首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this work was to characterize an Arabidopsis C2H2 single zinc finger gene, named AtZFP11, that is similar to SUPERMAN (SUP) and RABBIT EARS (RBE). No altered phenotype was observed in mutants analyzed that were derived through TILLING nor a T-DNA insertion into the exon of AtZFP11. Plants derived by intercrossing AtZFP11 to SUP and RBE alleles did not display any phenotype that could be attributed to AtZFP11. Transgenic plants constitutively overexpressing the AtZFP11 protein displayed severe abnormalities. Phenotypically normal transgenic plants that contained an ecdysone-inducible promoter system fused to the AtZFP11 gene were recovered. These transgenic plants displayed similar abnormalities once induced with methoxyfenozide. Microarray and RT-PCR analysis of gene expression in plants overexpressing AtZFP11 after induction revealed changes in gene expression of a number of genes involved in auxin, jasmonic acid, and stress responses. These results suggest that AtZFP11 plays a role in regulation of gene expression and may be functionally redundant or that conditions needed to observe phenotypic differences in the mutant plants were not provided in the course of these experiments.  相似文献   

2.
锌指蛋白在调控植物生长发育和应对逆境过程中发挥着重要作用.为进一步研究锌指类蛋白参与植物非生物胁迫响应的分子机制,对水稻(Oryza sativa)中一个编码含有B-box锌指结构域蛋白的OsBBX25基因进行了功能分析.OsBBX25受盐、干旱和ABA诱导表达.异源表达OsBBX25的转基因拟南芥(Arabidopsis thaliana)与野生型相比对盐和干旱的耐受性增强,且盐胁迫条件下转基因植物中KIN1、RD29A和COR15的表达上调,干旱胁迫下KIN1、RD29A和RD22的表达上调.外源施加ABA时,转基因植物的萌发率与野生型之间没有明显差异.OsBBX25可能作为转录调控的辅助因子调节胁迫应答相关基因的表达,进而参与植物对非生物胁迫的响应.  相似文献   

3.
In plants, regulation of transgene expression is typically accomplished through the use of inducible promoter systems. The ecdysone receptor (EcR) gene switch is one of the best inducible systems available to regulate transgene expression in plants. However, the monopartite EcR gene switches developed to date require micromolar concentrations of ligand for activation. We tested several EcR mutants that were generated by changing one or two amino acid residues in the highly flexible ligand-binding domain of Choristoneura fumiferana EcR (CfEcR). Based on the transient expression assays, we selected a double mutant, V395I + Y415E (VY), of CfEcR (CfEcR(VY)) for further testing in stable transformation experiments. The CfEcR(VY) mutant only slightly improved the induction characteristics of the two-hybrid gene switch, whereas the CfEcR(VY) mutant significantly improved the induction characteristics of the monopartite gene switch (VGCfE(VY)). The ligand sensitivity of the VGCfE(VY) switch was improved by 125-15 625-fold in different transgenic lines analyzed, compared to the VGCfE(Wt) switch. The utility of the VGCfE(VY) switch was tested by regulating the expression of an Arabidopsis zinc finger protein gene (AtZFP11) in both tobacco and Arabidopsis plants. These data showed that the VGCfE(VY) switch efficiently regulated the expression of AtZFP11 and that the phenotype of AtZFP11 could be induced by the application of ligand. In addition, the affected plants recovered after withdrawal of the ligand, demonstrating the utility of this gene switch in regulating the expression of critical transgenes in plants.  相似文献   

4.
5.
A gene encoding a temperature-sensitive diphtheria toxin A chain (DTA) polypeptide was fused to the Arabidopsis thaliana tapetum-specific A9 promoter. Expression of the chimaeric gene in transgenic A. thaliana lines resulted in plants that were male-sterile, but female-fertile, when grown at 18 degrees C, and fully self fertile at 26 degrees C. No pollen grains were found on the anthers of transgenic plants grown at 18 degrees C, although aggregated pollen grains were found inside the anthers. Electron microscopy revealed discrete alterations in the tapetal cells of the male-sterile transgenic plants. The strength of the phenotype observed in segregants correlated with the level of expression of the gene and the copy number. The low frequency at which fully male-sterile plants were generated suggests that the temperature-sensitive DTA protein is disabled as a cytotoxin, relative to the wild-type protein activity.  相似文献   

6.
C2H2 zinc finger protein genes encode nucleic acid-binding proteins involved in the regulation of gene activity. AtZFP1 (Arabidopsis thaliana zinc finger protein 1) is one member of a small family of C2H2 zinc finger-encoding sequences previously characterized from Arabidopsis. The genomic sequence corresponding to the AtZFP1 cDNA has been determined. Molecular analysis demonstrates that AtZFP1 is a unique, intronless gene which encodes a 1100 nucleotides mRNA highly expressed in roots and stems. A construct in which 2.5 kb of AtZFP1 upstream sequences is linked to the -glucuronidase gene was introduced into Arabidopsis by Agrobacterium-mediated transformation of roots. Histochemical analysis of transgenic Arabidopsis carrying the AtZFP1 promotor:-glucuronidase fusion shows good correlation with RNA blot hybridization analysis. This transgenic line will be a useful tool for analyzing the regulation of AtZFP1 to further our understanding of its function.  相似文献   

