首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Ca2+-sensitive electrode was used to study net Ca2+-flux changes induced by the administration of phenylephrine, vasopressin and angiotensin to the perfused rat liver. The studies reveal that, although the Ca2+ responses induced by vasopressin and angiotensin are similar, they are quite different from the Ca2+ fluxes induced by phenylephrine. The administration of phenylephrine is accompanied by a stimulation of a net amount of Ca2+ efflux (140 nmol/g of liver). A re-uptake of a similar amount of Ca2+ occurs only after the hormone is removed. In contrast, the administration of vasopressin or angiotensin to livers perfused with 1.3 mM-Ca2+ induces the release of a relatively small amount of Ca2+ (approx. 40 nmol/g of liver) during the first 60 s. This is followed by a much larger amount of Ca2+ uptake (70-140 nmol/g of liver) after 1-2.5 min of hormone administration, and a slow efflux or loss of a similar amount of Ca2+ over a period of 6-8 min. At lower concentrations of perfusate Ca2+ (less than 600 microM) these hormones induce only a net efflux of the ion. These results suggest that at physiological concentrations of extracellular Ca2+ the mechanism by which alpha-adrenergic agonists mobilize cellular Ca2+ is different from that involving vasopressin and angiotensin. It seems that the hormones may have quite diverse effects on Ca2+ transport across the plasma membrane and perhaps organellar membranes in liver.  相似文献   

2.
A perfused liver system incorporating a Ca2+-sensitive electrode was used to study the long-term effects of glucagon and cyclic AMP on the mobilization of Ca2+ induced by phenylephrine, vasopressin and angiotensin. At 1.3 mM extracellular Ca2+ the co-administration of glucagon (10 nM) or cyclic AMP (0.2 mM) and a Ca2+-mobilizing hormone led to a synergistic potentiation of Ca2+ uptake by the liver, to a degree which was dependent on the order of hormone administration. A maximum net amount of Ca2+ influx, corresponding to approx. 3800 nmol/g of liver (the maximum rate of influx was 400 nmol/min per g of liver), was induced when cyclic AMP or glucagon was administered about 4 min before vasopressin and angiotensin. These changes are over an order of magnitude greater than those induced by Ca2+-mobilizing hormones alone [Altin & Bygrave (1985) Biochem. J. 232, 911-917]. For a maximal response the influx of Ca2+ was transient and was essentially complete after about 20 min. Removal of the hormones was followed by a gradual efflux of Ca2+ from the liver over a period of 30-50 min; thereafter, a similar response could be obtained by a second administration of hormones. Dose-response measurements indicate that the potentiation of Ca2+ influx by glucagon occurs even at low (physiological) concentrations of the hormone. By comparison with phenylephrine, the stimulation of Ca2+ influx by vasopressin and angiotensin is more sensitive to low concentrations of glucagon and cyclic AMP, and can be correlated with a 20-50-fold increase in the calcium content of mitochondria. The reversible uptake of such large quantities of Ca2+ implicates the mitochondria in long-term cellular Ca2+ regulation.  相似文献   

3.
Mobilization of hepatic calcium pools by platelet activating factor   总被引:2,自引:0,他引:2  
In the perfused rat liver, platelet activating factor, 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC), infusion produces an extensive but transient glycogenolytic response which at low AGEPC concentrations (i.e., 10(-11) M) is markedly dependent upon the perfusate calcium levels. The role of calcium in the glycogenolytic response of the liver to AGEPC was investigated by assessing the effect of AGEPC on various calcium pools in the intact liver. Livers from fed rats were equilibrated with 45Ca2+, and the kinetics of 45Ca2+ efflux were determined in control, AGEPC-stimulated, and phenylephrine-stimulated livers during steady-state washout of 45Ca2+. AGEPC treatment had only a slight if any effect on the pattern of steady-state calcium efflux from the liver, as opposed to major perturbations in the pattern of calcium efflux effected by the alpha-adrenergic agonist phenylephrine. Infusion of short pulses of AGEPC during the washout of 45Ca2+ from labeled livers caused a transient release of 45Ca2+ which was not abolished at low calcium concentrations in the perfusate. Moreover, there occurred no appreciable increase in the total calcium content in the liver perfusate at either high or low concentrations of calcium in the perfusion fluid. Infusion of latex beads, which are removed by the reticuloendothelial cells, caused the release of hepatic 45Ca2+ in a fashion similar to the case with AGEPC. Our findings indicate that AGEPC does not perturb a major pool of calcium within the liver as occurs upon alpha-adrenergic stimulation; it is likely that AGEPC mobilizes calcium from a smaller yet very important pool, very possibly from nonparenchymal cells in the liver.  相似文献   

