共查询到20条相似文献,搜索用时 0 毫秒
1.
Epinephrine (E) and phenylethanolamine N-methyltransferase (PNMT) are endogenous to the rat retina. The retinal enzyme shows substrate specificity and inhibitor sensitivity similar to the PNMT of brain. The E system in the retina may be part of a functional adrenergic system, because amine metabolism of dopamine-containing amacrine cells is inhibited by alpha 2 agonists and stimulated by alpha 2 antagonists. 相似文献
2.
R D Ciaranello H J Hoffman J G Shire J Axelrod 《The Journal of biological chemistry》1974,249(14):4528-4536
3.
W J Burke D M Hanson H D Chung 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1986,181(1):66-70
A rapid, highly sensitive assay for phenylethanolamine N-methyltransferase in brain using the natural substrate, norepinephrine, is described. The method is based on the selective adsorption and elution of the reaction product, epinephrine, from alumina. A small but important further lowering of blanks and increase in sensitivity is attained by removal of the radiolabeled substrate, [methyl-3H]-S-adenosylmethionine by precipitation as the reineckate prior to adsorption of norepinephrine to alumina. The assay has a sensitivity of 30 fmole and the PNMT activity could be measured in as little as 1 mg (wet wt) of human locus coeruleus tissue. The sensitivity is enhanced by homogenizing tissue in small volumes and removing potential inhibitors by dialysis. We report for the first time PNMT activity in specific regions of the human cerebral and cerebellar cortex. 相似文献
4.
In vivo, supraphysiological doses of glucocorticoids are required to restore adrenal medullary phenylethanolamine N-methyltransferase (PNMT, E.C. 2.1.1.28) activity after hypophysectomy. However, in vitro, phenylethanolamine N-methyltransferase gene expression appears normally glucocorticoid-responsive. To explore this paradox, rats were given dexamethasone or the type II-specific glucocorticoid RU28362 (1-1000 micrograms/day), and adrenal phenylethanolamine N-methyltransferase activity and mRNA levels were determined. At low doses (1-30 micrograms/day), neither steroid altered mRNA whereas at higher doses (100-1000 micrograms/day), mRNA rose 10- to 20-fold, with dexamethasone approximately 3 times as potent as RU28362. In contrast, enzyme activity fell with low doses of either steroid, consistent with suppression of ACTH and endogenous steroidogenesis. At higher doses of RU28362, enzyme activity remained low and unchanged despite increased mRNA expression, whereas higher doses of dexamethasone progressively restored the enzyme to normal. These findings suggest 1) that glucocorticoid regulation of phenylethanolamine N-methyltransferase activity occurs largely independent of gene expression; 2) that glucocorticoid effects on enzyme activity are primarily indirect, probably through cosubstrate regulation and/or enzyme stabilization; and 3) that these effects are not mediated via a classical (type II) glucocorticoid receptor mechanism, given the high doses of dexamethasone and corticosterone required and the inability of RU28362 to mimic the effects of these less selective steroids. 相似文献
5.
Effect of vasopressin on the induction of adrenal tyrosine hydroxylase and phenylethanolamine N-methyltransferase 总被引:1,自引:0,他引:1
We have assessed the effect of arginine vasopressin (AVP) on adrenal tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) activities. Both enzymes show marked increases after systemic administration of AVP in the range of 66 and 100 micrograms/day. To determine whether the pituitary gland plays a role in these inductions, the effect of AVP (66 micrograms per day, given divided into 3 doses for 4 days) on the adrenal enzymes was studied in hypophysectomized rats. These animals showed induction of TH but not PNMT. This indicates that a pituitary factor(s) mediates the increase in PNMT caused by AVP. Adrenal TH activity was measured after the injection of AVP (1 or 2 micrograms per rat) into the lateral ventricle: there was a statistically significant increase in TH. TH was not induced in the denervated adrenal gland of rats administered AVP systemically. These findings suggest that AVP may act centrally to induce the enzyme. The continuous s.c. infusion of AVP by osmotic minipump at the rate of 1 microgram/day for 6 days led to a striking increase in adrenal TH activity. However, PNMT did not increase significantly. It can be concluded that different mechanisms are involved in the induction of adrenal TH and PNMT caused by AVP. A neural mechanism is involved in TH induction, whereas PNMT induction requires release of a pituitary factor, presumably ACTH, but innervation of the adrenal is not needed for it. Moreover, the inductions of these two enzymes are differentially sensitive to the concentration of circulating AVP. 相似文献
6.
