首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of individual dog chromosomes is problematic because the 38 pairs of autosomes are small and acrocentric. Here we describe the design and application of a FISH tool that enables definitive identification of each dog autosome in a normal karyotype, without relying on subjective interpretation of DAPI banding patterns. From a high-resolution physical map of the canine genome, we have chosen a panel of 80 canine chromosome-specific BAC clones. DNA from each clone is labeled with one of five different fluorochrome-conjugated nucleotides. By selecting one to three spatially separated BACs per chromosome, and labelling them with a distinctive combination of colours, each autosome can be identified objectively and orientated accurately, irrespective of the quality of DAPI chromosome banding. This tool, or part of it, can be used for any purpose where accurate identification of canine autosomes in a normal karyotype is essential. In this study, we demonstrate use of the 'colour code' for chromosome identification following CGH analysis of unbalanced genomic aberrations in a canine brain tumour. Our method is an improvement of an earlier procedure, featuring chromosome-specific BACs and sequential FISH hybridisations, as it enables simultaneous identification of all chromosomes in a single hybridisation.  相似文献   

2.
An extensive number of genes have been implicated in the initiation and progression of human cancers, aiding our understanding of the genetic aetiology of this highly heterogeneous disease. In order to facilitate extrapolation of such information between species, we have isolated and physically mapped the canine orthologues of 25 well-characterised human cancer-related genes. The identity of PCR products representing each canine gene marker was first confirmed by DNA sequencing analysis. Each product was then radiolabelled and used to screen a genomic BAC library for the domestic dog. The chromosomal location of each positive clone in the canine karyotype was determined by fluorescence in situ hybridisation (FISH) onto canine metaphase preparations. Of the 25 genes, the FISH localisation of 21 correlated fully with that expected on the basis of known regions of conserved synteny between the human and canine genomes. Three correlated less closely, and the chromosomal location of the remaining marker showed no apparent correlation with current comparative mapping data. In addition to generating useful comparative mapping information, this panel of markers will act as a valuable resource for detailed study of candidate genes likely to be involved in tumourigenesis, and also forms the basis of a canine cancer-gene genomic microarray currently being developed for the study of unbalanced genomic aberrations in canine tumours.  相似文献   

3.
BACKGROUND: Array-based comparative genomic hybridization (aCGH) enables genome-wide quantitative delineation of genomic imbalances. A high-resolution contig array was developed specifically for chromosome 8q because this chromosome arm is frequently altered in many human cancers. METHODS: A minimal tiling path contig of 702 8q-specific bacterial artificial chromosome (BAC) clones was generated with a novel computational tool (BAC Contig Assembler). BAC clones were amplified by degenerative oligonucleotide primer (DOP) polymerase chain reaction and subsequently printed onto glass slides. For validation of the array DNA samples of gastroesophageal and prostate cancer cell lines, and chronic myeloid leukemia specimens were used, which were previously characterized by multicolor fluorescence in situ hybridization and conventional CGH. RESULTS: Single and double copy gains were confidently demonstrated with the 8q array. Single copy loss and high-level amplifications were accurately detected and confirmed by bicolor fluorescence in situ hybridization experiments. The 8q array was further tested with paraffin-embedded prostate cancer specimens. In these archival specimens, the copy number changes were confirmed. In fresh and archival samples, additional alterations were disclosed. In comparison with conventional CGH, the resolution of the detected changes was much improved, which was demonstrated by an amplicon of 0.7 Mb and a deletion of 0.6 Mb, both spanned by only six BAC clones. CONCLUSIONS: A comprehensive array is presented, which provides a high-resolution method for mapping copy number alterations on chromosome 8q.  相似文献   

4.
BAC FISH (fluorescence in situ hybridization using bacterial artificial chromosome probes) is a useful cytogenetic technique for physical mapping, chromosome marker screening, and comparative genomics. As a large genomic fragment with repetitive sequences is inserted in each BAC clone, random BAC FISH without adding competitive DNA can unveil complex chromosome organization of the repetitive elements in plants. Here we performed the comparative analysis of the random BAC FISH in monocot plants including species having small chromosomes (rice and asparagus) and those having large chromosomes (hexaploid wheat, onion, and spider lily) in order to understand a whole view of the repetitive element organization in Poales and Asparagales monocots. More unique and less dense dispersed signals of BAC FISH were observed in species with smaller chromosomes in both the Poales and Asparagales species. In the case of large-chromosome species, 75-85% of the BAC clones were detected as dispersed repetitive FISH signals along entire chromosomes. The BAC FISH of Lycoris did not even show localized repetitive patterns (e.g., centromeric localization) of signals.  相似文献   