4.
Co-administration of glucagon and vasopressin to rat liver perfused with buffer containing 1.3 mM-Ca2+ induces a 4-fold increase in Pi in the subsequently isolated mitochondria (from approx. 9 to approx. 40 nmol/mg of mitochondrial protein). This increase is not attributable to PPi hydrolysis, and is not observed if the perfusate Ca2+ is lowered from 1.3 mM to 50 microM. The increase in mitochondrial Pi closely parallels that of mitochondrial Ca2+; when the increase in Pi and Ca2+ accumulation is maximal, the molar ratio is close to that in Ca3(PO4)2. Measurement of changes in the perfusate Pi revealed that, whereas administration of glucagon or vasopressin alone brought about a rapid decline in perfusate Pi, the largest decrease (reflecting net retention of Pi by the liver) was observed when the hormone was co-administered in the presence of 1.3 mM-Ca2+. The synergistic action of glucagon plus vasopressin was nullified by lowering the perfusate Ca2+ to 50 microM. The data provide evidence that, whereas glucagon may be able to alter Pi fluxes directly in intact liver, any alterations induced by vasopressin are indirect and result only from its action of mobilizing Ca2+.  相似文献   

5.
The relation between Ca2+ efflux, Ca2+ mobilization from mitochondria and glycogenolysis was studied in perfused euthyroid and hypothyroid rat livers stimulated by Ca2+-mobilizing hormones. Ca2+ efflux, induced by noradrenaline (1 microM) in the absence or presence of DL-propranolol (10 microM) from livers perfused with medium containing a low concentration of Ca2+ (approx. 24 microM), was decreased by more than 50% in hypothyroidism. This correlated with an equal decrease of the fractional mobilization of mitochondrial Ca2+, which could account for 65% of the difference between the net amounts of Ca2+ expelled from the euthyroid and hypothyroid livers. With vasopressin (10 nM) similar results were found, suggesting that hypothyroidism has a general effect on mobilization of internal Ca2+. In normal Ca2+ medium (1300 microM), however, the effect of vasopressin on net Ca2+ fluxes and phosphorylase activation was not impaired in hypothyroidism, indicating that Ca2+ mobilization from the mitochondria in this case plays a minor role in phosphorylase activation. The alpha 1-adrenergic responses of Ca2+ efflux, phosphorylase activation and glucose output, glucose-6-phosphatase activity and oxygen consumption in hypothyroid rat liver were completely restored by in vivo T3 injections (0.5 micrograms per 100 g body weight, daily during 3 days). Perfusion with T3 (100 pM) during 19 min did not influence hypothyroid rat liver oxygen consumption and alpha 1-receptor-mediated Ca2+ efflux. However, this in vitro T3 treatment showed a completely recovered alpha 1-adrenergic response of phosphorylase and a partly restored glucose-6-phosphatase activity and glucose output. The results indicate that thyroid hormones may control alpha 1-adrenergic stimulation of glycogenolysis by at least two mechanisms, i.e., a long-term action on Ca2+ mobilization, and a short-term action on separate stages of the glycogenolytic process.  相似文献   