S Yoo-Hun I S Park H S Kim S O Huh S S Kim Y S Chun W Choi C W Park 《The International journal of biochemistry》1990,22(8):921-924
1. This gene completely lacks the intervening sequences. 2. This gene is truncated at the 5' end peptide encoding region by 433 base pairs (bp). 3. The 502 bp of this gene containing poly(A) signal are completely identical to the 3' half of mRNA encoding region of functional gene. 4. This gene has a poly(A) tail and is flanked by direct repeat of 6 bp. 5. Here we report for the first time the complete sequence of a human pseudogene for phenylethanolamine N-methyltransferase and this is the first report of cloning of pseudogene for catecholamine biosynthetic enzymes. 相似文献
7.
8.
Expression and development of phenylethanolamine N-methyltransferase (PNMT) in rat brain stem: studies with glucocorticoids 总被引:2,自引:0,他引:2
To study the differentiation of adrenergic (epinephrine-synthesizing) neurons in brain, the initial appearance and ontogeny of phenylethanolamine N-methyltransferase (PNMT), a specific marker of the adrenergic phenotype, were studied with immunocytochemistry and catalytic assay. The appearance of immunoreactivity to dopamine beta-hydroxylase (DBH-IR), an enzyme common to the noradrenergic and adrenergic phenotypes, was also studied. DBH-IR was initially observed on embryonic Day 13 (E13) in cells located on the ventrolateral floor and wall of the rhombencephalon. A day later (E14), PNMT-IR cells and PNMT catalytic activity were observed in the rhombencephalon suggesting that, as in the adrenal gland, noradrenergic expression precedes adrenergic expression. The PNMT-IR cells were presumed to be precursors of C1 neurons since they were located in the ventrolateral medulla oblongata. Cells located in the wall of the medulla which appeared to be migrating ventrally to the C1 group also contained PNMT-IR. On E15, cells which had PNMT-IR processes coursing through the germinal zone were observed dorsally near the fourth ventricle. Although the location of the C1 cell group was apparent when PNMT was initially expressed, the dorsal C2 and C3 adrenergic cell groups were not evident until late in gestation on E19. Even in the term embryo there appeared to be PNMT-IR cells which had not yet reached their final destination. On E14 and E15, PNMT-IR cells were also observed on the floor of the pons just rostral to the pontine flexure. However, these were not observed in older embryos, suggesting that transient expression of PNMT occurs in brain, as well as in the periphery. To determine whether glucocorticoids regulate brain PNMT, we examined the effects of altered glucocorticoid levels. In contrast to PNMT in the sympathetic nervous system, PNMT activity in medulla oblongata was not affected in neonates or adults by the decrease in glucocorticoids following adrenalectomy or hypophysectomy. Conversely, elevation of glucocorticoids by hormonal treatment did not alter PNMT in neonates. Notably, however, treatment of pregnant rats with dexamethasone on E18-E21, but not earlier, increased PNMT activity in the fetal brain stem. These observations suggest that PNMT expression and development is regulated by different factors in cells derived from neural crest and tube. PNMT is expressed earlier in brain than in adrenal and sympathetic ganglia. Further, the development of PNMT in the periphery, but not in the brain, is dependent on maintenance of physiological levels of glucocorticoids.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
9.
R W Fuller S K Hemrick-Luecke 《Comp. Biochem. Physiol. C, Comp. Pharmacol. Toxicol.》1983,74(1):47-49
1. The concentration of epinephrine, norepinephrine and dopamine, and the activity of norepinephrine N-methyltransferase, the epinephrine-forming enzyme, were determined in hypothalamus and brain stem in several species. 2. Epinephrine concentration in hypothalamus, a nerve terminal region, varied in the order frog greater than turtle greater than chicken greater than cat greater than dog greater than pigeon greater than rat greater than ferret greater than hamster greater than mouse, with concentrations being undetectable in rabbits, horses and guinea pigs. 3. Epinephrine concentration was lower than norepinephrine concentration in all species except the frog. 4. NMT activity was detected in all species except guinea pigs. 5. Epinephrine concentration was lower in brain stem, a cell body region, than in hypothalamus in all species. Only in the frog brain stem was there more epinephrine than norepinephrine. 6. No epinephrine or NMT activity was detected in either brain region in guinea-pigs. 相似文献
10.
