首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
Empirical estimates of selection gradients caused by predators are common, yet no one has quantified how these estimates vary with predator ontogeny. We used logistic regression to investigate how selection on gastropod shell thickness changed with predator size. Only small and medium purple shore crabs (Hemigrapsus nudus) exerted a linear selection gradient for increased shell‐thickness within a single population of the intertidal snail (Littorina subrotundata). The shape of the fitness function for shell thickness was confirmed to be linear for small and medium crabs but was humped for large male crabs, suggesting no directional selection. A second experiment using two prey species to amplify shell thickness differences established that the selection differential on adult snails decreased linearly as crab size increased. We observed differences in size distribution and sex ratios among three natural shore crab populations that may cause spatial and temporal variation in predator‐mediated selection on local snail populations.  相似文献   

2.
Predators in nature include an array of prey types in their diet, and often select certain types over others. We examined (i) prey selection by sea stars (Asterias vulgaris) and rock crabs (Cancer irroratus) when offered two prey types, juvenile sea scallops (Placopecten magellanicus) and blue mussels (Mytilus edulis), and (ii) the effect of prey density on predation, prey selection, and component behaviours. We quantified predation rates, behavioural components (proportion of time spent searching for prey, encounter probabilities) and various prey characteristics (shell strength, energy content per prey, handling time per prey) to identify mechanisms underlying predation patterns and to assess the contribution of active and passive prey selection to observed selection of prey. Sea stars strongly selected mussels over scallops, resulting from both active and passive selection. Active selection was associated with the probability of attack upon encounter; it was higher on mussels than on scallops. The probability of capture upon attack, associated with passive selection, was higher for mussels than for scallops, since mussels can not swim to escape predators. Sea stars consumed few scallops when mussels were present, and so did not have a functional response on scallops (the target prey). Rock crabs exhibited prey switching: they selected mussels when scallop density was very low, did not select a certain prey type when scallop density was intermediate, and selected scallops when scallop density was high relative to mussel density. The interplay between encounter rate (associated with passive selection) and probability of consumption upon capture (associated with both active and passive selection) explained observed selection by crabs. Scallops were encountered by crabs relatively more often and/or mussels less often than expected from random movements of animals at all scallop densities. However, the probability of consumption varied with scallop density: it was lower for scallops than mussels at low and intermediate scallop densities, but tended to be higher for scallops than mussels at high scallop densities. When mussels were absent, crabs did not have a functional response on scallops, but rather were at the plateau of the response. When mussels were present with scallops at relatively low density, crabs exhibited a type II functional response on scallops. Our results have implications for the provision of protective refuges for species of interest (i.e., scallops) released onto the sea bed, such as in population enhancement operations and bottom aquaculture.  相似文献   

3.
Abstract. Blue crabs (Callinectes sapidus) prey on hooked mussels (Ischadium recurvum) growing epizoically on oyster clumps in estuaries along the Louisiana coast. In prey size‐selection experiments, blue crabs preferred small mussels (<30‐mm shell length) to larger mussels, possibly because handling time increased with mussel size. When crabs were given a choice of solitary mussels versus mussels in clumps on oysters in the laboratory, mortality was lower by 86% in clumped mussels. However, no size selection by crabs occurred with mussels in clumps, likely because smaller mussels escaped predation in crevices between larger mussels or oysters. When individuals of two size classes of mussels were exposed to water containing the scent of crabs and of mussels consumed by blue crabs, an increase in byssal thread production was induced in all mussels, but byssal thread production rate was higher for small mussels than for large mussels. We conclude that increased predation risk for small mussels has resulted in higher size‐specific production of byssal threads, and that predator‐induced production of byssal threads, which may increase clumping behavior, may reduce their risk of mortality to predatory blue crabs.  相似文献   