6.
1-O-Alkyl-2-acetyl-sn-glyceryl 3-phosphorylcholine or acetylglyceryl ether phosphorylcholine (AGEPC) stimulated glycogenolysis in perfused livers from fed rats at concentrations as low as 10(-11) M. At the lower AGEPC concentrations, e.g. 2 X 10(-10) M, a single transient phase of enhanced hepatic glucose output was elicited upon infusion of this agonist. At higher concentrations, e.g. 2 X 10(-8) M, a sharp transient spike of glucose output was observed, followed by a stable elevated steady state rate of glucose output until the AGEPC infusion was terminated. Increased rates of lactate and acetoacetate output and a diminished hepatic oxygen consumption were characteristic of the response of the livers to AGEPC at 2 X 10(-10) M. Neither alpha- nor beta-adrenergic antagonists blocked the glycogenolytic response of AGEPC. Repeated infusion of AGEPC led to homologous desensitization of the response, but the response of the liver to the alpha-adrenergic agonist, phenylephrine, or to glucagon, subsequent to AGEPC stimulation, was unaffected. Increasing the period of perfusion between successive additions of AGEPC, from 7 to 30 min, resulted in an increased glycogenolytic response to this agonist. When the perfusate calcium concentration was reduced from 1.25 to 0.05 mM, the glycogenolytic response to AGEPC was markedly diminished; calcium efflux from the liver following stimulation with AGEPC was not observed. The data presented in this study illustrate a potent agonist effect of AGEPC on the glycogenolytic system in the rat liver.  相似文献   

7.
Phenylephrine (2.0 microM) induces an alpha 1-receptor-mediated net efflux of Ca2+ from livers of fed rats perfused with medium containing physiological concentrations (1.3 mM) of Ca2+. The onset of efflux (7.1 +/- 0.5 s; n = 16) immediately precedes a stimulation of mitochondrial respiration and glycogenolysis. Maximal rates of efflux are observed between 35 s and 45 s after alpha-agonist administration; thereafter the rate decreases, to be no longer detectable after 3 min. Within seconds of terminating phenylephrine infusion, a net transient uptake of Ca2+ by the liver is observed. Similar effects were observed with vasopressin (1 m-unit/ml) and angiotensin (6 nM). Reducing the perfusate [Ca2+] from 1.3 mM to 10 microM had little effect on alpha-agonist-induced Ca2+ efflux, but abolished the subsequent Ca2+ re-uptake, and hence led to a net loss of 80-120 nmol of Ca2+/g of liver from the tissue. The administration at 5 min intervals of short pulses (90 s) of phenylephrine under these conditions resulted in diminishing amounts of Ca2+ efflux being detected, and these could be correlated with decreased rates of alpha-agonist-induced mitochondrial respiration and glucose output. An examination of the Ca2+ pool mobilized by alpha-adrenergic agonists revealed that a loss of Ca2+ from mitochondria and from a fraction enriched in microsomes accounts for all the Ca2+ efflux detected. It is proposed that the alpha-adrenergic agonists, vasopressin and angiotensin mobilize Ca2+ from the same readily depleted intracellular pool consisting predominantly of mitochondria and the endoplasmic reticulum, and that the hormone-induced enhanced rate of mitochondrial respiration and glycogenolysis is directly dependent on this mobilization.  相似文献   

8.
The role of trans-sarcolemma membrane electron efflux in the alpha-adrenergic control of Ca2+ influx in perfused rat heart was examined. Electron efflux was measured by monitoring the rate of reduction of extracellular ferricyanide and compared with changes in contractility, as an indirect assessment of changes in cytoplasmic Ca2+ concentration. Methoxamine and phenylephrine each increased the rate of ferricyanide reduction from 80 to approx. 114 nmol/min per g wet wt. of heart, with half-maximal activation occurring at 10 microM for each agonist. Activation of the rate of ferricyanide reduction by both 10 microM methoxamine and 10 microM phenylephrine was blocked by the alpha-adrenergic antagonist, phenoxybenzamine, but not by the beta-antagonist, propranolol. Stimulation of the rate of ferricyanide reduction by the alpha-agonist coincided with the increase in contractility, each reaching maximum values at approx. 80 s. Removal of the alpha-agonists led to parallel decreases in contractility and the rate of reduction, each returning to pre-stimulation values in approx. 400 s. In addition, the relationship between Ca2+ and ferricyanide reduction was examined. Perfusion of the heart with medium containing 6 mM CaCl2 significantly increased contractility and the rate of ferricyanide reduction. Perfusion of the heart with low Ca2+ diminished contractility, did not affect the rate of ferricyanide reduction, but amplified the stimulatory effect of methoxamine on this rate. The increase in ferricyanide reduction by alpha-adrenergic agonists resulted from a change in the apparent Vmax, indicative of an increase in electron efflux sites in the plasma membrane. It is concluded that alpha-adrenergic control of electron efflux closely parallels changes in contractility and therefore changes in the cytoplasmic concentration of Ca2+. The data suggest that alpha-agonist-mediated changes in electron efflux may lead to Ca2+ influx.  相似文献   

