot competition from L. perenne reduced the plant dry matter yield of P. pratense and T. pratense more than did root competition in these experiments. When shoot competition was present, differences between moisture contents were not detected, indicating that light was probably the limiting resource under such conditions. No significant interaction between root competition and soil moisture was observed for plant weight.
4. Root competition was not prevented even though sufficient water and nitrogen were supplied. This indicated either that some other growth factor was limiting or the plants competed for resources at the root hair level even though sufficient resources were supplied at the pot or field scale. Therefore, in the situation of direct drilling of species during grassland renovation, it may be difficult to alleviate competition by adequate provision of water and nitrogen.  相似文献   

16.
17.
土壤水分是黄土高寒区水循环、地下水补给和植被恢复的关键因素,基于地统计学研究土壤水分空间分布及其盈亏状况,揭示林地土壤水分的空间分布规律、变异特征及空间结构,对于区域植被恢复具有重要价值。以大通县安门滩小流域人工林地作为研究对象,运用地统计学方法对其5月、7月和9月的土壤储水量、林地耗水量和土壤水分盈亏量进行综合分析。研究结果表明:(1)土壤储水量总体表现为9月5月7月,而林地耗水量为7月9月5月,5—7月绝大多数林地的土壤水分呈亏损状态,而7—9月所有林地土壤水分都得到了补充,总体来看,5—9月研究区多数林地的土壤水分有所盈余,土壤储水量、林地耗水量和土壤水分盈亏量均采用指数模型作为最优理论变异函数模型;(2)5月、7月和9月土壤储水量呈南高北低、西高东低的空间分异规律,且西南-东北方向变异较东南-西北方向剧烈;各月林地耗水量在西南-东北方向变异较东南-西北方向剧烈,总体表现为西南部区域低于东北部区域;在5—7月、7—9月和5—9月这三个时期内,土壤水分盈亏量的取值均呈现出东北部区域小于西南部区域的特点。综上,当地土壤水分状况与林地耗水量分布格局并不完全匹配,虽然绝大部分林分能够维持土壤水分收支平衡,但部分山脚处的青杨林地和中部区域的华北落叶松林地出现了土壤水分亏损的现象。为防止林地水分环境恶化,在之后黄土高寒区的植被建设过程中,应适当调整林分配置。  相似文献   

18.
This study was conducted to determine if there were differences in competitive ability and yield stability on the growth of an old landrace of winter wheat (Triticum aestivum), Pinglang 40 (PL40), and a modern cultivar, Changwu135, (CW135), which differed in time of cultivar release, height, shoot and root biomass. A second aim was to investigate whether there is a relationship between competitive ability and yield stability. One pot and two field experiments were conducted to monitor changes in the competitive ability and yield stability of an old and a modern winter wheat cultivar grown in monoculture and mixtures using a de Wit replacement series. The pot study was conducted at two soil moisture levels: (a) well watered (WW), soil maintained at 85% field capacity, and (b) moderate drought (MD), soil maintained at 55% field capacity. The field experiments were conducted in 2 years that were drier than the average. In the second field experiment 40 mm of irrigation was applied to half of the plots at jointing, booting and anthesis. The results were similar in the pot and field experiments. In the mixture, the old cultivar PL40 had a greater relative yield with a larger number of spikes per plant when compared with those of the modern cultivar CW135. The dry matter per stem of CW135 tended to decrease with the increasing proportion of PL40, indicating a lower competitive ability of the modern cultivar than that of the old cultivar. The superior competition of PL40 was primarily due to the higher plant height, larger leaf area index, greater tillering capacity and larger root system. Our results showed that the modern cultivar CW135 produced a higher grain yield, yield components (except spike number), water use efficiency (WUEg) and harvest index under both water regimes in monoculture. However, the reduction in grain yield of CW135 when subjected to water-limited conditions was less than that of PL40 in the pot and field experiments. The greater grain yield of the CW135 was associated with a higher harvest index, thousand-kernel-weight and a lower root:shoot ratio. Water consumption over the entire growing period was significantly lower in CW135 under all soil moisture conditions, and the main difference in water consumption between the two cultivars was observed before anthesis. Post-anthesis accumulation of dry matter was greater in CW135 under water-limited conditions, but there was no difference between cultivars when water was adequate. The dry matter remobilization and contribution to grain yield of CW135 was lower than that of PL40. The results of the present study demonstrated that the higher competitive ability in the old landrace led to an increased sensitivity to environmentally-induced stress. As a result, there was a greater loss in grain yield by the old cultivar when the water supply was unfavorable. In addition, the differences in the life history strategy between the old and modern cultivars imply that reducing competitive ability in the modern cultivar has led to increased yield of the crop population and greater yield stability.  相似文献   

19.
Large pot (2 years) and field experiments (1 year) were conducted to determine the response of susceptible soybean Glycine max (L.) Merr. cultivars (Essex and Hutcheson) grown in soybean-cyst-nematode (SCN), Heterodera glycines-infested soils at three soil water regimes. The soil water regimes were irrigation whenever soil water potential ([psi]s) 0.30-m deep was i) -30 kPa (I-30) or ii) - 50 kPa (I-50), and iii) no irrigation. Cyst nematode levels in the pot experiment were either 0 or 20,000 second-stage juveniles (J2) per pot. The field experiment was conducted on soil naturally infested with a population of 145 to 475 cysts L⁻¹ of soil. All growth parameters studied were drastically affected in the presence of SCN under nonirrigated conditions for the large pot tests; however, SCN did not influence growth parameters in the field experiment. Seed yield was lowest in the no irrigation treatment when all treatments were compared in both the pot and field experiments. The infested no irrigation treatment in the pot experiment had the lowest yield among soil water treatments.  相似文献   

20.
不同品种油茶细根时空分布动态   总被引:1,自引:0,他引:1  
以赣无1、赣永5、长林4、长林40和赣447 等5个品种的油茶林为研究对象,采用微根管技术对0~40 cm土壤剖面的油茶细根进行了为期一年的观测,并分析了总根尖数(TRT)、平均根长密度(ARLD)、平均直径(ARD)的时空分布动态规律.结果表明: 2016年下半年,各品种的TRT和ARLD变化相对稳定,2017年上半年,各品种的TRT和ARLD变化幅度较大,尤其体现在赣无1与长林40中.赣无1的TRT和ARLD在2017年5月出现峰值,长林4的ARD在2017年3月出现峰值.赣无1的TRT和ARLD 以及长林4的ARD在整个观测期都显著大于其他品种.不同品种油茶细根在土层中的空间分布规律及动态变化存在明显差异,赣无1和赣447的细根主要分布在0~20 cm土层中,长林4和长林40的细根以20~40 cm土层居多,空间分布动态变化较其他3个品种稳定;赣永5的空间分布动态变化幅度较大,根量分布各土层无显著差异;长林4的ARD表现为20~40 cm土层>0~20 cm土层,其他品种的ARD在不同土层中无显著差异.赣无1的细根生物量最多,主要分布在上层;长林4的细根直径最粗,主要分布在下层.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号