首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Müller G  Over S  Wied S  Frick W 《Biochemistry》2008,47(5):1274-1287
Inhibition of lipolysis in rat adipocytes by palmitate, H2O2 and the antidiabetic sulfonylurea drug, glimepiride, has been demonstrated to rely on the upregulated conversion of cAMP to adenosine by enzymes associated with lipid droplets (LD) rather than on cAMP degradation by the insulin-stimulated microsomal phosphodiesterase 3B (Müller, G., Wied, S., Over, S., and Frick, W. (2008) Biochemistry 47, 1259-1273). Here these two enzymes were identified as the glycosylphosphatidylinositol (GPI)-anchored phosphodiesterase, Gce1, and the 5'-nucleotidase, CD73, on basis of the following findings: (i) Photoaffinity labeling with 8-N3-[32P]cAMP and [14C]5'-FSBA of LD from palmitate-, glucose oxidase- and glimepiride-treated, but not insulin-treated and basal, adipocytes led to the identification of 54-kDA cAMP- and 62-kDa AMP-binding proteins. (ii) The amphiphilic proteins were converted into hydrophilic versions and released from the LD by chemical or enzymic treatments specifically cleaving GPI anchors, but resistant toward carbonate extraction. (iii) The cAMP-to-adenosine conversion activity was depleted from the LD by adsorption to (c)AMP-Sepharose. (iv) cAMP-binding to LD was increased upon challenge of the adipocytes with palmitate, glimepiride or glucose oxidase and abrogated by phospholipase C digestion. (v) The 62-kDa AMP-binding protein was labeled with typical GPI anchor constituents and reacted with anti-CD73 antibodies. (vi) Inhibition of the bacterial phosphatidylinitosol-specific phospholipase C or GPI anchor biosynthesis blocked both agent-dependent upregulation and subsequent loss of cAMP-to-adenosine conversion associated with LD and inhibition of lipolysis. (vii) Gce1 and CD73 can be reconstituted into and exchanged between LD in vitro. These data suggest a novel insulin-independent antilipolytic mechanism engaged by palmitate, glimepiride and H2O2 in adipocytes which involves the upregulated expression of a GPI-anchored PDE and 5'-nucleotidase at LD. Their concerted action may ensure degradation of cAMP and inactivation of hormone-sensitive lipase in the vicinity of LD.  相似文献   

2.
Berberine, a hypoglycemic agent, has been shown to decrease plasma free fatty acids (FFAs) level in insulin-resistant rats. In the present study, we explored the mechanism responsible for the antilipolytic effect of berberine in 3T3-L1 adipocytes. It was shown that berberine attenuated lipolysis induced by catecholamines, cAMP-raising agents, and a hydrolyzable cAMP analog, but not by tumor necrosis factor α and a nonhydrolyzable cAMP analog. Unlike insulin, the inhibitory effect of berberine on lipolysis in response to isoproterenol was not abrogated by wortmannin, an inhibitor of phosphatidylinositol 3-kinase, but additive to that of PD98059, an extracellular signal-regulated kinase kinase inhibitor. Prior exposure of adipocytes to berberine decreased the intracellular cAMP production induced by isoproterenol, forskolin, and 3-isobutyl-1-methylxanthine (IBMX), along with hormone-sensitive lipase (HSL) Ser-563 and Ser-660 dephosphorylation, but had no effect on perilipin phosphorylation. Berberine stimulated HSL Ser-565 as well as adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. However, compound C, an AMPK inhibitor, did not reverse the regulatory effect of berberine on HSL Ser-563, Ser-660, and Ser-565 phosphorylation, nor the antilipolytic effect of berberine. Knockdown of AMPK using RNA interference also failed to restore berberine-suppressed lipolysis. cAMP-raising agents increased AMPK activity, which was not additive to that of berberine. Stimulation of adipocytes with berberine increased phosphodiesterase (PDE) 3B and PDE4 activity measured by hydrolysis of 3[H]cAMP. These results suggest that berberine exerts an antilipolytic effect mainly by reducing the inhibition of PDE, leading to a decrease in cAMP and HSL phosphorylation independent of AMPK pathway.  相似文献   