9.
H Sies  P Graf    D Crane 《The Biochemical journal》1983,212(2):271-278
Vasopressin or alpha-adrenergic agents such as phenylephrine or adrenaline, but not glucagon, elicited an initial decrease in flux through pyruvate dehydrogenase assayed by 14CO2 production from [1-14C]pyruvate in perfused rat liver. This rapid decrease in 14CO2 production was maximal within 1-2 min of exposure, concomitant with a rise in effluent pyruvate concentration: a subsequent return towards initial values in both parameters was completed well before 5 min. This time course was superposed with Ca2+ efflux from perfused liver, maximal (at 116 nmol/min per g wet wt. of liver) at 1-2 min of exposure. The percentage of the active (dephospho) form of pyruvate dehydrogenase was not decreased at 2 min of exposure. The effect on flux through pyruvate dehydrogenase by phenylephrine was abolished by prazosine, phentolamine or phenoxybenzamine. Ionophore A23187 also caused a depression in 14CO2 production from [1-14C]pyruvate and a rise in effluent pyruvate concentration, but this effect was stable for longer times, and it was delayed when Ca2+ was omitted from the perfusion medium. Responses of phenylephrine and A23187 were not additive. The results demonstrate that under the experimental conditions employed in intact perfused liver, the mitochondrial multienzyme system of pyruvate dehydrogenase is sensitive to vasopressin, alpha-adrenergic agents and A23187. The similar time course in Ca2+ efflux may be indicative of the involvement of Ca2+ in mediating this effect.  相似文献   

10.
The Ca2+-mobilizing actions of ADP, ATP and epidermal growth factor (EGF) and their interaction with glucagon were studied in a perfused liver system incorporating a Ca2+-selective electrode. ADP (1-100 microM), ATP (1-100 microM) and EGF (10-50 nM) all induced a net efflux, followed by a net uptake of Ca2+ in the intact liver. The co-administration of glucagon (or of cyclic AMP) with these agents resulted in a synergistic potentiation of the Ca2+ uptake response in a way which resembles the synergism observed when glucagon is administered with phenylephrine, vasopressin or angiotensin [Altin & Bygrave (1986) Biochem J. 238, 653-661]. The inability of diltiazem, verapamil and nifedipine to inhibit the Ca2+-influx response suggests that the stimulation of Ca2+ influx does not occur through voltage-sensitive Ca2+ channels. By contrast, the synergistic effects of glucagon in the stimulation of Ca2+ influx are inhibited by 10 mM-neomycin, and a lowering of the extracellular pH to 6.8. Simultaneous measurements of perfusate Ca2+ and pH changes suggest that the Ca2+ influx response is not mediated by a Ca2+/H+ exchange. The inability of neomycin and low extracellular pH to inhibit the refilling of the hormone-sensitive pool of Ca2+, after the administration of Ca2+-mobilizing agents alone, provides evidence for the existence in liver of at least two Ca2+-influx pathways, or mechanisms for regulating Ca2+ influx.  相似文献   

