首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of tropomyosin gene expression during myogenesis.   总被引:2,自引:0,他引:2       下载免费PDF全文
In skeletal muscle, tropomyosin has a critical role in transduction of calcium-induced contraction. Presently, little is known about the regulation of tropomyosin gene expression during myogenesis. In the present study, qualitative and quantitative changes in the nucleic acid populations of differentiating chicken embryo muscle cells in culture have been examined. Total nucleic acid content per nucleus increased about fivefold in fully developed myotubes as compared to mononucleated myoblasts. The contribution of deoxyribonucleic acid to the total nucleic acid population decreased from 24% in myoblasts to 5% of total nucleic acid in myotubes. Concomitant with the decrement in deoxyribonucleic acid contribution to total nucleic acid was an increase in polyadenylated ribonucleic acid (RNA) content per cell which reached levels in myotubes that were 17-fold higher than those of myoblasts. Specific changes in the RNA population during myogenesis were further investigated by quantitation of the synthetic capacity (messenger RNA levels) per cell for alpha- and beta-tropomyosin. Cell-free translation and immunoprecipitation demonstrated an approximately 40-fold increase in messenger RNA levels per nucleus for alpha- and beta-tropomyosin after fusion in the terminally differentiated myotubes. Indirect immunofluorescence with affinity-purified tropomyosin antibodies demonstrated the presence of tropomyosin-containing filaments in cells throughout myogenesis. Thus, the tropomyosin genes are constitutively expressed during muscle differentiation through the production of tropomyosin messenger RNA and translation into tropomyosin protein.  相似文献   

2.
3.
The functionally undefined Stac3 gene, predicted to encode a SH3 domain- and C1 domain-containing protein, was recently found to be specifically expressed in skeletal muscle and essential to normal skeletal muscle development and contraction. In this study we determined the potential role of Stac3 in myoblast proliferation and differentiation, two important steps of muscle development. Neither siRNA-mediated Stac3 knockdown nor plasmid-mediated Stac3 overexpression affected the proliferation of C2C12 myoblasts. Stac3 knockdown promoted the differentiation of C2C12 myoblasts into myotubes as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA and protein expression of myogenic markers including myogenin and myosin heavy chain. In contrast, Stac3 overexpression inhibited the differentiation of C2C12 myoblasts into myotubes as evidenced by decreased fusion index, decreased number of nuclei per myotube, and decreased mRNA and protein expression of myogenic markers. Compared to wild-type myoblasts, myoblasts from Stac3 knockout mouse embryos showed accelerated differentiation into myotubes in culture as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA expression of myogenic markers. Collectively, these data suggest an inhibitory role of endogenous Stac3 in myoblast differentiation. Myogenesis is a tightly controlled program; myofibers formed from prematurely differentiated myoblasts are dysfunctional. Thus, Stac3 may play a role in preventing precocious myoblast differentiation during skeletal muscle development.  相似文献   

4.
Mononucleated myoblasts and multinucleated myotubes were obtained by culturing embryonic chicken skeletal muscle cells. Comparison of total polysomes isolated from these mononucleated and multinucleated cell cultures by density gradient centrifugation and electron microscopy revealed that mononucleated myoblasts contain polysomes similar to those contained by multinucleated myotubes and large enough to synthesize the 200,000-dalton subunit of myosin. When placed in an in vitro protein-synthesizing assay containing [3H]leucine, total polysomes from both mononucleated and multinucleated myogenic cultures were active in synthesizing polypeptides indistinguishable from myosin heavy chains as detected by measurement of radioactivity in slices through the myosin band on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Fractionation of total polysomes on sucrose density gradients showed that myosin-synthesizing polysomes from mononucleated myoblasts may be slightly smaller than myosin-synthesizing polysomes from myotubes. Multinucleated myotubes contain approximately two times more myosin-synthesizing polysomes per unit of DNA than mononucleated myoblasts, and the proportion of total polysomes constituted by myosin polysomes is only 1.2 times higher in multinucleated myotubes than it is in mononucleated myoblasts. The results of this study suggest that mononucleated myoblasts contain significant amounts of myosin messenger RNA before the burst of myosin synthesis that accompanies muscle differentiation and that a portion of this messenger RNA is associated with ribosomes to form polysomes that will actively translate myosin heavy chains in an in vitro protein-synthesizing assay.  相似文献   