3.
AMP-activated protein kinase (AMPK) is an important regulator of cellular energy status. In adipocytes, stimuli that increase intracellular cyclic AMP (cAMP) have also been shown to increase the activity of AMPK. The precise molecular mechanisms responsible for cAMP-induced AMPK activation are not clear. Phosphodiesterase 3B (PDE3B) is a critical regulator of cAMP signaling in adipocytes. Here we investigated the roles of PDE3B, PDE4, protein kinase B (PKB) and the exchange protein activated by cAMP 1 (Epac1), as well as lipolysis, in the regulation of AMPK in primary rat adipocytes. We demonstrate that the increase in phosphorylation of AMPK at T172 induced by the adrenergic agonist isoproterenol can be diminished by co-incubation with insulin. The diminishing effect of insulin on AMPK activation was reversed upon treatment with the PDE3B specific inhibitor OPC3911 but not with the PDE4 inhibitor Rolipram. Adenovirus-mediated overexpression of PDE3B and constitutively active PKB both resulted in greatly reduced isoproterenol-induced phosphorylation of AMPK at T172. Co-incubation of adipocytes with isoproterenol and the PKA inhibitor H89 resulted in a total ablation of lipolysis and a reduction in AMPK phosphorylation/activation. Stimulation of adipocytes with the Epac1 agonist 8-pCPT-2′O-Me-cAMP led to increased phosphorylation of AMPK at T172. The general lipase inhibitor Orlistat decreased isoproterenol-induced phosphorylation of AMPK at T172. This decrease corresponded to a reduction of lipolysis from adipocytes. Taken together, these data suggest that PDE3B and PDE4 regulate cAMP pools that affect the activation/phosphorylation state of AMPK and that the effects of cyclic AMP on AMPK involve Epac1, PKA and lipolysis.  相似文献   

4.
Adipocyte lipolysis is dependent on an increase in the intracellular concentration of cAMP. Intracellular phosphodiesterases (PDEs) hydrolyze cAMP and limit stimulation of lipolysis. In the present study, the mRNA expression of PDE4 subtypes and the antilipolytic role of PDE4 in rat adipocytes were investigated. Fragments encoding PDE4A (233 bp), PDE4B (786 bp), PDE4C (539 bp), and PDE4D (262 bp) sequences were amplified by RT-PCR. The mRNA expression of PDE4 subtypes (A, B, C, D) determined by real-time quantitative PCR was 7, 18.7, 18.9, and 7.2% relative to PDE3B. Inhibition of PDE4 by rolipram increased basal lipolysis and reversed in part prostaglandin E2 antilipolysis. The combination of PDE3 and PDE4 inhibitors synergistically reversed both prostaglandin E2 and phenylisopropyl adenosine antilipolysis. Stimulation of adipocytes with prostaglandin E2 increased total PDE activity and PDE3 activity measured by hydrolysis of 3[H]cAMP by the particulate fraction of adipocytes. The present study confirmed that mRNAs for all four PDE4 subtypes were expressed in rat adipocytes, with PDE4B and PDE4C predominant. Moreover, PDE4 not only limits the rate of basal lipolysis but also contributes to prostaglandin E2 antilipolysis in rat adipocytes.  相似文献   

5.
Inhibition of adipocyte lipolysis by insulin is important for whole-body energy homeostasis; its disruption has been implicated as contributing to the development of insulin resistance and type 2 diabetes mellitus. The main target of the antilipolytic action of insulin is believed to be phosphodiesterase 3B (PDE3B), whose phosphorylation by Akt leads to accelerated degradation of the prolipolytic second messenger cyclic AMP (cAMP). To test this hypothesis genetically, brown adipocytes lacking PDE3B were examined for their regulation of lipolysis. In Pde3b knockout (KO) adipocytes, insulin was unable to suppress β-adrenergic receptor-stimulated glycerol release. Reexpressing wild-type PDE3B in KO adipocytes fully rescued the action of insulin against lipolysis. Surprisingly, a mutant form of PDE3B that ablates the major Akt phosphorylation site, murine S273, also restored the ability of insulin to suppress lipolysis. Taken together, these data suggest that phosphorylation of PDE3B by Akt is not required for insulin to suppress adipocyte lipolysis.  相似文献   

