首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The spring-fed Comal River in Texas, USA, has been impounded and channelized resulting mainly in a lentic environment with four headwater spring runs. We sampled two spring runs (lotic sites) and two lentic sites seasonally from April 2001 through April 2002 to assess (1) co-occurrence of native and exotic snail species (as determined by interspecific association), (2) the importance of habitat conditions in structuring relationships among these species, and (3) the distribution of snails infected with exotic trematode parasites. Three exotic and four endemic species of aquatic snails were collected, but only Elimia comalensis (Prosobranchia: Pleuroceridae, native), Melanoides tuberculatus, and Tarebia granifera (Prosobranchia: Thiaridae, exotic) were in sufficient densities for further analyses. Tarebia granifera was positively associated with both M. tuberculatus2 = 18.5, P < 0.001) and E. comalensis2 = 7.3, P < 0.01), although the co-occurrence between the two exotics was much stronger. Melanoides tuberculatus and E. comalensis exhibited a strong, negative association (χ2 = 10.9, P < 0.001). The weaker co-occurrence between E. comalensis with the thiarids appeared to be driven by differences in habitat use by the thiarids and native E. comalensis. In lentic habitats, densities of M. tuberculatus and T. granifera were similar but differed significantly from E. comalensis whose densities were 200 times less than the exotic snails. In lotic spring runs, densities of T. granifera and E. comalensis were similar, but differed significantly from M. tuberculatus whose densities were 10 times fewer. Lower densities of M. tuberculatus and T. granifera in habitat conditions common to the spring runs may explain why exotic snail interactions were less with the native E. comalensis than with each other. The native snail, E. comalensis, was not infected with any trematodes, while 6.1% of M. tuberculatus and 4.8% of T. granifera were infected with exotic trematodes. Distributions of infected snails were aggregated; such that most infected snails were found in lentic habitats with silt substrates and moderate to high levels of detritus. Continued declines in spring-flows due to aquifer withdrawals and droughts will increase lentic habitats that may lead to increased densities of T. granifera and M. tuberculatus and their concomitant parasites. Handling editor: K. Martens  相似文献   

3.
Environmental heterogeneity can promote the emergence of locally adapted phenotypes among subpopulations of a species, whereas gene flow can result in phenotypic and genotypic homogenization. For organisms like amphidromous fishes that change habitats during their life history, the balance between selection and migration can shift through ontogeny, making the likelihood of local adaptation difficult to predict. In Hawaiian waterfall‐climbing gobies, it has been hypothesized that larval mixing during oceanic dispersal counters local adaptation to contrasting topographic features of streams, like slope gradient, that can select for predator avoidance or climbing ability in juvenile recruits. To test this hypothesis, we used morphological traits and neutral genetic markers to compare phenotypic and genotypic distributions in recruiting juveniles and adult subpopulations of the waterfall‐climbing amphidromous goby, Sicyopterus stimpsoni, from the islands of Hawai'i and Kaua'i. We found that body shape is significantly different between adult subpopulations from streams with contrasting slopes and that trait divergence in recruiting juveniles tracked stream topography more so than morphological measures of adult subpopulation differentiation. Although no evidence of population genetic differentiation was observed among adult subpopulations, we observed low but significant levels of spatially and temporally variable genetic differentiation among juvenile cohorts, which correlated with morphological divergence. Such a pattern of genetic differentiation is consistent with chaotic genetic patchiness arising from variable sources of recruits to different streams. Thus, at least in S. stimpsoni, the combination of variation in settlement cohorts in space and time coupled with strong postsettlement selection on juveniles as they migrate upstream to adult habitats provides the opportunity for morphological adaptation to local stream environments despite high gene flow.  相似文献   