11.
The administration of phosphatidic acid to rat livers perfused with media containing either 1.3 mM- or 10 microM-Ca2+ was followed by a stimulation of Ca2+ efflux, O2 uptake and glucose output. The responses elicited by 100 microM-phosphatidic acid were similar to those induced by the alpha-adrenergic agonist phenylephrine. Contrary to suggestions that phosphatidic acid acts like a Ca2+-ionophore, no net influx of Ca2+ was detected until the phosphatidic acid was removed. Sequential infusions of phenylephrine and phosphatidic acid indicate that the two agents release Ca2+ from the same intracellular source. The co-administration of glucagon (or cyclic AMP) and phosphatidic acid, and also of glucagon and arachidonic acid, led to a synergistic stimulation of Ca2+ uptake of the liver, a feature similar to that observed after the co-administration of glucagon and other Ca2+-mobilizing hormones [Altin & Bygrave (1986) Biochem. J. 238, 653-661]. A notable difference, however, is that the synergistic stimulation of Ca2+ uptake induced by the co-administration of glucagon and arachidonic acid was inhibited by indomethacin, whereas that induced by glucagon and phosphatidic acid, or glucagon and other Ca2+-mobilizing agents, was not. The results suggest that the synergistic action of glucagon and arachidonic acid in stimulating Ca2+ influx is mediated by prostanoids, but that of glucagon and phosphatidic acid is evoked by a mechanism similar to that of Ca2+-mobilizing agents.  相似文献   

12.
The beta-adrenergic agonist isoproterenol inhibited the glycogenolytic response of platelet-activating factor (AGEPC, 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine) in perfused livers derived from fed rats. AGEPC-stimulated hepatic vasoconstriction, measured by increases in portal vein pressure, also was inhibited by prior isoproterenol infusion. Isoproterenol-mediated inhibition of these hepatic responses to AGEPC was not apparent when isoproterenol (10 microM) was coinfused with the beta-receptor antagonist propranolol (75 microM) or when isoproterenol was replaced with the alpha-adrenergic agonist phenylephrine (10 microM). alpha-Agonist-induced glycogenolysis and vasoconstriction in the perfused liver was unaffected by isoproterenol infusion. Glucagon (2.3 nM) had no effect on the glycogenolytic or vasoconstrictive responses of the liver to AGEPC despite the fact that glucagon increased hepatic cAMP levels to a far greater extent than isoproterenol. Additionally, inhibition of the hepatic responses to AGEPC by isoproterenol occurred in perfused livers from mature rats (i.e. greater than 300 g) in which liver parenchymal cells lack functional beta-adrenergic receptors. The data presented in this study illustrate a specific inhibition of AGEPC-induced hepatic glycogenolysis and vasoconstriction by beta-adrenergic stimulation of the perfused liver. This inhibition appears to be mediated by interaction of isoproterenol with nonparenchymal cells within the liver. These findings are consistent with the concept that AGEPC stimulates hepatic glycogenolysis by an indirect mechanism involving hepatic vasoconstriction.  相似文献   

13.
The characteristics and kinetics of calcium uptake activity were studied in isolated hepatic microsomes. The sustained accumulation of calcium was ATP- and oxalate-dependent. Glucagon increased microsomal Ca2+ uptake upon either in vivo injection, or in vitro perfusion of the hormone in the liver. In contrast, the effect of insulin depended on the route of administration. Calcium accumulation by subsequently isolated hepatic microsomes increased when insulin was injected intraperitoneally whereas it decreased when the hormone was perfused directly into the liver. These effects of glucagon and insulin were dose dependent. When insulin was added to the perfusate prior to the addition of glucagon, insulin blocked the glucagon-stimulated increase in microsomal Ca2+ uptake. Cyclic AMP mimicked the effect of glucagon on microsomal Ca2+ accumulation when the cyclic nucleotide was perfused into the liver. The effects of glucagon and insulin on the kinetics of hepatic microsomal Ca2+ uptake were investigated. In microsomes isolated from perfused rat livers treated with glucagon the V of the uptake was significantly increased over the control values (12.2 vs. 8.6 nmol Ca2+ per min per mg protein, P less than 0.02). In contrast, the addition of insulin to the perfusate significantly decreased the V of Ca2+ uptake by subsequently isolated microsomes (6.8 vs. 8.3 nmol Ca2+ per min per mg protein, P less than 0.05). However, neither hormone had an effect on the apparent Km for Ca2+ (4.1 +/- 0.5 microM) of the reaction. The effect of these hormones on the activity of Ca2+-stimulated ATPase was also studied. No significant changes in either V or Km for Ca2+ of the enzymatic reaction were detected.  相似文献   