6.
Genistein is a phytoestrogen exerting numerous biological effects. Its direct influence on adipocyte metabolism and leptin secretion was previously demonstrated. This study aimed to determine whether genistein antagonizes the antilipolytic action of insulin in rat adipocytes. Freshly isolated adipose cells were incubated for 90 min with epinephrine, epinephrine with insulin and epinephrine with a specific inhibitor of protein kinase A (H-89) at different concentrations of genistein (0, 6.25, 12.5, 25, 50 and 100 μM). Genistein failed to affect epinephrine-induced glycerol release, however, the inhibitory action of insulin on epinephrine-induced lipolysis was significantly abrogated in cells exposed to the phytoestrogen (12.5–100 μM). The increase in insulin concentration did not suppress the genistein effect. Its inhibitory influence on the antilipolytic action of insulin was accompanied by a substantial rise in cAMP in adipocytes. This rise appeared despite the presence of 10 nM insulin in the incubation medium. Further experiments, in which insulin was replaced by H-89, revealed that the antilipolytic action of protein kinase A inhibitor on epinephrine-induced lipolysis was not affected by genistein. This means that genistein counteracted the antilipolytic action of insulin due to the increase in cAMP levels and activation of protein kinase A in adipocytes. The observed attenuation of the inhibitory effect of insulin on triglyceride breakdown evoked by genistein was not related to its estrogenic activities, as evidenced in experiments employing the intracellular estrogen receptor blocker, ICI 182,780. Moreover, it was found that genistein-induced impairment of the antilipolytic action of insulin was not accompanied by changes in the proportion between fatty acids and glycerol released from adipocytes. The ability of genistein to counteract the antilipolytic action of insulin may contribute to the decreased triglyceride accumulation in adipose tissue.  相似文献   

7.
In adipocytes, phosphorylation and activation of PDE3B is a key event in the antilipolytic action of insulin. The role of PDE4, another PDE present in adipocytes, is not yet known. In this work we investigate the role of PDE3B and PDE4 in insulin-induced glucose uptake, GLUT-4 translocation and lipogenesis. Inhibition of PDE3 (OPC3911, milrinone) but not PDE4 (RO 20-1724) lowered insulin-induced glucose uptake and lipogenesis, especially in the presence of isoproterenol (a general beta-adrenergic agonist), CL316243, a selective beta3-adrenergic agonist, and pituitary adenylate cyclase-activating peptide. The inhibitory effect of OPC3911 was associated with reduced translocation of GLUT-4 from the cytosol to the plasma membrane. Both OPC3911 and RO 20-1724 increased protein kinase A (PKA) activity and lipolysis. H89, a PKA inhibitor, did not affect OPC3911-mediated inhibition of insulin-induced glucose uptake and lipogenesis, whereas 8-pCPT-2'-O-Me-cAMP, an Epac agonist which mediates PKA independent cAMP signaling events, mimicked all the effects of OPC3911. Insulin-mediated activation of protein kinase B, a kinase involved in insulin-induced glucose uptake, was apparently not altered by OPC3911. In summary, our data suggest that PDE3B, but not PDE4, contributes to the regulation of insulin-induced glucose uptake, GLUT-4 translocation, and lipogenesis presumably by regulation of a cAMP/Epac signalling mechanisms.  相似文献   