7.
The CCCH type zinc finger proteins are a super family involved in many aspects of plant growth and development. In this study, we investigated the response of one CCCH type zinc finger protein AtZFP1 (At2g25900) to salt stress in Arabidopsis. The expression of AtZFP1 was upregulated by salt stress. Compared to transgenic strains, the germination rate, emerging rate of cotyledons and root length of wild plants were significantly lower under NaCl treatments, while the inhibitory effect was significantly severe in T-DNA insertion mutant strains. At germination stage, it was mainly osmotic stress when treated with NaCl. Relative to wild plants, overexpression strains maintained a higher K+, K+/Na+, chlorophyll and proline content, and lower Na+ and MDA content. Quantitative real-time PCR analysis revealed that the expression of stress related marker genes KIN1, RD29B and RD22 increased more significantly in transgenic strains by salt stress. Overexpression of AtZFP1 also enhanced oxidative and osmotic stress tolerance which was determined by measuring the expression of a set of antioxidant genes, osmotic stress genes and ion transport protein genes such as SOS1, AtP5CS1 and AtGSTU5. Overall, our results suggest that overexpression of AtZFP1 enhanced salt tolerance by maintaining ionic balance and limiting oxidative and osmotic stress.  相似文献   

8.
The use of artificial zinc finger chimeras to manipulate the expression of a gene of interest is a promising approach because zinc finger proteins can be engineered to bind any given DNA sequence in the genome. We have previously shown that a zinc finger chimera with a VP16 activation domain can activate a reporter gene in transgenic Arabidopsis thaliana (Sánchez, J.P., Ullman, C., Moore, M., Choo, Y. and Chua, N.H. (2002) Regulation of gene expression in Arabidopsis thaliana by artificial zinc finger chimeras. Plant Cell Physiol . 43 , 1465–1472). Here, we report the use of artificial zinc finger chimeras to specifically regulate the 4-coumarate:coenzyme-A ligase-1 ( At4CL1 ) gene in A. thaliana . At4CL1 is a key enzyme in lignin biosynthesis and the down-regulation of At4CL1 can lead to a decrease in lignin content, which has a significant commercial value for the paper industry. To this end, we designed zinc finger chimeras containing either an activation or a repression domain, which bind specifically to the At4CL1 promoter region. Transgenic lines expressing a zinc finger chimera with the VP16 activation domain showed an increase in At4CL1 expression and enzyme activity. In contrast, transgenic lines expressing a chimera with the KOX (KRAB) repression domain displayed repression of At4CL1 expression and enzyme activity. The activation of At4CL1 expression produced an increase in lignin content, and transgenic plant stems showed ectopic lignin distribution. Repression of the At4CL1 gene resulted in reduced lignin content, and lignin distribution in transgenic stems was severely diminished. Our results confirm and extend previous studies of gene regulation using various artificial zinc finger chimeras in animal and plant systems, and show that this system can be used to up- and down-regulate the expression of an endogenous plant gene such as At4CL1.  相似文献   

9.
Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of small grain cereal crops. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON). DON inhibits protein synthesis in eukaryotic cells and acts as a virulence factor during fungal pathogenesis, therefore resistance to DON is considered an important component of resistance against FHB. One mechanism of resistance to DON is conversion of DON to DON-3-O-glucoside (D3G). Previous studies showed that expression of the UDP-glucosyltransferase genes HvUGT13248 from barley and AtUGt73C5 (DOGT1) from Arabidopsis thaliana conferred DON resistance to yeast. Over-expression of AtUGt73C5 in Arabidopsis led to increased DON resistance of seedlings but also to dwarfing of transgenic plants due to the formation of brassinosteroid-glucosides. The objectives of this study were to develop transgenic Arabidopsis expressing HvUGT13248, to test for phenotypic changes in growth habit, and the response to DON. Transgenic lines that constitutively expressed the epitope-tagged HvUGT13248 protein exhibited increased resistance to DON in a seed germination assay and converted DON to D3G to a higher extent than the untransformed wild-type. By contrast to the over-expression of DOGT1 in Arabidopsis, which conjugated the brassinosteriod castasterone with a glucoside group resulting in a dwarf phenotype, expression of the barley HvUGT13248 gene did not lead to drastic morphological changes. Consistent with this observation, no castasterone-glucoside formation was detectable in yeast expressing the barley HvUGT13248 gene. This barley UGT is therefore a promising candidate for transgenic approaches aiming to increase DON and Fusarium resistance of crop plants without undesired collateral effects.  相似文献   