5.
L6 myoblasts spontaneously undergo differentiation and cell fusion into myotubes. These cells express both GLUT1 and GLUT4 glucose transporters, but their expression varies during myogenesis. We now report that the subcellular distribution and the protein processing by glycosylation of both glucose transporter isoforms also change during myogenesis. Crude plasma membrane and light microsome fractions were isolated from either myoblasts or myotubes and characterized by the presence of two functional proteins, the Na+/K(+)-ATPase and the dihydropyridine receptor (DHPR). Immunoreactive alpha 1 subunit of the Na+/K(+)-ATPase was faint in the crude plasma membrane fraction from myoblasts, but abundant in both membrane fractions from myotubes. In contrast, the alpha 1 subunit of the DHPR, which is expressed only in differentiated muscle, was detected in crude plasma membrane from myotubes but not from myoblasts. Therefore, crude plasma membrane fractions from myoblasts and myotubes contain cell surface markers, and the composition of these membranes appears to be developmentally regulated during myogenesis. GLUT1 protein was more abundant in the crude plasma membrane relative to the light microsome fraction prepared from either myoblasts or myotubes. The molecular size in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the GLUT1 transporters in myotubes was smaller than that in myoblasts (Mr 47,000 and 53,000, respectively). GLUT4 protein (Mr 48,000) was barely detectable in the crude plasma membrane fraction and was almost absent in the light microsome fraction prepared from myoblasts. However, GLUT4 protein was abundant in myotubes and was predominantly located in the light microsome fraction. Treatment with endoglycosidase F reduced the molecular size of the transporters in all fractions to Mr 46,000 for GLUT1 and Mr 47,000 for GLUT4 proteins. In myotubes, acute insulin treatment increased the crude plasma membrane content of GLUT1 marginally and of GLUT4 markedly, with a concomitant decrease in the light microsomal fraction. These results indicate that: (a) the subcellular distribution of glucose transporters is regulated during myogenesis, GLUT4 being preferentially sorted to intracellular membranes; (b) both GLUT1 and GLUT4 transporters are processed by N-linked glycosylation to form the mature transporters in the course of myogenesis; and (c) insulin causes modest recruitment of GLUT1 transporters and marked recruitment of GLUT4 transporters, from light microsomes to plasma membranes in L6 myotubes.  相似文献   

6.
In this study, it was found that undifferentiated myoblasts were more vulnerable to menadione-induced oxidative stress than differentiated myotubes. Cell death occurred with a relatively low concentration of menadione in myoblasts compared to myotubes. With the same concentration of menadione, the Bcl-2/Bax ratio decreased and nuclei containing condensed chromatin were observed in myoblasts to a greater extent than in myotubes. However, myotubes became increasingly susceptible to menadione when phosphoinositide 3-kinase (PI3-K) was blocked by pre-incubation with LY294002, a PI3-K inhibitor. Actually, PI3-K activity was reduced by menadione in myoblasts but not in myotubes. In addition, the phosphorylation of Akt, a downstream effector of PI3-K, was inhibited in myoblasts by menadione but increased in myotubes. Both LY294002 and API-2, an Akt inhibitor, decreased the Bcl-2/Bax ratio in menadione-exposed myotubes. These results suggest that the differential activity of PI3-K/Akt signalling is responsible for the differential susceptibility of myoblasts and myotubes to menadione-induced oxidative stress.  相似文献   

7.
The embryonic development of skeletal muscle proceeds by the adherence and fusion of myoblast cells to form multinucleated myotubes. In the present study, enzymes in the dolichol pathway for asparagine-linked glycoprotein synthesis and oligosaccharide chain composition were characterized in myoblasts and myotubes derived from the C2 (mouse) muscle cell line. The N-acetylglucosaminyltransferase responsible for chain initiation and the mannosyl- and glucosyltransferases for Dol-P-Man and Dol-P-Glc synthesis were characterized with respect to substrate, cation, and detergent dependence. Time course studies in the absence and presence of exogenous Dol-P revealed that myoblasts had a two- to threefold higher capacity than myotubes for Dol-sugar synthesis. Pulse-chase experiments following the elongation of the Dol-oligosaccharide by intact cells showed myoblasts to label oligosaccharide intermediates approximately fourfold greater than myotubes; myotubes, however, were more efficient than myoblasts for converting the intermediates to the glucosylated Dol-tetradecasaccharide. Oligosaccharide chains isolated from sarcolemma glycopeptides were analyzed by Con A, WGA, and QAE chromatography. There were no differences between myoblast and myotube oligosaccharides with respect to the proportion of tri-tetraantennary complex, biantennary complex, and high mannose chains. Hybrid chains were not detected. The major high mannose chain contained nine mannose residues. Sialyltransferase activity was identical. The results suggest that higher levels of Dol-P and protein acceptor contribute to the greater degree of protein glycosylation in myoblast vs myotube muscle cells.  相似文献   