4.
5.
The transition from marine to freshwater habitats is one of the major steps in the evolution of life. In the decapod crustaceans, four groups have colonized fresh water at different geological times since the Triassic, the freshwater shrimps, freshwater crayfish, freshwater crabs and freshwater anomurans. Some families have even colonized terrestrial habitats via the freshwater route or directly via the sea shore. Since none of these taxa has ever reinvaded its environment of origin the Decapoda appear particularly suitable to investigate life‐history adaptations to fresh water. Evolutionary comparison of marine, freshwater and terrestrial decapods suggests that the reduction of egg number, abbreviation of larval development, extension of brood care and lecithotrophy of the first posthatching life stages are key adaptations to fresh water. Marine decapods usually have high numbers of small eggs and develop through a prolonged planktonic larval cycle, whereas the production of small numbers of large eggs, direct development and extended brood care until the juvenile stage is the rule in freshwater crayfish, primary freshwater crabs and aeglid anomurans. The amphidromous freshwater shrimp and freshwater crab species and all terrestrial decapods that invaded land via the sea shore have retained ocean‐type planktonic development. Abbreviation of larval development and extension of brood care are interpreted as adaptations to the particularly strong variations of hydrodynamic parameters, physico‐chemical factors and phytoplankton availability in freshwater habitats. These life‐history changes increase fitness of the offspring and are obviously favoured by natural selection, explaining their multiple origins in fresh water. There is no evidence for their early evolution in the marine ancestors of the extant freshwater groups and a preadaptive role for the conquest of fresh water. The costs of the shift from relative r‐ to K‐strategy in freshwater decapods are traded‐off against fecundity, future reproduction and growth of females and perhaps against size of species but not against longevity of species. Direct development and extension of brood care is associated with the reduction of dispersal and gene flow among populations, which may explain the high degree of speciation and endemism in directly developing freshwater decapods. Direct development and extended brood care also favour the evolution of social systems, which in freshwater decapods range from simple subsocial organization to eusociality. Hermaphroditism and parthenogenesis, which have evolved in some terrestrial crayfish burrowers and invasive open water crayfish, respectively, may enable populations to adapt to restrictive or new environments by spatio‐temporal alteration of their socio‐ecological characteristics. Under conditions of rapid habitat loss, environmental pollution and global warming, the reduced dispersal ability of direct developers may turn into a severe disadvantage, posing a higher threat of extinction to freshwater crayfish, primary freshwater crabs, aeglids and landlocked freshwater shrimps as compared to amphidromous freshwater shrimps and secondary freshwater crabs.  相似文献   

6.
Migratory animals endure high stress during long-distance travel in order to benefit from spatio-temporally fluctuating resources, including food and shelter or from colonization of unoccupied habitats. Along with some fishes and shrimps, nerite snails in tropical to temperate freshwater systems are examples of amphidromous animals that migrate upstream for growth and reproduction after a marine larval phase. Here I report, to my knowledge, the first example of ‘hitchhiking’ behaviour in the obligatory migration of animals: the nerite snail Neritina asperulata appears to travel several kilometres as minute juveniles by firmly attaching to the shells of congeneric, subadult snails in streams of Melanesian Islands, presumably to increase the success rate of migration.  相似文献   

7.
Adult movement scale was quantified for two tropical Caribbean diadromous fishes, bigmouth sleeper Gobiomorus dormitor and mountain mullet Agonostomus monticola, using passive integrated transponders (PITs) and radio‐telemetry. Large numbers of fishes were tagged in Río Mameyes, Puerto Rico, U.S.A., with PITs and monitored at three fixed locations over a 2·5 year period to estimate transition probabilities between upper and lower elevations and survival probabilities with a multistate Cormack–Jolly–Seber model. A sub‐set of fishes were tagged with radio‐transmitters and tracked at weekly intervals to estimate fine‐scale dispersal. Changes in spatial and temporal distributions of tagged fishes indicated that neither G. dormitor nor A. monticola moved into the lowest, estuarine reaches of Río Mameyes during two consecutive reproductive periods, thus demonstrating that both species follow an amphidromous, rather than catadromous, migratory strategy. Further, both species were relatively sedentary, with restricted linear ranges. While substantial dispersal of these species occurs at the larval stage during recruitment to fresh water, the results indicate minimal dispersal in spawning adults. Successful conservation of diadromous fauna on tropical islands requires management at both broad basin and localized spatial scales.  相似文献   