To determine whether similar mechanisms regulate adrenergic phenotypic expression in different cellular populations, the superior cervical sympathetic ganglion (SCG) and extra-adrenal chromaffin tissue were studied in the fetal and neonatal rat; results were compared to those previously obtained with the adrenal medulla. Phenylethanolamine N-methyltransferase (PNMT), the enzyme which converts norepinephrine to epinephrine, was used as an index of adrenergic expression. PNMT catalytic activity was initially detectable in the SCG of normal, untreated fetuses at 17.0 days of gestation (E17.0), and increased three- to fourfold until postnatal day 2. Thereafter activity decreased precipitously, and was undetectable 2 weeks after birth. Immunohistochemical studies, using specific antisera to PNMT, were employed to localize the enzyme. Immunoreactivity (PNMT-IR) was undetectable in sympathetic ganglia of control animals, suggesting that this method is less sensitive than the catalytic assay. Following glucocorticoid treatment, cells heavily stained for PNMT-IR were observed in paravertebral sympathetic ganglia, including the SCG, and in the organ of Zuckerkandl. In the SCG, PNMT-IR was present in small cells presumed to be small, intensely fluorescent (SIF) cells and was never observed in principal ganglion neurons. The increase in PNMT-IR after steroid treatment was strikingly age dependent: initiation of treatment at progressively older ages during the first week of life resulted in fewer and fewer PNMT-IR cells. No response was apparent after 1 week. Moreover, treatment of pregnant rats was associated with appearance of PNMT-IR at E18.5, but not at E16.5. After treatment from days 0 to 6 of life, PNMT-IR gradually disappeared. However, retreatment on days 24–30 caused the reappearance of PNMT-IR, suggesting that exposure to steroids at birth causes (a) an immediate increase in PNMT-IR and (b) responsiveness to steroids during adulthood. Consequently, the disappearance of PNMT-IR after exposure to steroids at birth, is not simply due to death of SIF cells. We conclude that proximity to the adrenal cortex is not necessary for initial expression of PNMT. More generally, the expression of PNMT by ganglion SIF cells parallels that in adrenal chromaffin cells since initial expression was not dependent on high local concentrations of glucocorticoids, whereas subsequent development did require high levels of the hormones. Our observations suggest that similar mechanisms regulate expression and development of the adrenergic phenotype in adrenal and sympathetic ganglia. 相似文献
11.
Tillinger A Bruderova V Kubovcakova L Zeman M Kopacek J Novakova M Kvetnansky R Krizanova O 《General physiology and biophysics》2006,25(4):355-364
Phenylethanolamine N-methyltransferase (PNMT) is a final enzyme in catecholamine synthesizing cascade that converts noradrenaline to adrenaline. Although most profuse in adrenal medulla, PNMT is expressed also in the heart, particularly in cardiac atria and ventricles. In atria, the PNMT mRNA is much more abundant compared to ventricles. In present study we aimed to find out whether there is a difference in modulation of the PNMT gene expression in cardiac atria and ventricles. We used three methodological approaches: cold as a model of mild stress, hypoxia as a model of cardiac ischemic injury, and transgenic rats (TGR) with incorporated mouse renin gene (mREN-2)27, to determine involvement of renin-angiotensin pathway in the PNMT gene expression. We have found that PNMT gene expression was modulated differently in cardiac atria and ventricles. In atria, PNMT mRNA levels were increased by hypoxia, while cold stress decreased PNMT mRNA levels. In ventricles, no significant changes were observed by cold or hypoxia. On the other hand, angiotensin II elevated PNMT gene expression in ventricles, but not in atria. These results suggest that PNMT gene expression is modulated differently in cardiac atria and ventricles and might result in different physiological consequences. 相似文献
12.
Norepinephrine is N-methylated to epinephrine by the catalytic effect of the terminal enzyme in catecholamine biosynthesis, phenylethanolamine N-methyltransferase (PNMT). PNMT has been covalently immobilized onto a silica-based liquid chromatographic support, glutaraldehyde-P (Glut-P). The resulting PNMT-Glut-P stationary phase (PNMT-SP) was enzymatically active, stable, and reusable. Standard Michaelis-Menten kinetic studies were performed with both free and immobilized PNMT and known substrates and inhibitors were examined. The results demonstrate that the PNMT-SP can be utilized for the rapid screening of potential PNMT substrates as well as the screening of compounds for PNMT inhibitory activity. 相似文献
13.