4.
The vulnerability of burrowing bivalves to shell-breaking predation by crabs was found to be influenced strongly by shell features: size, shell thickness, degree of inflation, and the presence or absence of a gape.The relationship between the critical size of a bivalve (maximum size of vulnerability) and crab size was determined for four different morphotypes of bivalves. For the three bivalves where a “size refuge” was present, critical size increased with crab size. Nevertheless, when offered a choice crabs preferred clams well below the critical size and ate them in the order predicted by the critical-size experiment.Examination of the mechanics of shell crushing revealed how these shell features decreased vulnerability. Larger crabs could efficiently handle larger clams because both chela strength and degree of chela gape increased with crab size. Strain gauges attached to crab chelae showed that thick-shelled clams resisted a greater total number of force pulses than did thin-shelled clams of the same body weight. This may be related to the ability of thick-shelled clams to withstand greater loads than thin-shelled clams when loaded only once. This suggests that the reason for the increased resistance to crabs is prolongation of the shell-breaking time. Even though a large thick-shelled, tightly-closing, clam could eventually be opened, it will probably be rejected in favour of prey with shorter handling times.  相似文献   

5.
Many octopus species consume their prey in a shelter, where discarded prey items accumulate to form a midden. The shelters of Octopus bimaculatus rarely have middens. Some discarded prey items are present at 20% of the shelters of O. bimaculatus, but these do not accumulate to form middens. A field experiment using artificial middens demonstrated that currents and/or surge moved some bivalve shells, and hermit crabs rapidly removed snail shells from the middens. Snails are very important in the diet of O. bimaculatus but not most other octopus species; middens do not form around O. bimaculatus shelters because hermit crabs remove the discarded snail shells.  相似文献   

6.
The intertidal snail Nucella lapillus generally has thicker shells at sites sheltered from wave action, where crabs are abundant and pose a high risk of predation, than at exposed sites where crabs are rare. We studied two populations showing the opposite trend. We reciprocally transplanted snails between field sites and measured shell length, width and lip thickness of those recaptured 12 months later. Snails transplanted to the sheltered site grew larger than sheltered-site residents, which in turn grew larger than transplants to the exposed site. Relative shell-lip thickness was greater in residents at the exposed site than at the sheltered site. Transplants from shelter to exposure developed relatively thicker shells than their controls and relatively thinner shells from exposure to shelter. Progeny of the two populations were reared for 12 months in a common garden experiment presenting effluent from crabs feeding on broken conspecifics as the treatment and fresh sea-water as the control. The crab-effluent treatment decreased foraging activity, concomitantly reducing cumulative somatic growth and reproductive output. Juveniles receiving crab-effluent grew slower in shell length while developing relatively thicker shell lips than controls, the level of response being similar between lineages. F2 progeny of the exposed-site lineage showed similar trends to the F1s; sheltered-site F2s were too few for statistical analysis. At sexual maturity, shell-lip thickness was greater in snails receiving crab-effluent than in controls, indicating plasticity, but was also greater in the exposed-site than in the sheltered-site lineage, indicating heritable variation, probably in degree of sexual thickening of the shell lip. Results corroborate hypotheses that ‘defensive’ shell thickening is a passive consequence of starvation and that heritable and plastic control of defensive shell morphology act synergistically. Shell thickening of juveniles was similar between lineages, contrary to hypotheses predicting differential strengths of plasticity in populations from low- or high-risk habitats.  相似文献   

7.
This study examined predation by the blue crab, Callinectes sapidus Rathbun, within intertidal Spartina alterniflora (Loisel) marshes of Dauphin Island, Alabama. Species and size preferences displayed by the predator when foraging within the marsh were investigated using nektonic, epifaunal, and infaunal prey populations including Fundulus similis Baird and Girard, Littorina irrorata Say, and Geukensia demissa Dillwyn.

Short-term field experiments involving the use of predator inclusion cages, in which the relative abundances of all prey species and the density of macrophyte vegetation were manipulated, indicated that mean mortality differed significantly among species. Blue crabs exhibited a distinct species preference for Littorina, and to a lesser extent, for Fundulus. However, the predator rarely choses infaunal individuals. Within predator inclusion cages, size selection by the crabs among three size classes of each prey was evident for Littorina and Fundulus but not for Geukensia. Blue crabs tended to select intermediate-sized snails and large fish while not exhibiting a size preference for infaunal bivalves.