8.
Freshwater species on tropical islands face localized extinction and the loss of genetic diversity. Their habitats can be ephemeral due to variability in freshwater run‐off and erosion. Even worse, anthropogenic effects on these ecosystems are intense. Most of these species are amphidromous or catadromous (i.e. their life cycle includes a marine larval phase), which buffers them against many of these effects. A long pelagic larval duration (PLD) was thought to be critical to ensure the colonization and persistence in tropical islands, but recent findings indicated that several species with short PLDs are successful in those ecosystems. To test the potential of a short PLD in maintaining genetic connectivity and forestalling extirpation, we studied Kuhlia rupestris, a catadromous fish species with an extensive distribution in the western Pacific and Indian Oceans. Using a combination of molecular genetic markers (13 microsatellite loci and two gene regions from mtDNA) and modelling of larval dispersal, we show that a short PLD constrains genetic connectivity over a wide geographical range. Molecular markers showed that the short PLD did not prevent genetic divergence through evolutionary time and speciation has occurred or is occurring. Modelling of larvae dispersal suggested limited recent connectivity between genetically homogeneous populations across the Coral Sea. However, a short PLD can maintain connectivity on a subocean basin scale. Conservation and management of tropical diadromous species needs to take into account that population connectivity may be more limited than previously suspected in those species.  相似文献   

9.
10.
11.
  • The impacts of the historical geologic and climatic events on the diversity and genetic structure of Neotropical taxa have recently become a subject of study. However, annual plants associated with tropical dry forests remain under‐studied. The exploration of additional taxa in contrasting environments will improve the current understanding of responses of the Neotropical biota to these events. Here, we explore the species distribution and geographic structure of the annual herb Tithonia rotundifolia.
  • We sampled 175 individuals from 19 populations of T. rotundifolia. Species distribution modelling and six microsatellite chloroplast loci were used to infer its population history. We identified areas of historical climate suitability and then tested if there is genetic structuring among these areas.
  • Haplotypes showed strong phylogeographic structure. Historical climatic suitability areas were found along the Pacific coast; however, a gap was found at the Isthmus of Tehuantepec (IT). Although Bayesian analysis showed population structuring, amova revealed that the IT is not its main driver. Instead, a subdivision into a higher number of regions had higher FCT values. Also, populations to the east of the IT showed evidence of recent population expansion and migration in a south–north direction.
  • Pleistocene climate fluctuations partially explain the geographic structure of T. rotundifolia. However, life‐history characteristics such as limited seed dispersal and the patchy distribution of suitable habitats explain the high haplotype diversity and population sub‐structuring and diversity. Lastly, the absence of geographic structure of some haplotypes may indicate long‐distance dispersal, or hybridisation with the closely related T. tubaeformis.
  相似文献   

12.
13.
  • 1 As the ephippia (chitinous shells enclosing diapausing eggs) of pelagic crustaceans of the genus Daphnia have been occasionally reported to float at the water surface, we considered that this might be an adaptation promoting their passive dispersal. We investigated the mechanisms by which ephippia appear at the water surface.
  • 2 While field surveys revealed that floating Daphnia ephippia are often numerous in various freshwater habitats, laboratory tests showed that newly formed ephippia are not buoyant initially. Once transferred to the surface by whatever means, however, they may remain there due either to surface tension or gas absorption.
  • 3 Video recordings showed that all ephippia at the water surface in laboratory vessels were shed there by ephippial females when moulting (despite the attendant risk of exposure to UV radiation). This implies that the moulting behaviour of female Daphnia may determine the fate of their dormant offspring, predetermining whether they remain in the natal environment (when the ephippium is released into the water column) or disperse (when it is deposited at the water surface).
  • 4 Our findings reveal a potential mechanism underlying the high dispersal capacity of freshwater cladocerans inhabiting island‐like aquatic habitats.
  相似文献   