8.
Muscle growth occurs during embryonic development and continues in adult life as regeneration. During embryonic muscle growth and regeneration in mature muscle, singly nucleated myoblasts fuse to each other to form myotubes. In muscle growth, singly nucleated myoblasts can also fuse to existing large, syncytial myofibers as a mechanism of increasing muscle mass without increasing myofiber number. Myoblast fusion requires the alignment and fusion of two apposed lipid bilayers. The repair of muscle plasma membrane disruptions also relies on the fusion of two apposed lipid bilayers. The protein dysferlin, the product of the Limb Girdle Muscular Dystrophy type 2 locus, has been shown to be necessary for efficient, calcium-sensitive, membrane resealing. We now show that the related protein myoferlin is highly expressed in myoblasts undergoing fusion, and is expressed at the site of myoblasts fusing to myotubes. Like dysferlin, we found that myoferlin binds phospholipids in a calcium-sensitive manner that requires the first C2A domain. We generated mice with a null allele of myoferlin. Myoferlin null myoblasts undergo initial fusion events, but they form large myotubes less efficiently in vitro, consistent with a defect in a later stage of myogenesis. In vivo, myoferlin null mice have smaller muscles than controls do, and myoferlin null muscle lacks large diameter myofibers. Additionally, myoferlin null muscle does not regenerate as well as wild-type muscle does, and instead displays a dystrophic phenotype. These data support a role for myoferlin in the maturation of myotubes and the formation of large myotubes that arise from the fusion of myoblasts to multinucleate myotubes.  相似文献   

9.
Connexin39 (Cx39) and connexin43 (Cx43) are known to be expressed during development of skeletal muscles. Here we have compared the expression pattern of both connexins during differentiation of established C(2)C(12) mouse myoblasts and in the mouse embryo. Cx43 is highly abundant in undifferentiated myoblasts, but no Cx39 protein was detected in these cells. Upon differentiation into myotubes, Cx39 expression increased. The consecutive expression of these connexins was also observed in the mouse embryo. Cx39 and Cx43 were found in different plaques in accordance with the notion that Cx43 is exclusively expressed in myoblasts and Cx39 in myotubes. Thus, differentiating C(2)C(12) cells in culture can serve to study the involvement of gap junctions in myogenesis, since expression of corresponding Cx39 and Cx43 proteins appears to be very similar as in the mouse embryo.  相似文献   

10.
Connexin39 (Cx39) and connexin43 (Cx43) are known to be expressed during development of skeletal muscles. Here we have compared the expression pattern of both connexins during differentiation of established C2C12 mouse myoblasts and in the mouse embryo. Cx43 is highly abundant in undifferentiated myoblasts, but no Cx39 protein was detected in these cells. Upon differentiation into myotubes, Cx39 expression increased. The consecutive expression of these connexins was also observed in the mouse embryo. Cx39 and Cx43 were found in different plaques in accordance with the notion that Cx43 is exclusively expressed in myoblasts and Cx39 in myotubes. Thus, differentiating C2C12 cells in culture can serve to study the involvement of gap junctions in myogenesis, since expression of corresponding Cx39 and Cx43 proteins appears to be very similar as in the mouse embryo.  相似文献   

11.
During anuran metamorphosis, larval-type myotubes in both trunk and tail are removed by apoptosis, and only trunk muscles are replaced by newly formed adult-type myotubes. In the present study, we clarified the regulatory mechanisms for specific developmental fates of adult and larval muscles. Two distinct (adult and larval) types of myoblasts were found to exist in the trunk, but no or very few adult myoblasts were found in the tail. Each type of myoblast responded differently to metamorphic trigger, 3,3',5-triiodo-L-thyronine (T(3)) in vitro. T(3)-induced cell death was observed in larval myoblasts but not in adult myoblasts. These results suggest that the fates (life or death) of trunk and tail muscles are determined primarily by the differential distribution of adult myoblasts within the muscles. However, a transplantation study clarified that each larval and adult myoblast was not committed to fuse into particular myotube types, and they could form heterokaryon myotubes in vivo. Cell culture experiments suggested that the following two mechanisms are involved in the specification of myotube fate: (1) Heterokaryon myotubes could escape T(3)-induced death only when the proportion of adult nuclei number was higher than 70% in the myotubes. Apoptosis was not observed in any larval nuclei within the surviving heterokaryon myotubes, suggesting the conversion of larval nuclei fate. (2) Differentiation of adult myoblasts was promoted by the factor(s) released from larval myoblasts in a cell type-specific manner. Taken together, the developmental fate of myotubes is determined by the ratio of nuclei types, and the formation of adult nuclei-rich myotubes was specifically enhanced by larval myoblast factor(s).  相似文献   