In the marsh, mean percentage of the Littorina population within the 14–18 mm size class exhibited an increased mortality as compared to two other size classes, which was negatively correlated with increasing tidal height. Such a relationship may have been due to a decreasing gradient of crab predation associated with increasing tidal height. Geukensia size class distributions showed little evidence of differences along the tidal height gradient. No data are available for Fundulus, a mobile species which would not experience such differential predation along a marsh gradient.

In comparing crab predation patterns among prey species, it is apparent that Callinectes utilizes prey species differentially. Such differential utilization may be based on optimization of energy yield and minimization of energy expenditure. Thus, the preference of blue crabs for nektonic and epifaunal prey is hypothesized to be the result of a smaller energy expediture as a result of the crab's visual evaluation of these prey. Infaunal prey species (e.g., Geukensia) require a greater energy investment because of the necessity of excavating the prey item. Such prey also allow little selection by size because of being cryptic.  相似文献   


8.
Paul E. Bourdeau 《Oecologia》2010,162(4):987-994
Reliable cues that communicate current or future environmental conditions are a requirement for the evolution of adaptive phenotypic plasticity, yet we often do not know which cues are responsible for the induction of particular plastic phenotypes. I examined the single and combined effects of cues from damaged prey and predator cues on the induction of plastic shell defenses and somatic growth in the marine snail Nucella lamellosa. Snails were exposed to chemical risk cues from a factorial combination of damaged prey presented in isolation or consumed by predatory crabs (Cancer productus). Water-borne cues from damaged conspecific and heterospecific snails did not affect plastic shell defenses (shell mass, shell thickness and apertural teeth) or somatic growth in N. lamellosa. Cues released by feeding crabs, independent of prey cue, had significant effects on shell mass and somatic growth, but only crabs consuming conspecific snails induced the full suite of plastic shell defenses in N. lamellosa and induced the greatest response in all shell traits and somatic growth. Thus the relationship between risk cue and inducible morphological defense is dependent on which cues and which morphological traits are examined. Results indicate that cues from damaged conspecifics alone do not trigger a response, but, in combination with predator cues, act to signal predation risk and trigger inducible defenses in this species. This ability to “label” predators as dangerous may decrease predator avoidance costs and highlights the importance of the feeding habits of predators on the expression of inducible defenses.  相似文献   

9.
Crab shell-crushing predation and gastropod architectural defense   总被引:5,自引:0,他引:5  
The shell-breaking behavior of the crabs Ozius verreauxii Saussure 1853 and Eriphia squamata, Stimpson 1859 from the Bay of Panama is described. The master claws of both these crabs are well designed for breaking shells. Small shells, relative to the size of a crab predator, are crushed by progressively breaking off larger segments of a shell's apex, while larger shells are peeled by inserting a large dactyl molar into the aperture of a shell and progressively chipping away the lip of the shell.

Heavy gastropod shells are shown to be less vulnerable to crab predators than lighter shells, and narrow shell apertures and axial shell sculpture are demonstrated to be architectural features that deter crab predation. The incidence of architectural features which deter crab predation appears to be higher for smaller gastropod species than for larger gastropods which are too large for most crab predators. Large fish predators prey upon both gastropods and shell-crushing crabs. To avoid fish predators, both these prey groups seek refuge under rocks when covered by the tide. Fish predation thus appears to enforce a close sympatry between smaller gastropods and their crab predators.  相似文献   