14.
Rapid uptake and efflux of 45Ca2+ and [3H]choline at the maternal and fetal interfaces of the syncytiotrophoblast in the dually-perfused human placenta was investigated by application of the single circulation paired-tracer dilution method (Yudilevich, Eaton, Short & Leichtweiss 1979). Cotyledons were perfused with Krebs-bicarbonate containing dextran (30 g/l; MW = 60-70,000) at 20 and 6 ml/min on maternal and fetal sides, respectively. The paired-tracer (test substrate and extracellular marker) technique consisted of an intra-arterial injection of a tracer bolus, followed by venous sampling over 5-6 min. There was a rapid (sec) uptake of 45Ca2+, followed by backflux (efflux into the ipsilateral circulation) which, over 5-6 min, was 59-100% on the fetal side. It was more variable but generally lower on the maternal interface. At 0.1 mM calcium, 45Ca2+ maximal uptake (Umax) was about 53% on the fetal side but on the maternal side it was variable and averaged 17%. At 2.4 mM calcium fetal side Umax was reduced to 40%. However, on the maternal side the effect was not consistent. Unidirectional influx (nmol/min per g) appeared to be not different on the two sides of the placenta. For [3H]choline (in choline-free perfusates) Umax was about 50% and 30% on fetal and maternal sides, respectively; tracer backflux was variable on the maternal side and averaged 50% on the fetal side. [3H]Choline uptake was highly inhibited by either 1.0 mM choline or the specific competitive inhibitor, hemicholinium-3 (0.1 mM). Specific transplacental transfer of 45Ca2+ (i.e. in excess of the extracellular marker) was not significant in either direction. For [3H]choline there was an apparent small excess (about 4%) preferential towards the fetal circulation. These findings in the human placenta are similar to those demonstrated previously in the guinea-pig placenta which suggested the existence of specific transport systems for choline and calcium on both sides of the syncytiotrophoblast.  相似文献   

15.
Infusion of adenine nucleotides and adenosine into perfused rat livers resulted in stimulation of hepatic glycogenolysis, transient increases in the effluent perfusate [3-hydroxybutyrate]/[acetoacetate] ratio, and increased portal vein pressure. In livers perfused with buffer containing 50 microM-Ca2+, transient efflux of Ca2+ was seen on stimulation of the liver with adenine nucleotides or adenosine. ADP was the most potent of the nucleotides, stimulating glucose output at concentrations as low as 0.15 microM, with half-maximal stimulation at approx. 1 microM, and ATP was slightly less potent, half-maximal stimulation requiring 4 microM-ATP. AMP and adenosine were much less effective, doses giving half-maximal stimulation being 40 and 20 microM respectively. Non-hydrolysed ATP analogues were much less effective than ATP in promoting changes in hepatic metabolism. ITP, GTP and GDP caused similar changes in hepatic metabolism to ATP, but were 10-20 times less potent than ATP. In livers perfused at low (7 microM) Ca2+, infusion of phenylephrine before ATP desensitized hepatic responses to ATP. Repeated infusions of ATP in such low-Ca2+-perfused livers caused homologous desensitization of ATP responses, and also desensitized subsequent Ca2+-dependent responses to phenylephrine. A short infusion of Ca2+ (1.25 mM) after phenylephrine infusion restored subsequent responses to ATP, indicating that, during perfusion with buffer containing 7 microM-Ca2+, ATP and phenylephrine deplete the same pool of intracellular Ca2+, which can be rapidly replenished in the presence of extracellular Ca2+. Measurement of cyclic AMP in freeze-clamped liver tissue demonstrated that adenosine (150 microM) significantly increased hepatic cyclic AMP, whereas ATP (15 microM) was without effect. It is concluded that ATP and ADP stimulate hepatic glycogenolysis via P2-purinergic receptors, through a Ca2+-dependent mechanism similar to that in alpha-adrenergic stimulation of hepatic tissue. However, adenosine stimulates glycogenolysis via P1-purinoreceptors and/or uptake into the cell, at least partially through a mechanism involving increase in cyclic AMP. Further, the hepatic response to adenine nucleotides may be significant in regulating hepatic glucose output in physiological and pathophysiological states.  相似文献   