Cleary S Brouwers FM Eisenhofer G Pacak K Christie DL Lipski J McNeil AR Phillips JK 《Cell and tissue research》2005,322(3):443-453
Expression of the noradrenaline transporter (NAT) was examined in normal human adrenal medulla and phaeochromocytoma by using
immunohistochemistry and confocal microscopy. The enzymes tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase
(PNMT) were used as catecholamine biosynthetic markers and chromogranin A (CGA) as a marker for secretory granules. Catecholamine
content was measured by using high performance liquid chromatography (HPLC). In normal human adrenal medulla (n=5), all chromaffin cells demonstrated strong TH, PNMT and NAT immunoreactivity. NAT was co-localized with PNMT and was located
within the cytoplasm with a punctate appearance. Human phaeochromocytomas demonstrated strong TH expression (n=20 samples tested) but variable NAT and PNMT expression (n=24). NAT immunoreactivity ranged from absent (n=3) to weak (n=10) and strong (n=11) and, in some cases, occupied an apparent nuclear location. Unlike the expression seen in normal human adrenal medullary
tissue, NAT expression was not consistently co-localized with PNMT. PNMT also showed highly variable expression that was poorly
correlated with tumour adrenaline content. Immunoreactivity for CGA was colocalized with NAT within the cytoplasm of normal
human chromaffin cells (n=4). This co-localization was not consistent in phaeochromocytoma tumour cells (n=7). The altered pattern of expression for both NAT and PNMT in phaeochromocytoma indicates a significant disruption in the
regulation and possibly in the function of these proteins in adrenal medullary tumours. 相似文献
14.
15.
16.
Kubovcakova L Micutkova L Bartosova Z Sabban EL Krizanova O Kvetnansky R 《Journal of neurochemistry》2006,97(5):1419-1430
Phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) is the terminal enzyme of the catecholaminergic pathway converting noradrenaline to adrenaline. Although preferentially localized in adrenal medulla, evidence exists that PNMT activity and gene expression are also present in the rat heart, kidney, spleen, lung, skeletal muscle, thymus, retina and different parts of the brain. However, data concerning PNMT gene expression in sympathetic ganglia are still missing. In this study, our effort was focused on identification of PNMT mRNA and/or protein in stellate ganglia and, if present, testing the effect of stress on PNMT mRNA and protein levels in this type of ganglia. We identified both PNMT mRNA and protein in stellate ganglia of rats and mice, although in much smaller amounts compared with adrenal medulla. PNMT gene expression and protein levels were also increased after repeated stress exposure in stellate ganglia of rats and wild-type mice. Similarly to adrenal medulla, the immobilization-induced increase was probably regulated by glucocorticoids, as determined indirectly using corticotropin-releasing hormone knockout mice, where immobilization-induced increase of PNMT mRNA was suppressed. Thus, glucocorticoids might play an important role in regulation of PNMT gene expression in stellate ganglia under stress conditions. 相似文献
17.
18.
1,2,3,4-Tetrahydrobenz[h]isoquinoline (THBQ, 11) is a potent, inhibitor of phenylethanolamine N-methyltransferase (PNMT). Docking studies indicated that the enhanced PNMT inhibitory potency of 11 (hPNMT K(i)=0.49microM) versus 1,2,3,4-tetrahydroisoquinoline (5, hPNMT K(i)=5.8microM) was likely due to hydrophobic interactions with Val53, Met258, Val272, and Val269 in the PNMT active site. These studies also suggested that the addition of substituents to the 7-position of 11 that are capable of forming hydrogen bonds to the enzyme could lead to compounds (14-18) having enhanced PNMT inhibitory potency. However, these compounds are in fact less potent at PNMT than 11. Furthermore, 7-bromo-THBQ (19, hPNMT K(i)=0.22mM), which has a lipophilic 7-substituent that cannot hydrogen bond to the enzyme, is twice as potent at PNMT than 11. This once again illustrates the limitations of docking studies for lead optimization. 相似文献
19.
20.
The difficulty of assaying dopamine beta-hydroxylase (DbetaH) (EC 1.14.17.1) has been circumvented by including N-ethylmaleimide (5 X 10(-2) M) in the incubation mixture along with a small amount of Cu2+ (20-60 muM). Such a procedure ensures that the maximum DbetaH activity is assessed in all extracts. As a result, the absolute levels of DbetaH in various regions of the rat brain have been established. The DbetaH values obtained are higher by 40% in the hypothalamus and 20% in the cerebral cortex, spinal cord, and caudate nucleus than those previously reported. The mechanism of the synergic effect seen when N-ethylmaleimide and Cu2+ are combined is not presently understood. 相似文献