5.
Array based comparative genomic hybridisation (aCGH) is a powerful technique for detecting clinically relevant genome imbalance and can offer 40 to > 1000 times the resolution of karyotyping. Indeed, idiopathic learning disability (ILD) studies suggest that a genome-wide aCGH approach makes 10–15% more diagnoses involving genome imbalance than karyotyping. Despite this, aCGH has yet to be implemented as a routine NHS service. One significant obstacle is the perception that the technology is prohibitively expensive for most standard NHS clinical cytogenetics laboratories. To address this, we investigated the cost-effectiveness of aCGH versus standard cytogenetic analysis for diagnosing idiopathic learning disability (ILD) in the NHS. Cost data from four participating genetics centres were collected and analysed. In a single test comparison, the average cost of aCGH was £442 and the average cost of karyotyping was £117 with array costs contributing most to the cost difference. This difference was not a key barrier when the context of follow up diagnostic tests was considered. Indeed, in a hypothetical cohort of 100 ILD children, aCGH was found to cost less per diagnosis (£3,118) than a karyotyping and multi-telomere FISH approach (£4,957). We conclude that testing for genomic imbalances in ILD using microarray technology is likely to be cost-effective because long-term savings can be made regardless of a positive (diagnosis) or negative result. Earlier diagnoses save costs of additional diagnostic tests. Negative results are cost-effective in minimising follow-up test choice. The use of aCGH in routine clinical practice warrants serious consideration by healthcare providers. Copyright statement The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd, and its Licensees to permit this article (if accepted) to be published in BMJ editions and any other BMJPGL products and to exploit all subsidiary rights, as set out in our licence (bmj.com/advice/copyright.shtml). Authorship The authors included on this paper fulfil the criteria of authorship and no one who fulfils the criteria has been excluded from authorship. The authors made a substantial contribution to the conception, design, analysis and interpretation of data. They were involved in drafting the article or revising it critically for important intellectual content and approving the version to be published. Contributorship Sarah Wordsworth (Guarantor): Planning, conducting and reporting work, interpretation of data, drafting and revising article. James Buchanan: Conducting and reporting work, interpretation of data, revising article. Regina Regan: Completing costing questionnaire, providing protocol details, other costing information, interpretation of data, information about learning disability and genome imbalance and revising article. Val Davison: Completing costing questionnaire, providing protocol details, sharing overall laboratory experience and drafting article. Kim Smith: Completing costing questionnaire, providing protocol details, drafting article. Sara Dyer: Completing costing questionnaire and providing protocol details. Carolyn Campbell: Completing costing questionnaire and providing protocol details. Edward Blair: Critical appraisal of article for clinical content and revising article. Eddy Maher: Completing costing questionnaire, providing protocol details, sharing overall laboratory experience and drafting article. Jenny Taylor: Planning and facilitating work between centres. Drafting and revising article. Samantha JL Knight: Completing costing questionnaire, providing protocol details, other costing information, interpretation of data, providing information about learning disability and genome imbalance, drafting and revising article. Jenny Taylor and Samantha JL Knight contributed equally to the work presented.  相似文献   

6.
Fluorescence in situ hybridization (FISH) banding approaches are standard for the exact characterization of simple, complex, and even cryptic chromosomal aberrations within the human genome. The most frequently applied FISH banding technique is the multicolor banding approach, also abbreviated as m-band, MCB, or in its whole genomic variant multitude MCB (mMCB). MCB allows the differentiation of chromosome region-specific areas at the GTG band and sub-band level and is based on region-specific microdissection libraries, producing changing fluorescence intensity ratios along the chromosomes. The latter are used to assign different pseudocolors to specific chromosomal regions. Here we present the first bacterial artificial chromosome (BAC) array comparative genomic hybridization (aCGH) mapped, comprehensive, genome-wide human MCB probe set. All 169 region-specific microdissection libraries were characterized in detail for their size and the regions of overlap. In summary, the unique possibilities of the MCB technique to characterize chromosomal breakpoints in one FISH experiment are now complemented by the feature of being anchored within the human DNA sequence at the BAC level.  相似文献   