12.
We report that Ex-FABP, an extracellular protein belonging to the lipocalin family and involved in the extracellular transport of long-chain fatty acids, is expressed in the forming myotubes bothin vivoandin vitro.The presence of the protein and of the mRNA was observed in newly formed myotubes at early stages of chick embryo development by immunohistochemistry and byin situhybridization. At later stages of development myofibers still expressed both the mRNA and the protein. Ex-FABP expression was observed also in the developing myocardium and the muscular layer of large blood vessels. In agreement with these findings, an initial expression of the mRNA and protein secretion by cultured chicken myoblasts were observed only after the onset of myoblast fusion. Double-immunofluorescence staining of these cultured cells revealed that multinucleate myotubes were stained by antibodies directed against both the Ex-FABP and the sarcomeric myosin, whereas immature myotubes and single myoblasts were not. When added to cultured myoblasts, antibodies against the Ex-FABP induced a strong enhancement of the production of the same protein. In all experiments some cell sufferance and a transient impairment of myotube formation were also observed. The finding that the continuous removal of the Ex-FABP from the culture medium of myoblasts, due to the formation of immune complexes, resulted in an overproduction of the protein suggests a feedback (autocrine) control during myotube differentiation and maturation. We propose that the requirement for increased transport and metabolism of free fatty acid released from the membrane phospholipids and storage lipids, mediated by Ex-FABP, may be essential during differentiation of multinucleated myotubes or that an increased local demand of fatty acids and metabolites may act as a local hormone in tissues differentiating and undergoing morphogenesis.  相似文献   

13.
The GLUT3 facilitative glucose transporter protein was found to be expressed in rat L6 muscle cells. It was detected at both the myoblast and myotube stage. GLUT3 protein content per mg of total membrane protein increased significantly during L6 cell differentiation. Subcellular fractionation demonstrated that the GLUT3 protein was predominantly localized in plasma membrane-enriched fractions of either myoblasts or myotubes. Short-term exposure of L6 myotubes to IGF-I or insulin caused a redistribution of GLUT3 protein from an intracellular membrane fraction to the plasma membrane, without affecting total membrane GLUT3 protein content. Long-term exposure of L6 myotubes to IGF-I produced an increase of GLUT3 protein in total membranes and all subcellular membrane fractions, especially the plasma membrane. We propose that the GLUT3 glucose transporter may play an important role in glucose metabolism in developing muscle.  相似文献   

14.
Changes in protein synthesis during myogenesis in a clonal cell line   总被引:11,自引:0,他引:11  
Methods of quantitative two-dimensional gel electrophoresis have been used to study the changes in protein synthesis that occur during myogenic differentiation in the L6 clonal line of rat skeletal muscle cells. Pure populations of myoblasts were obtained by maintaining the cells at subconfluent densities, and virtually pure populations of fused myotubes have been obtained by sedimentation at 1 × gravity through a serum gradient. The gel analysis reveals major qualitative differences between myoblasts and myotubes, as well as numerous quantitative changes. Both the α and the β forms of tropomyosin and the LC2 myosin light chain were increased in rate of synthesis by at least 1000-fold during myogenesis. Other proteins were detectable in myoblasts but were not synthesized at a detectable rate in myotubes. One of these is a form of tropomyosin which comigrates under several electrophoretic conditions with smooth muscle tropomyosin. Another protein, which is repressed in rate of synthesis by at least 1000-fold during myogenesis, appears to be a major form of collagen. Computer analysis has been used to analyze in detail a particular region containing about 300 spots from the two-dimensional patterns representing protein synthesis in L6 myoblasts, L6 myotubes, and a rat nerve cell line. Quantiative comparisons have shown that, with respect to this set of proteins, the L6 myoblasts and myotubes are no more alike at the level of protein synthesis than are L6 myoblasts and the cells of the nerve line. Therefore, these studies show that L6 differentiation involves not only the qualitative switching on and off of major gene products but also the quantitative alteration of synthetic rates of many of the common proteins.  相似文献   