10.
Metzeling  Leon  Miller  Jessica 《Hydrobiologia》2001,449(1-3):159-170
Experiments were designed to investigate selective predation by medium (40–55 mm carapace width: CW) and large (55–70 mm CW) Carcinus maenas when feeding on four bivalves of contrasting shell morphology. Size-selection was examined by presenting individual crabs with a wide size range of Mytilus edulis, Ostrea edulis, Crassostrea gigas and Cerastoderma edule. Medium-sized crabs preferred mussels 5–15 mm shell length (maximum shell dimension: SL) and cockles 5–10 mm SL, whereas large crabs preferred mussels 15–25 mm and cockles 10–20 mm SL. Crabs generally showed no preference for any particular size of either oyster species. Species-selection was examined by presenting individual crabs with paired combinations of the four bivalves in various proportions. When offered mussels and oysters simultaneously, both size categories of crabs consistently selected mussels, and food choice was independent of prey relative abundance. By contrast, C. maenas selected mussels and cockles as expected by the frequency in which each size category of crab encountered the preferred size ranges of prey. Crab preference clearly paralleled the rank order of prey profitability, which in turn was mainly determined by prey biomass, suggesting that active selection takes place at some point of the predation cycle. Experiments with epoxy resin models showed that initial reluctance of crabs to attack oysters was not associated with the ultimate energy reward. Moreover, they suggest that foraging decisions are partly based on evaluations of overall prey shape and volume, and that the minimum dimension of the shell constitutes an important feature which crabs recognise and associate with prey value.  相似文献   

11.
When first presented with live crab prey, naive cuttlefish typically approached from the front and were often pinched. In subsequent trials, this initial group rapidly improved their prey capture techniques and attacked from above or behind the crab. Naive cuttlefish that first watched experienced conspecifics prey on crabs captured crabs without getting pinched. However, naive cuttlefish that first watched non-attacking cuttlefish in the same tank with crabs also avoided pinches, as did naive cuttlefish that were exposed only to crab odor. All three experimental groups were as successful on their first predation as the initial group was on its second predation, but the attack techniques they used were not as well developed as those of the initial group on their fifth trial. Results suggest that odor may serve as a primer for cuttlefish predatory attack behavior, perhaps by enhancing food arousal and improving attention. Practice was required for further improvements in predation techniques. We found no evidence that cuttlefish improved their predation techniques by observing conspecifics.  相似文献   

12.
Molluscan predation by the three-spot swimming crab was investigated. The dentition of the heteromorphic chelae allowed crushing, shearing, cutting and holding of prey. Laboratory investigations indicated that small mussels and gastropods were crushed, the larger mussels were prized open, and the foot of the larger gastropods shredded and bits removed. Stomach contents of freshly captured crabs indicated that the crabs are selective carnivores and preferred prey species which are not most abundant in situ (crabs from Kings Beach, Donax serra Röding; crabs from Maitlands River Beach, Bullia rhodostoma Reeve). Ovalipes punctatus (De Haan) foraged on a variety of prey and had no upper prey size limit, but the crabs did show preferences for certain prey sizes. Data indicate that the swimming crabs can effectively utilize the entire mollusc populations on the beaches as prey items.  相似文献   

13.
Predators can strongly influence prey populations and the structure and function of ecosystems, but these effects can be modified by environmental stress. For example, fluid velocity and turbulence can alter the impact of predators by limiting their environmental range and altering their foraging ability. We investigated how hydrodynamics affected the foraging behavior of the green crab (Carcinus maenas), which is invading marine habitats throughout the world. High flow velocities are known to reduce green crab predation rates and our study sought to identify the mechanisms by which flow affects green crabs. We performed a series of experiments with green crabs to determine: 1) if their ability to find prey was altered by flow in the field, 2) how flow velocity influenced their foraging efficiency, and 3) how flow velocity affected their handling time of prey. In a field study, we caught significantly fewer crabs in baited traps at sites with fast versus slow flows even though crabs were more abundant in high flow areas. This finding suggests that higher velocity flows impair the ability of green crabs to locate prey. In laboratory flume assays, green crabs foraged less efficiently when flow velocity was increased. Moreover, green crabs required significantly more time to consume prey in high velocity flows. Our data indicate that flow can impose significant chemosensory and physical constraints on green crabs. Hence, hydrodynamics may strongly influence the role that green crabs and other predators play in rocky intertidal communities.  相似文献   