7.
For molecular and cytogenetic studies, two partial bacterial artificial chromosome (BAC) libraries of the garlic cultivar Allium sativum L. 'Danyang' were constructed using high molecular weight (HMW) garlic DNA, the pBAC1-SACB1 vector, and the pIndigoBAC536 vector. The average insert size of the BAC library was about 90 kb. The sequence compositions of the BAC clones were characterized by Southern hybridization with garlic genomic DNA and a repetitive sequence clone of garlic. Two BAC clones with weak signals (thus implying mostly unique sequences), GBC2-5e and GBC2-4d, were selected for FISH analysis. FISH analysis localized the GBC2-5e (approximately 100 kb) BAC clone on the long arm of garlic chromosome 7. The other BAC clone, GBC2-4d (approximately 110 kb), gave rise to discrete FISH signals on a mid-size early metaphase chromosome. The FISH screening with BAC clones proved to be a useful resource for molecular cytogenetic studies of garlic, and will be useful for further mapping and sequencing studies of important genes of this plant.  相似文献   

8.
Zhang P  Li W  Fellers J  Friebe B  Gill BS 《Chromosoma》2004,112(6):288-299
Fluorescence in situ hybridization (FISH) has been widely used in the physical mapping of genes and chromosome landmarks in plants and animals. Bacterial artificial chromosomes (BACs) contain large inserts making them amenable for FISH mapping. We used BAC-FISH to study genome organization and evolution in hexaploid wheat and its relatives. We selected 56 restriction fragment length polymorphism (RFLP) locus-specific BAC clones from libraries of Aegilops tauschii (the D-genome donor of hexaploid wheat) and A-genome diploid Triticum monococcum. Different types of repetitive sequences were identified using BAC-FISH. Two BAC clones gave FISH patterns similar to the repetitive DNA family pSc119; one BAC clone gave a FISH pattern similar to the repetitive DNA family pAs1. In addition, we identified several novel classes of repetitive sequences: one BAC clone hybridized to the centromeric regions of wheat and other cereal species, except rice; one BAC clone hybridized to all subtelomeric chromosome regions in wheat, rye, barley and oat; one BAC clone contained a localized tandem repeat and hybridized to five D-genome chromosome pairs in wheat; and four BAC clones hybridized only to a proximal region in the long arm of chromosome 4A of hexaploid wheat. These repeats are valuable markers for defined chromosome regions and can also be used for chromosome identification. Sequencing results revealed that all these repeats are transposable elements (TEs), indicating the important role of TEs, especially retrotransposons, in genome evolution of wheat.Communicated by P.B. Moens  相似文献   

9.
The analysis of inherited diseases in the domestic dog (Canis familiaris) provides a resource for the continued use of this species as a model system for human diseases. Many different dog breeds are affected by congenital sensorineural deafness. Since mutations in various genes have already been found causative for sensorineural hearing impairment in humans or mice, 20 of these genes were considered as candidates for deafness in dogs. For each of the candidate genes a canine BAC clone was isolated by screening with heterologous human or murine cDNA probes. The gene-containing BAC clones were physically assigned to the canine genome by FISH and the BAC-derived STS-markers were positioned with the RHDF5000 panel on the canine RH map. The mapping data, which confirm the established conservation of synteny between canine and human chromosomes, provide a resource for further association studies in segregating canine populations and the basis for new insights into this common canine and human disease.  相似文献   

10.
A set of BAC clones spanning the human genome   总被引:13,自引:0,他引:13  
Using the human bacterial artificial chromosome (BAC) fingerprint-based physical map, genome sequence assembly and BAC end sequences, we have generated a fingerprint-validated set of 32855 BAC clones spanning the human genome. The clone set provides coverage for at least 98% of the human fingerprint map, 99% of the current assembled sequence and has an effective resolving power of 79 kb. We have made the clone set publicly available, anticipating that it will generally facilitate FISH or array-CGH-based identification and characterization of chromosomal alterations relevant to disease.  相似文献   