15.
Although protein kinase C (PKC) has been shown to participate in skeletal myogenic differentiation, the functions of individual isoforms of PKC in myogenesis have not been completely elucidated. These studies focused on the role of nPKC straight theta, an isoform of the PKC family whose expression has been shown to be regulated by commitment to the myogenic lineage, myogenic differentiation and innervation. We used the myogenic cell line C(2)C(12) as a tissue culture model system to explore the role of nPKC straight theta in the formation of multinucleated myotubes. We examined endogenous levels of nPKC straight theta in C(2)C(12) cells and showed that it is expressed at low levels in myoblasts compared to mouse skeletal muscle and that expression is maintained in myotubes. We overexpressed nPKC straight theta in C(2)C(12) myoblasts and examined the ability of overexpressing cells to differentiate into myotubes. Using an nPKC straight theta - green fluorescent protein (GFP) chimera to detect transfected myoblasts, we showed that overexpressed nPKC straight theta-GFP translocates to the plasma membrane in response to phorbol ester treatment of myoblast cultures in situ. nPKC straight theta-GFP was found to be completely extracted into the detergent-soluble fraction of cell lysates and was stably expressed throughout the extent of differentiation into myotubes. No difference was seen in the ability of myoblasts either overexpressing nPKC straight theta - GFP or GFP alone to form myotubes. These studies demonstrate that overexpression of nPKC straight theta does not interfere with fusion of myoblasts into myotubes suggesting that nPKC straight theta activity is not inhibitory for myogenesis. These studies also demonstrate a method for transfecting myoblasts and identifying differentiated cells that overexpress nPKC straight theta-GFP for investigating the function of nPKC straight theta in living myotubes.  相似文献   

16.
The relationship between attachment of mRNA to the cytoskeletal framework and its translation was examined using the mRNA for a polypeptide of 40 kDa (P-40) which is translated in rat L6 myoblasts but not in the myotubes. In both myoblasts and myotubes this mRNA was found to be associated with the cytoskeletal framework. Furthermore, the stability of the association between P-40 mRNA and the cytoskeletal framework in absence of RNA and protein synthesis was examined by using actinomycin D and NaF to block RNA and protein synthesis, respectively. In absence of RNA synthesis portions of both nontranslated P-40 mRNA and translated actin mRNA of myotubes were released into the soluble fraction. In myoblasts, however, both mRNAs remained associated with the cytoskeletal framework following inhibition of RNA synthesis. Inhibition of protein synthesis, on the other hand, had a more dramatic effect on the association between the cytoskeletal framework and P-40 mRNA in myoblasts but not in myotubes. In contrast, the association between actin mRNA and cytoskeletal framework was unaffected by inhibition of protein synthesis in both myoblasts and myotubes. The results of these studies show that the molecular nature of association between cytoskeletal framework and mRNA may differ among mRNAs and may also depend on whether the cells are dividing or are terminally differentiated. Furthermore, no direct relationship between the translation of mRNA and its attachment to the cytoskeletal framework was observed.  相似文献   

17.
L6 myoblasts accumulate large stores of neutral lipid (predominantly triacylglycerol) when cultured in fatty acid-supplemented growth medium. No accumulation of neutral lipid was evident in myotubes (differentiated myoblasts) when treated similarly. Triacylglycerol accumulation was rapid and dependent on exogenous fatty acid concentration. Triacylglycerol content in myoblasts cultured in fatty acid-supplemented growth medium was approx. 3-fold higher than that in myotubes treated similarly and 2-3-fold higher than that in myoblasts cultured in normal growth medium. Incorporation studies using [I-14C]oleic acid showed that myoblasts and myotubes take up exogenous fatty acid at similar rates. However, cells cultured in fatty acid-supplemented growth medium remove more exogenous fatty acid than do cells cultured in normal growth medium. Over 90% of the incorporated label was found in phospholipid and triacylglycerol fractions in all situations studied. Myoblasts incorporated a more significant proportion (P less than 0.001) of label into triacylglycerol compared with that of myotubes. No differences in fatty acid oxidation rates were detected when differentiating L6 cells cultured in normal growth medium were compared with those cultured in fatty acid-supplemented growth medium. However, fatty acid oxidation rates were observed to increase 3-5-fold upon myoblast differentiation. We conclude that there is a marked change in the pattern of lipid metabolism when myoblasts (primarily triacylglycerol-synthesizing cells) differentiate into myotubes (primarily phospholipid-synthesizing cells). Understanding these changes, which coincide with normal muscle development, may be important, since a defect in this natural switch could explain the observed accumulation of lipid in muscle characteristic of some of the muscular dystrophies and other lipid-storage myopathies.  相似文献   

18.
Retroviral vectors were used to transfer genes efficiently into rat and dog myoblasts in primary cultures under conditions which permitted the transduced myoblasts to differentiate into myotubes expressing the transferred genes. The transduced myotubes expressed normal markers of differentiation and were morphologically indistinguishable from uninfected myotubes. Retroviral vector-mediated gene transfer was also used to correct a genetic enzyme deficiency in mutant canine muscle cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号