14.
15.
16.
Aim Provide an empirical test of the ‘radiation zone’ hypothesis of the MacArthur–Wilson theory of island biogeography using the taxon‐pulse hypothesis of Erwin and Brooks Parsimony Analysis (BPA) on Simulium (Inseliellum) Rubstov. Location Micronesia, Cook Islands, Austral Islands, Society Islands, Marquesas Islands, Fiji and New Caledonia. Methods Primary and secondary BPA of the phylogeny of Inseliellum. Results Primary BPA showed that 15% of the taxon area cladogram contained area reticulations. Secondary BPA (invoking the area duplication convention) generated a clear sequence of dispersal for Inseliellum. The sequence follows a Micronesia – Cook Islands – Marquesas Islands – Society Islands dispersal, with a separate dispersal from the Cook Islands to the Austral Islands less than 1 Ma. A radiation in the island of Tahiti (Society Islands) produced numerous dispersals from Tahiti to other islands within the Society Islands system. Islands close to Tahiti (source island) have been colonized from Tahiti more often than islands far from Tahiti, but a higher proportion of those species colonizing distant islands have become distinct species. Main conclusions The dispersal sequence of Inseliellum exhibits both old to young island dispersal and young to old island dispersal. This is due to habitat availability on each island. Inseliellum is a model system in exemplifying the ‘radiation zone’ hypothesis of MacArthur and Wilson. As well, islands close to the source are colonized more often that those far from the source, but colonization of islands far away from the source results in a higher proportion of speciation events than for islands close to the source. The diversification of Inseliellum corresponds to a taxon‐pulse radiation, with a centre of diversification on Tahiti resulting from its large area and abundant freshwater habitats. This study illustrates the utility of BPA in identifying complex scenarios that can be used to test theories about the complementary roles of ecology and phylogeny in historical biogeography.  相似文献   

17.

Background

Indo-Pacific high island streams experience extreme hydrological variation, and are characterised by freshwater fish species with an amphidromous life history. Amphidromy is a likely adaptation for colonisation of island streams following stochastic events that lead to local extirpation. In the Wet Tropics of north-eastern Australia, steep coastal mountain streams share similar physical characteristics to island systems. These streams are poorly surveyed, but may provide suitable habitat for amphidromous species. However, due to their ephemeral nature, common non-diadromous freshwater species of continental Australia are unlikely to persist. Consequently, we hypothesise that coastal Wet Tropics streams are faunally more similar, to distant Pacific island communities, than to nearby faunas of large continental rivers.

Methods/Principal Findings

Surveys of coastal Wet Tropics streams recorded 26 species, 10 of which are first records for Australia, with three species undescribed. This fish community is unique in an Australian context in that it contains mostly amphidromous species, including sicydiine gobies of the genera Sicyopterus, Sicyopus, Smilosicyopus and Stiphodon. Species presence/absence data of coastal Wet Tropics streams were compared to both Wet Tropics river networks and Pacific island faunas. ANOSIM indicated the fish fauna of north-eastern Australian coastal streams were more similar to distant Pacific islands (R = 0.76), than to nearby continental rivers (R = 0.98).

Main Conclusions/Significance

Coastal Wet Tropics streams are faunally more similar to distant Pacific islands (79% of species shared), than to nearby continental fauna due to two factors. First, coastal Wet Tropics streams lack many non-diadromous freshwater fish which are common in nearby large rivers. Second, many amphidromous species found in coastal Wet Tropics streams and Indo-Pacific islands remain absent from large rivers of the Wet Tropics. The evolutionary and conservation significance of this newly discovered Australian fauna requires clarification in the context of the wider amphidromous fish community of the Pacific.  相似文献   