11.
As with many human cancers, canine tumors demonstrate recurrent chromosome aberrations. A detailed knowledge of such aberrations may facilitate diagnosis, prognosis and the selection of appropriate therapy. Following recent advances made in human genomics, we are developing a DNA microarray for the domestic dog, to be used in the detection and characterization of copy number changes in canine tumors. As a proof of principle, we have developed a small-scale microarray comprising 87 canine BAC clones. The array is composed of 26 clones selected from a panel of 24 canine cancer genes, representing 18 chromosomes, and an additional set of clones representing dog chromosomes 11, 13, 14 and 31. These chromosomes were shown previously to be commonly aberrant in canine multicentric malignant lymphoma. Clones representing the sex chromosomes were also included. We outline the principles of canine microarray development, and present data obtained from microarray analysis of three canine lymphoma cases previously characterized using conventional cytogenetic techniques.  相似文献   

12.
Chinese pangolins as a representative species in the order Pholidota have highly specified morphological characters and occupy an important place in the mammalian phylogenetic tree. To obtain genomic data for this species, we have constructed a bacterial artificial chromosome (BAC) library of Chinese pangolin. The library contains 208,272 clones with an average insert size of 122.1 kb and represents approximately eight times the Chinese pangolin haploid genome (if we assume that the Chinese pangolins have a genome size similar to human). One hundred and twenty randomly-selected BAC clones were mapped onto Chinese pangolin chromosomes by fluorescence in situ hybridization (FISH), showing a largely unbiased chromosomal distribution. Several clones containing repetitive DNA and ribosomal DNA genes were also found. The BAC library and FISH mapped BAC clones are useful resources for comparative genomics and cytogenetics of mammals and in particular, the ongoing genome sequencing project of Chinese pangolins.  相似文献   

13.
FISH physical mapping with barley BAC clones   总被引:7,自引:0,他引:7  
Fluorescence in situ hybridization (FISH) is a useful technique for physical mapping of genes, markers, and other single- or low-copy sequences. Since clones containing less than 10 kb of single-copy DNA do not reliably produce detectable signals with current FISH techniques in plants, a bacterial artificial chromosome (BAC) partial library of barley was constructed and a FISH protocol for detecting unique sequences in barley BAC clones was developed. The library has a 95 kb average barley insert, representing about 20% of a barley genome. Two BAC clones containing hordein gene sequences were identified and partially characterized. FISH using these two BAC clones as probes showed specific hybridization signals near the end of the short arm of one pair of chromosomes. Restriction digests of these two BAC clones were compared with restriction patterns of genomic DNA; all fragments contained in the BAC clones corresponded to bands present in the genomic DNA, and the two BAC clones were not identical. The barley inserts contained in these two BAC clones were faithful copies of the genomic DNA. FISH with four BAC clones with inserts varying from 20 to 150 kb, showed distinct signals on paired chromatids. Physical mapping of single- or low-copy sequences in BAC clones by FISH will help to correlate the genetic and physical maps. FISH with BAC clones also provide an additional approach for saturating regions of interest with markers and for constructing contigs spanning those regions.  相似文献   

14.
The major histocompatibility complex (MHC) is composed of a tightly linked cluster of genes; in dogs, this is referred to as the dog leukocyte antigen (DLA) region. The canine MHC is located on chromosome 12, and several genes within the DLA region have been identified that have significant sequence similarity to their human counterparts. However, in order to characterize other loci in the DLA region, DNA sequencing has begun using a canine bacterial artificial chromosome (BAC) library. Initially 135 BAC clones were isolated from a BAC library using a mixture of human and canine probes. These BAC clones were screened with locus-specific primers in polymerase chain reactions (PCRs). Fifty-six BAC clones were subjected to FingerPrinted Contig (FPC) analysis and several overlapping clones were identified. One BAC clone RP81-231-G24 has been sequenced. Preliminary sequence analysis of this 150 kb clone indicates that it contains the region where the class I and class III regions are joined and encompasses DLA-12a, DLA-53, DLA-12, DLA-64, TNF-alpha, and a canine gene that appears to resemble the HLA class III gene HSPA1A (HSP70-1).  相似文献   