14.
Predator-prey relationships between the panopeid crab, Dyspanopeus sayi, and the mytilid, Musculista senhousia, were investigated. Through laboratory experiments, prey-handling behavior, prey size selection, predator foraging behavior and preferences for two types of prey (M. senhousia and the Manila clam Ruditapes philippinarum) were assessed. Handling time differed significantly with respect to the three prey sizes offered (small: 15.0-20.0 mm shell length, SL; medium: 20.1-25.0 mm SL; and large: 25.1-30.0 mm SL); mud crabs were more efficient in predating medium-small than large prey. Although differences in prey profitability were not evident, D. sayi exhibited a marked reluctance to feed on larger-sized prey whilst smaller, more easily predated mussels were available. Size selection may be the result of a mechanical process in which encountered prey are attacked but rejected if they remain unbroken after a certain number of opening attempts. D. sayi exhibited inverse density-dependent foraging. A significant higher mortality of prey was evident at low prey density. Thus, at low predator density, the D. sayi-M. senhousia interaction was a destabilizing type II functional response. Interference responses affected the magnitude of predation intensity by D. sayi on M. senhousia, since as the density of foraging crabs increased, their foraging success fell. At high density (4 crabs tank−1), crabs engaged in a high amount of agonistic activity when encountering a conspecific specimen, greatly diminished prey mortality. Finally, presenting two types of prey, Manila clam juveniles were poorly predated by mud crabs, which focused their predation mostly on M. senhousia. It is hypothesized that, when more accessible prey is available, mud crabs will have a minimal predatory impact on commercial R. philippinarum juvenile stocks.  相似文献   

15.
We investigated the effect of substrate (glass bottom, sand, granule, pebble) on predation of juvenile sea scallops (Placopecten magellanicus) by sea stars (Asterias vulgaris) and rock crabs (Cancer irroratus) at two prey sizes (11-15 mm and 24-28 mm shell height), and two prey densities (10 and 30 scallops per aquarium) in laboratory experiments. Specifically, we quantified predation rate and underlying behaviours (proportion of time a predator spent searching for and handling prey, encounter rate between predators and prey, and various outcomes of encounters). We detected a significant gradual effect of particle size of natural substrates on sea star predation: specifically, predation rate on and encounter rate with small scallops tended to decrease with increasing particle size (being highest for sand, intermediate for granule, and lowest for pebble). Substrate type did not significantly affect predation rates or behaviours of sea stars preying on large scallops or of rock crabs preying on either scallop size classes. Other factors, such as prey size and density, were important in the scallop-sea star and scallop-rock crab systems. For example, predation rate by sea stars and crabs and certain sea star behaviours (e.g. probability of consuming scallops upon capture) were significantly higher with small scallops than with large scallops. As well, in interactions between small scallops and sea stars, predation rate and encounter rate increased with prey density, and the proportion of time sea stars spent searching was higher at low prey density than high prey density. Thus, substrate type may be a minor factor determining predation risk of seeded scallops during enhancement operations; prey size and prey density may play a more important role. However, substrate type still needs to be considered when choosing a site for scallop enhancement, as it may affect other scallop behaviours (such as movement).  相似文献   