10.
Arabidopsis thaliana plants showed an increased tolerance to high-intensity light when pre-exposed to medium-intensity light. This response, known as light acclimatization, depended on the quantity of light, the period of irradiation, and the quality of light. Among characterized acclimatization-induced cDNA clones, we identified a zinc finger protein rhl41 (responsive to high light) gene, that was rapidly up-regulated in proportion to the time of irradiation and the light intensity. Transgenic Arabidopsis plants over-expressing the rhl41 gene showed an increased tolerance to high-intensity light, and also morphological changes of thicker and dark green leaves. Interestingly, the palisade parenchyma was highly developed in the leaves of the transgenic plants, which is one of the long-term acclimatization responses in Arabidopsis plants. The anthocyanin content (a light protectant) as well as the chlorophyll content also increased. Antisense transgenic plants exhibited decreased tolerance to high irradiation. We propose that the RHL41 zinc finger protein has a key role in the acclimatization response to changes in light intensity.  相似文献   

11.
12.
13.
14.
OsZFP1(水稻锌指蛋白1)基因编码的蛋白含有3个推测的Cys2/Cys2-型锌指结构域,它的表达受盐胁迫负调控.构建了以35S为启动子的OsZFP1基因的植物表达载体,并将其转入拟南芥(Arabidopsis thaliana L.)植物和水稻(Oryza sativa L.)愈伤组织中以过量表达OsZFP1基因.转基因的拟南芥植株和水稻愈伤组织对盐处理的敏感性都比野生型要高.这一结果表明OsZFP1基因可能编码一种负调控蛋白,它可能抑制某些盐诱导基因的表达.在ABA处理下,转基因拟南芥植株比野生型植株抽苔晚,说明OsZFP1基因的作用可能受ABA调节.  相似文献   

15.
16.
水稻受盐抑制基因OsZFP1的转基因分析   总被引:7,自引:0,他引:7  
OsZFP1(水稻锌指蛋白1)基因编码的蛋白含有3个推测的Cys2/Cys2-型锌指结构域,它的表达受盐胁迫负调控。构建了以35S为启动子的OsZFP1基因的植物表达载体,并将其转入拟南芥(ArabidopsisthalianaL.)植物和水稻(OryzasativaL.)愈伤组织中以过量表达OsZFP1基因。转基因的拟南芥植株和水稻愈伤组织对盐处理的敏感性都比野生型要高。这一结果表明OsZFP1基因可能编码一种负调控蛋白,它可能抑制某些盐诱导基因的表达。在ABA处理下,转基因拟南芥植株比野生型植株抽苔晚,说明OsZFP1基因的作用可能受ABA调节。  相似文献   

17.
Monitoring of transgenic plants in the field is important, but risk assessment has entailed laborious use of invisible marker genes. Here, we assessed three easily visible marker transgenes--green fluorescent protein (GFP), R, and Nicotiana tabacum homeobox (NTH) 15 genes--for their potential use as marker genes for monitoring genetically modified plants. Transgenic Arabidopsis thaliana plants for each of these genes were visibly distinguished from wild-type plants. We determined the germination rate, 3-week fresh weight, time to first flowering, and seed weight of the transgenic plants to evaluate whether the expression of these marker genes affected the growth of the host. Introduction of GFP gene had no effect on the evaluated parameters, and we then used the GFP gene as a marker to assess the outcrossing frequency between transgenic and two Arabidopsis species. Our results showed that the hybridization frequency between transgenic plants and Arabidopsis thaliana was 0.24%, and between transformants and Arabidopsis lyrata it was 2.6% under experimental condition. Out-crossing frequency was decreased by extending the distance between two kinds of plants. Thus, the GFP gene is a useful marker for assessing the whereabouts of transgenes/transformants in the field. We also demonstrated that the GFP gene is possibly applicable as a selection marker in the process of generation of transgenic plants.  相似文献   

18.
19.
Cryptochromes are blue light photoreceptors found in plants, bacteria, and animals. In Arabidopsis, cryptochrome 2 (cry2) is involved primarily in the control of flowering time and in photomorphogenesis under low-fluence light. No data on the function of cry2 are available in plants, apart from Arabidopsis (Arabidopsis thaliana). Expression of the tomato (Solanum lycopersicum) CRY2 gene was altered through a combination of transgenic overexpression and virus-induced gene silencing. Tomato CRY2 overexpressors show phenotypes similar to but distinct from their Arabidopsis counterparts (hypocotyl and internode shortening under both low- and high-fluence blue light), but also several novel ones, including a high-pigment phenotype, resulting in overproduction of anthocyanins and chlorophyll in leaves and of flavonoids and lycopene in fruits. The accumulation of lycopene in fruits is accompanied by the decreased expression of lycopene beta-cyclase genes. CRY2 overexpression causes an unexpected delay in flowering, observed under both short- and long-day conditions, and an increased outgrowth of axillary branches. Virus-induced gene silencing of CRY2 results in a reversion of leaf anthocyanin accumulation, of internode shortening, and of late flowering in CRY2-overexpressing plants, whereas in wild-type plants it causes a minor internode elongation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号