16.
We have developed a model for characterizing calcium handling by the intact cardiac sarcoplasmic reticulum (SR) that yields data consistent with both mathematical simulations of in situ SR Ca2+ uptake and deduced behavior of the Ca2(+)-induced Ca2+ efflux channels in mechanically skinned single cardiac cells. In Na(+)-based media (37 degrees C, pH 7.2, 50 mM Pi, 10 mM MgATP, pMg 3.3, 10 mM phosphocreatine), SR 45Ca2+ uptake by digitonin-lysed rat myocytes as a function of free [Ca2+] peaked at pCa 6.2, declined until pCa 5.6 and increased again at lower pCa. When Ca2(+)-induced Ca2+ efflux was inhibited with 30 microM ruthenium red and 10 mM procaine, uptake was saturable with a Vmax of 160 +/- 5 nmol.min-1.mg-1, K0.5 of 500 nM free [Ca2+] and slope factor of 1.6. In K(+)-based media, maximum Pi- and oxalate-supported uptake increased to 220 and 260 nmol.min-1.mg-1, respectively. Without phosphocreatine, 45Ca2+ uptake declined under all conditions; this was correlated with a decrease in ATP/ADP. Vmax for 45Ca2+ uptake was increased 20% in hyperthyroid myocytes but depressed 30% in myocytes from heart failure-prone rats. In canine myocytes, Vmax was the same as in normal rat cells, but K0.5 was 830 nM. Without efflux inhibitors, ryanodine caused a concentration-dependent decline in net Pi-supported 45Ca2+ uptake at pCa 6.3 (K0.5 = 1 microM), while 10 microM ryanodine depressed uptake at all pCa between 7.2 and 5.6. Ruthenium red/procaine fully reversed this effect.  相似文献   

17.
In the absence of any exogenous substrates, glucagon (1 X 10(-9) M) stimulated 45Ca2+ efflux from perfused livers derived from fed rats but not in livers of 24-h-fasted animals. In livers of 24-h-fasted animals perfused under conditions which would decrease cellular NAD(P)H/NAD(P)+ ratio (pyruvate (2.0 mM) or acetoacetate (10.0 mM], glucagon (1 X 10(-9) M) did not stimulate 45Ca2+ efflux. Similarly, in livers of 24-h-fasted animals perfused with substrates which increase cellular NAD(P)H content (lactate (2.0 mM) or beta-hydroxybutyrate (10.0 mM], glucagon (1 X 10(-9) M) did not increase 45Ca2+ efflux. Glucagon (1 X 10(-9) M) elicited an increase in 45Ca2+ efflux from livers of 24-h-fasted animals, only when the livers were perfused with [lactate]/[pyruvate] and [beta-hydroxybutyrate]/[acetoacetate] ratios similar to those reported for livers of fed rats. Stimulation of 45Ca2+ efflux elicited by either 8-CPT-cAMP, a cAMP analog, or high glucagon concentrations (1 X 10(-8) M) was not affected whether livers were perfused with pyruvate (2.0 mM) or lactate (2.0 mM). Administration of isobutylmethylxanthine (50 microM) alone, or glucagon (1 X 10(-9) M) in the presence of isobutylmethylxanthine (50 microM) stimulated 45Ca2+ efflux from livers of 24-h-fasted animals perfused with pyruvate (2.0 mM) but not from livers perfused with lactate (2.0 mM). The ability of glucagon (1 X 10(-9) M) to elevate tissue cAMP levels was also regulated by the oxidation-reduction state of the livers. The data indicate that glucagon-stimulated 45Ca2+ efflux from perfused livers is mediated via cAMP and is dependent on the oxidation-reduction state of the livers.  相似文献   