16.
Young juveniles of many motile benthic species are concentrated in structurally complex habitats, but the proximate causes of this distribution are usually not clear. In the present study, I assessed three potentially important processes affecting distribution and abundance of early benthic stages in the shore crab (Carcinus maenas): (1) selection of habitat by megalopae (postlarvae); (2) habitat-specific predation; and (3) post-settlement movements by juveniles. These processes were assessed concurrently over 3-9 days at two spatial scales: at the scale of square meters using cage techniques within nursery areas, and at the scale of hectares using isolated populations of juvenile shore crabs in small nursery areas as mesocosms. The results were compared to habitat-specific distribution in the field.Shore crab megalopae and first instar juveniles (settlers) were distributed non-randomly among micro-habitats in the assessed nursery areas, with great densities in both mussel beds, eelgrass and filamentous algal patches (on average 114-232 settlers m−2), and significantly smaller densities on open sand habitats at all times (on average 4 settlers m−2). The same habitat-specific settlement pattern was found in cages where predators were excluded, suggesting that active habitat selection at settlement was responsible for the initial distribution. Older juveniles (second to ninth instar crabs) were also sparse on sand, but in contrast to settlers, were concentrated in mussel beds, which showed significantly greater densities than eelgrass and algal habitats. The cage experiment demonstrated a dynamic distribution of juvenile crabs. Young juveniles constantly migrated over open sand habitats (20 m or further) and colonized the experimental plots in a habitat-specific pattern that reflected the distribution in the field. This pattern was also found for very small crabs colonizing predator-exclusion cages, suggesting that selection of habitat by migrating juveniles caused the ontogenetic change in habitat use. Although post-settlement movements were great within nursery areas, juvenile dispersal at a regional scale appeared to be small, and the recruitment of juvenile shore crabs to the shallow bays occurred mainly through pelagic megalopae.Conservative estimates at the scale of whole nursery areas, based on migration trap data and field samples, indicated great mortality of settlers and early benthic stages of shore crabs. Results from the cage experiment suggest that predation by crabs and shrimp were responsible for the high settlement mortality. Both enclosed cannibalistic juvenile crabs and local predators on uncaged habitat plots caused significant losses of settlers in all habitats (on average 22% and 64% 3 day−1, respectively). The effect of predators was highly variable between trials, but differed little between habitat types, and predation had no detectable proximate effect on juvenile distribution, despite the great losses. Small settlement densities on sand habitats in combination with a refuge at low prey numbers, and an aggregation of cannibalistic juvenile crabs in nursery habitats appear to decrease the effect of habitat-specific predation rates on the distribution of juvenile shore crabs. This study demonstrates that active habitat selection at settlement followed by a dynamic redistribution of young juveniles can be the proximate processes responsible for habitat-specific distribution of epibenthic juveniles, and indicate that predation represents a major evolutionary process reinforcing this behavior.  相似文献   

17.
We studied the predation rate and prey selection of the least weasel ( Mustela nivalis nivalis ) on its two most common prey species in boreal environments, the bank vole ( Clethrionomys glareolus ) and the field vole ( Microtus agrestis ), in large outdoor enclosures. We also studied the response of weasels to odours of the two species in the laboratory. The enclosure experiment was conducted using constant vole densities (16 voles/ha) but with varying relative abundance of the two species. Weasels showed higher predation rates on bank voles, and males had higher predation rate than females. Females killed disproportionately more of the more abundant prey species, but they preferred bank voles to field voles when both were equally available. Overall, the predation rate also increased with increasing abundance of bank voles. Therefore our results are in agreement with earlier laboratory results showing preference for bank voles, even if no intrinsic preference for odours of either species was observed in our laboratory study. We suggest that the least weasel hunts according to prey availability, prey aggregation and suitability of hunting habitat, and that this causes the observed dependence of least weasels on field voles and emphasises the role of the field vole in the vole-weasel interaction in cyclic vole populations. Furthermore, our results suggest that predation by weasels may facilitate the coexistence of the two vole species via predator switching, and that it may cause the observed synchrony in dynamics between vole species.  相似文献   

