首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
3.
The GATA factor Pannier activates the achaete-scute (ASC) proneural complex through enhancer binding and provides positional information for sensory bristle patterning in Drosophila. Chip was previously identified as a cofactor of the dorsal selector Apterous, and we show here that both Apterous and Chip also regulate ASC expression. Chip cooperates with Pannier in bridging the GATA factor with the HLH Ac/Sc and Daughterless proteins to allow enhancer-promoter interactions, leading to activation of the proneural genes, whereas Apterous antagonizes Pannier function. Within the Pannier domain of expression, Pannier and Apterous may compete for binding to their common Chip cofactor, and the accurate stoichiometry between these three proteins is essential for both proneural prepattern and compartmentalization of the thorax.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
The Drosophila GATA factor Serpent interacts with the RUNX factor Lozenge to activate the crystal cell program, whereas SerpentNC binds the Friend of GATA protein U-shaped to limit crystal cell production. Here, we identified a lozenge minimal hematopoietic cis-regulatory module and showed that lozenge-lacZ reporter-gene expression was autoregulated by Serpent and Lozenge. We also showed that upregulation of u-shaped was delayed until after lozenge activation, consistent with our previous results that showed u-shaped expression in the crystal cell lineage is dependent on both Serpent and Lozenge. Together, these observations describe a feed forward regulatory motif, which controls the temporal expression of u-shaped. Finally, we showed that lozenge reporter-gene activity increased in a u-shaped mutant background and that forced expression of SerpentNC with U-shaped blocked lozenge- and u-shaped-lacZ reporter-gene activity. This is the first demonstration of GATA:FOG regulation of Runx and Fog gene expression. Moreover, these results identify components of a Serpent cross-regulatory sub-circuit that can modulate lozenge expression. Based on the sub-circuit design and the combinatorial control of crystal cell production, we present a model for the specification of a dynamic bi-potential regulatory state that contributes to the selection between a Lozenge-positive and Lozenge-negative state.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号