18.
Peroxide-induced state 3 respiratory inhibition and Ca2+ efflux in isolated renal mitochondria exhibited a NADH-linked substrate dependence. ADP-stimulated respiratory rates in the presence of various concentrations of tert-butyl hydroperoxide (tBOOH, 0-1000 nmol/mg protein) were determined using glutamate, beta-hydroxybutyrate, or pyruvate as substrates. Pyruvate-driven respiration was most sensitive to inhibition (Ki approximately equal to 75 nmol of tBOOH/mg protein) followed by beta-hydroxybutyrate and glutamate (Ki approximately equal to 150 nmol of tBOOH/mg protein for each). Calcium (5-10 nmol/mg protein) potentiated tBOOH-induced respiratory inhibition using all three substrates. Mitochondrial Ca2+ efflux, induced by tBOOH, was most pronounced with pyruvate as substrate. Glutamate prevented Ca2+ efflux while the efflux rate with beta-hydroxybutyrate was intermediate between glutamate and pyruvate. The substrate-dependent pattern of tBOOH-induced NAD(P)H (NADH plus NADPH) and cytochrome b oxidation was similar to that seen for respiratory inhibition and Ca2+ efflux suggesting that NAD(P)H may be a common factor in both responses. Low tBOOH concentrations inhibited pyruvate dehydrogenase flux while higher concentrations enhanced pyruvate dehydrogenase flux and activation. The results are discussed in relation to currently proposed theories of reactive oxygen-induced respiratory inhibition, Ca2+ efflux, and reperfusion injury.  相似文献   

19.
Platelet-activating factor (1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC)) is a potent lipid mediator which stimulates hepatic glycogenolysis, causes hepatic vasoconstriction, and stimulates the production of cyclooxygenase-derived metabolites of arachidonic acid, primarily prostaglandin (PG) D2 in the perfused liver. Following infusion of platelet-activating factor (1 nM) in the perfused rat liver the production of PGD2, measured in the effluent perfusate, increased 4-fold after only 2 min. Infusion of the cyclooxygenase inhibitor, ibuprofen (50 microM), abolished the stimulated production of PGD2 and thromboxane B2 in response to AGEPC without significantly affecting the hepatic glycogenolytic or vasoconstrictive responses to AGEPC. Contrary to previous reports, these observations do not support the suggestion that cyclooxygenase-derived metabolites mediate directly either the glycogenolytic or the vasoactive effects of AGEPC in the perfused rat liver.  相似文献   

20.
In isolated perfused rat livers, infusion of phorbol 12-myristate 13-acetate (PMA) (150 nM) resulted in a 3-fold stimulation of the rate of glucose production. This response was maximal at a perfusate PMA concentration of 150 nM, and was significantly diminished at higher concentrations of PMA (e.g. 300 nM). Stimulation of glycogenolysis by PMA was greatly decreased in livers perfused with Ca2+-free medium. PMA infusion into livers perfused in the absence of Ca2+ did not result in Ca2+ efflux from the livers. Additionally, in hepatocytes isolated from livers of fed rats, neither PMA nor 1-oleoyl-2-acetyl-rac-glycerol stimulated the rate of glucose production. Although indomethacin has been demonstrated to block PMA-stimulated hepatic glycogenolysis [Garcia-Sainz & Hernandez-Sotomayor (1985) Biochem. Biophys. Res. Commun. 132, 204-209], infusion of PMA into perfused rat livers did not alter the rates of production of either prostaglandin E2 or 6-oxo-prostaglandin F1 alpha in the livers. These data, along with the observed increases in the perfusion pressure and decrease in O2 consumption in isolated perfused livers suggest that phorbol-ester-stimulated glycogenolysis is not a consequence of a direct effect of phorbol ester on liver parenchymal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号