18.
Large invasive predators like the king crab, Paralithodes camtschaticus, deserve particular attention due to their potential for catastrophic ecological impact on recipient communities. Conspicuous, epibenthic prey species, such as the slow growing commercial scallop Chlamys islandica, are particularly exposed to the risk of local extinction. A research program integrating experiments and field monitoring is attempting to predict and track the impact of invasive king crab on scallop beds and associated fauna along the north Norwegian coast. The claw gape of the crab shows no limitations in handling the flat-bodied scallop. However, the potential impact of the crab on scallop may depend on the availability of other calcified prey associated with scallop beds, such as the sea star, sea urchin, and blue mussel, all species recorded in the diet of P. camtschaticus. To address this issue, a laboratory experiment on foraging behaviour of P. camtschaticus was conducted. The experimental results show that all size classes of red king crab prefer scallops, but small juveniles and medium sized crabs demonstrate active selection for starfish (Asterias rubens) that equals or surpasses the electivity of the large crab. The selection of sea urchin (Strongylocentrotus droebachiensis) and blue mussel (Mytilus edulis) is slightly positive or neutral for the three crab size classes. These results suggest that scallop beds with a rich associated fauna are less vulnerable to red king crabs predation and possibly more resilient than beds with few associated species. Also, crab size distribution is likely relevant for invasion impact, with increasing abundance of small and medium sized crabs being detrimental for alternative calcified prey associated with scallop beds. Successive stages of crab invasion will see an acceleration of scallop mortality rates associated with (i) decreasing availability of alternative prey, due to protracted predation pressure intensified by recruitment of juvenile crabs, and (ii) increased number of large crabs. Estimates of crab density and intake rates suggest that the accelerated loss rates will eventually endanger scallop beds persistence.  相似文献   

19.
Whereas many plasticity studies demonstrate the importance of inducible defences among prey, far fewer investigate the potential role of inducible offences among predators. Here we ask if natural differences in a snail's shell hardness can induce developmental changes to a predatory crab's claw size. To do this, we fed Littorina obtusata snails from either thick- or thin-shelled populations to captive European green crabs Carcinus maenas. The crabs' shell-breaking behaviour dominated among those fed thin-shelled snails, whereas crabs fed thick-shelled snails mostly winkled flesh through the shell opening without damaging the shell itself (a.k.a. aperture-probing behaviour). Significantly, the size of crab crusher claws grew in proportion to the frequency of shell-crushing behaviour and, for a same shell-crushing frequency, crabs fed thick-shelled snails grew larger crusher claws than those fed thin-shelled snails after two experimental moults. Diet and behaviour had no effect on the growth of the smaller cutter claws of same individuals, providing good evidence that allometric changes to crusher claws were indeed a result of differential use while feeding. Findings indicate that both predation habits and claw sizes are affected by green crabs' diet, supporting the hypothesis that prey-induced phenotypic plasticity contributes to earlier accounts of shell-claw covariance between this predator and its Littorina prey in the wild.  相似文献   

20.
Small predators in marine benthic communities create a hazardous environment for newly settled invertebrates, especially for the smallest individuals. To explore the effects of predation on a newly settled gastropod, queen conch (Strombus gigas Linnaeus), by a xanthid crab (Micropanope sp.), prey size, prey density, and habitat complexity were manipulated in five laboratory experiments. All crabs >3.1 mm CW killed all conch <2 mm SL when individual crabs (<14 mm carapace width (CW)) were offered individual conch that were 2–35 days old after metamorphosis (1.2–8.8 mm shell length (SL)). Only 10% of the crabs >5.0 mm CW, however, killed conch that were >5.0 mm SL, suggesting that conch may reach a size refuge from xanthid crabs at 5 mm SL. Furthermore, when given a choice, crabs (4.8 mm CW) preferred smaller conch (2.0 mm SL) to larger (3.7 mm SL), suggesting that 1 week of additional growth in shell length is advantageous to survivorship. Proportional mortality decreased as conch density increased when crabs were offered conch at seven different densities (two to 96 individuals). Crabs proved to be effective predators regardless of the amount of seagrass structure provided in a microcosm experiment, and could consume two conch in 10 s. The high densities of xanthid crabs that occur in the wild, their effectiveness as predators, and their large appetites point to the important role that small predators may potentially play in structuring the population dynamics of their small prey immediately after settlement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号