15.
A bacterial artificial chromosome (BAC) library of banana (Musa acuminata) was used to select BAC clones that carry low amounts of repetitive DNA sequences and could be suitable as probes for fluorescence in situ hybridization (FISH) on mitotic metaphase chromosomes. Out of eighty randomly selected BAC clones, only one clone gave a single-locus signal on chromosomes of M. acuminata cv. Calcutta 4. The clone localized on a chromosome pair that carries a cluster of 5S rRNA genes. The remaining BAC clones gave dispersed FISH signals throughout the genome and/or failed to produce any signal. In order to avoid the excessive hybridization of repetitive DNA sequences, we subcloned nineteen BAC clones and selected their ‘low-copy’ subclones. Out of them, one subclone gave specific signal in secondary constriction on one chromosome pair; three subclones were localized into centromeric and peri-centromeric regions of all chromosomes. Other subclones were either localized throughout the banana genome or their use did not result in visible FISH signals. The nucleotide sequence analysis revealed that subclones, which localized on different regions of all chromosomes, contained short fragments of various repetitive DNA sequences. The chromosome-specific BAC clone identified in this work increases the number of useful cytogenetic markers for Musa.  相似文献   

16.
Congenital diaphragmatic hernia (CDH) is a phenotypically and genetically heterogeneous disorder, with a complex inheritance pattern. Structural abnormalities of almost all chromosomes have been described in association with CDH. We made a molecular analysis through array comparative genomic hybridization (array CGH) of a group of fetuses with prenatal ultrasound diagnosis of CDH and normal G-banded karyotypes. A whole genome BAC-array CGH, composed of approximately 5000 BAC clones, was carried out on blood samples from fetuses with prenatal ultrasound diagnosis of CDH and a normal karyotype (500-band level). All potential cytogenetic alterations detected on the arrays were reported. The array CGH analysis showed copy number gains and losses in 10 of 12 cases. Eighty-five clones showed genomic imbalances, and 29 clones displayed described copy number variations. We identified a recurrent gain in 17q12 in two of 12 cases, which has not been previously described. Our results may contribute to determining the effectiveness and applicability of array CGH for prenatal diagnosis purposes, and also to elucidate the submicroscopic genomic instability of CDH fetuses.  相似文献   

17.
18.
Balanced complex chromosome rearrangements (CCR) are extremely rare in humans. They are usually ascertained either by abnormal phenotype or reproductive failure in carriers. These abnormalities are attributed to disruption of genes at the breakpoints, position effect or cryptic imbalances in the genome. However, little is known about possible imbalances at the junction points. We report here a patient with a CCR involving three chromosomes (2;10;11) and eight breakpoints. The patient presented with behavioural problems as the sole phenotypic abnormality. The rearrangement, which is apparently balanced in G-banding and multicolour FISH, was shown by genomic array analysis to include a deletion of 0.15–1.5 Mb associated with one of the breakpoints. To explain the formation of this rearrangement through the smallest possible number of breakage-and-reunion events, one has to assume that the breaks have not occurred simultaneously, but in a temporal order within the span of a single cell division. We demonstrate that array comparative genomic hybridisation (CGH) is a useful complementary tool to cytogenetic analysis for detecting and mapping cryptic imbalances associated with chromosome rearrangement.  相似文献   

19.
The identification of dog genes and their accurate localization to chromosomes remain a major challenge in the postgenomics era. The 132 annotated canine genes with human orthologs remaining in the unassembled part (chrUnknown) of the dog sequence assembly (CanFam1) are of limited use for candidate gene approaches or comparative mapping studies. We used a two-step comparative analysis to infer a canine chromosomal interval for localization of the chrUn genes. We first constructed a human-dog synteny map, using 14,456 gene-based comparative anchors. We then mapped the 132 chrUn genes onto the reference (human) synteny map and identified the corresponding, orthologous segment on the canine map, based on conserved gene order. Our results show that 110 chrUn genes could be localized to short intervals on 18 dog chromosomes, whereas 22 genes remained assigned to 2 possible intervals. We extended this comparative analysis to multiple species, using the chimpanzee, mouse, and rat genome sequences. This made it possible to narrow down the intervals concerned and to increase the number of canine chrUn genes with an inferred chromosome location to 115. This study demonstrates that dog chromosomal intervals for chrUn genes can be rapidly inferred, using a reference species, and indicates that comparative strategies based on larger numbers of species may be even more effective.  相似文献   

20.
The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC‐by‐BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high‐resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high‐resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome‐scale analysis of repetitive sequences and revealed a ~800‐kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone‐by‐clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC‐contig physical map and validate sequence assembly on a chromosome‐arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome‐by‐chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号