18.
Global and regional patterns in lotic meiofauna   总被引:4,自引:0,他引:4  
  • 1 Parsimony analysis of endemicity (PAE) was used to assess patterns in the distribution of harpacticoid copepods (all freshwater species and stream species only) at global and regional scales. These analyses provided a focus for reviewing large scale patterns and processes in freshwater meiofauna.
  • 2 On a global scale, PAE suggested that large‐scale biogeographical events have been most important in shaping present‐day distributions in the Canthocamptidae. A small proportion (4%) of canthocamptid species were widespread (i.e. occurred in more than one biogegraphical region), suggesting that dispersal may also play a role in determining distribution at the species level. Global distribution patterns for other meiofauna suggest varying roles for dispersal and vicariant events. No consistent latitudinal trends in species diversity were evident, although a lack of distributional data for many regions, and uncertainty over the status of many cosmopolitan species, precludes more robust analyses. Molecular techniques should prove useful in identifying truly cosmopolitan taxa.
  • 3 On a regional scale, a PAE within Western Europe demonstrated a clear link between the distribution of canthocamptid species and the extent of the Last (Wiechselian) glaciation. Northern and southern areas of Europe contain distinctive harpacticoid faunas and the recolonisation of northern Europe appears to have been from the Balkans rather than other Mediterranean peninsulae. The high harpacticoid diversity in southern Europe, may reflect a lack of glacial disruption of groundwater habitats.
  • 4 A PAE of lotic data for harpacticoid copepods within the Holarctic reflected the global PAE for freshwater harpacticoids as a whole, but not the regional PAE. A high proportion of stream‐dwelling harpacticoids are widespread species, but only one (Bryocamptus zschokkei) was found in streams across the Holarctic. Other cosmopolites were restricted to streams in Europe or North America, suggesting that species‘ niche requirements might differ among regions. There appeared to be some convergence in the composition of lotic copepod communities in terms of the number of species within genera.
  • 5 We conclude that large‐scale processes inevitably have a major influence on the local composition of lotic meiofaunal communities, but that the relative importance of small scale vs. large scale processes is unclear at present, largely due to a paucity of suitable data.
  相似文献   

19.
20.
Mauremys leprosa, distributed in Iberia and North‐west Africa, contains two major clades of mtDNA haplotypes. Clade A occurs in Portugal, Spain and Morocco north of the Atlas Mountains. Clade B occurs south of the Atlas Mountains in Morocco and north of the Atlas Mountains in eastern Algeria and Tunisia. However, we recorded a single individual containing a clade B haplotype in Morocco from north of the Atlas Mountains. This could indicate gene flow between both clades. The phylogenetically most distinct clade A haplotypes are confined to Morocco, suggesting both clades originated in North Africa. Extensive diversity within clade A in south‐western Iberia argues for a glacial refuge located there. Other regions of the Iberian Peninsula, displaying distinctly lower haplotype diversities, were recolonized from within south‐western Iberia. Most populations in Portugal, Spain and northern Morocco contain the most common clade A haplotype, indicating dispersal from the south‐western Iberian refuge, gene flow across the Strait of Gibraltar, and reinvasion of Morocco by terrapins originating in south‐western Iberia. This hypothesis is consistent with demographic analyses, suggesting rapid clade A population increase while clade B is represented by stationary, fragmented populations. We recommend the eight, morphologically weakly diagnosable, subspecies of M. leprosa be reduced to two, reflecting major mtDNA clades: Mauremys l. leprosa (Iberian Peninsula and northern Morocco) and M. l. saharica (southern Morocco, eastern Algeria and Tunisia). Peripheral populations could play an important role in evolution of M. leprosa because we found endemic haplotypes in populations along the northern and southern range borders. Previous investigations in another western Palearctic freshwater turtle (Emys orbicularis) discovered similar differentiation of peripheral populations, and phylogeographies of Emys orbicularis and Mauremys rivulata underline the barrier status of mountain chains, in contrast to sea straits, suggesting common patterns for western Palearctic freshwater turtles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号