8.
The interactions of polyamines with the lipolytic system were studied in isolated rat adipocytes. Spermine, spermidine and putrescine significantly inhibited adenosine deaminase-stimulated lipolysis. An antilipolytic effect of spermine was detectable at a concentration of 0.25 mM (P less than 0.05). At a concentration of 10 mM all three polyamines inhibited the stimulated lipolysis by 50-60% (P less than 0.001). In addition, spermine enhanced the antilipolytic sensitivity of insulin. Spermine (1 mM) decreased the half-maximal inhibitory concentration of insulin from 320 +/- 70 pM to 56 +/- 20 pM (P less than 0.01). The antilipolytic effects and the cyclic-AMP-lowering effects of the polyamines were almost completely prevented in the presence of different phosphodiesterase (PDE) inhibitors (3-isobutyl-1-methylxanthine and RO 20-1724) and, in addition, polyamines had no effect on lipolysis stimulated by dibutyryl cyclic AMP, indicating that polyamines may inhibit lipolysis by activating the PDE enzyme. This latter suggestion was confirmed by demonstrating that spermine (5 mM) significantly enhanced the low-Km PDE enzyme activity (P less than 0.01). Finally, the amounts of polyamines present in isolated adipocytes were measured, and the estimated cytoplasmic concentrations were 0.02 mM (putrescine), 0.86 mM (spermidine), and 1.0 mM (spermine). It is concluded that polyamines may possibly be involved in the physiological regulation of triacylglycerol mobilization in adipocytes.  相似文献   

9.
Catecholamines in adipose tissue promote lipolysis via cAMP, whereas insulin stimulates lipogenesis. Here we show that H(2)O(2) generated by insulin in rat adipocytes impaired cAMP-mediated amplification cascade of lipolysis. These micromolar concentrations of H(2)O(2) added before cAMP suppressed cAMP activation of type IIbeta cyclic AMP-dependent protein kinase (PKA) holoenzyme, prevented hormone-sensitive lipase translocation from cytosol to storage droplets, and inhibited lipolysis. Similarly, H(2)O(2) impaired activation of type IIalpha PKA holoenzyme from bovine heart and from that reconstituted with regulatory IIalpha and catalytic alpha subunits. H(2)O(2) was ineffective (a) if these PKA holoenzymes were preincubated with cAMP, (b) if added to the catalytic alpha subunit, which is active independently of cAMP activation, and (c) if the catalytic alpha subunit was substituted by its C199A mutant in the reconstituted holoenzyme. H(2)O(2) inhibition of PKA activation remained after H(2)O(2) elimination by gel filtration but was reverted with dithiothreitol or with thioredoxin reductase plus thioredoxin. Electrophoresis of holoenzyme in SDS gels showed separation of catalytic and regulatory subunits after cAMP incubation but a single band after H(2)O(2) incubation. These data strongly suggest that H(2)O(2) promotes the formation of an intersubunit disulfide bond, impairing cAMP-dependent PKA activation. Phylogenetic analysis showed that Cys-97 is conserved only in type II regulatory subunits and not in type I regulatory subunits; hence, the redox regulation mechanism described is restricted to type II PKA-expressing tissues. In conclusion, phylogenetic analysis results, selective chemical behavior, and the privileged position in holoenzyme lead us to suggest that Cys-97 in regulatory IIalpha or IIbeta subunits is the residue forming the disulfide bond with Cys-199 in the PKA catalytic alpha subunit. A new molecular point for cross-talk among heterologous signal transduction pathways is demonstrated.  相似文献   

10.
Human fat cells were incubated with two different cAMP analogues, 8-bromocAMP and 6N-monobutyrylcAMP. The former analogue is an excellent substrate for the phosphodiesterase while the latter is resistant to hydrolysis. In the presence of adenosine deaminase, isoproterenol (10(-6)M) stimulated lipolysis 8-10 fold which was similar to the effect exerted by the cAMP analogues. Basal lipolysis and lipolysis activated by 6N-monobutyrylcAMP was not inhibited by insulin even at high concentrations, whereas the effect of 8-bromocAMP was virtually completely inhibited. This effect of insulin was completely prevented by the addition of IBMX. Thus, activation of phosphodiesterase by insulin is necessary to elicit the antilipolytic effect in human adipocytes.  相似文献   

11.
The aim of this experiment was to study the influence of 18-hour food deprivation on basal and stimulated lipolysis in adipocytes obtained from young male Wistar rats. Fat cells from fed and fasted rats were isolated from the epididymal adipose tissue by collagenase digestion. Adipocytes were incubated in Krebs-Ringer buffer (pH 7.4, 37 degrees C) without agents affecting lipolysis and with different lipolytic stimulators (epinephrine, forskolin, dibutyryl-cAMP, theophylline, DPCPX, amrinone) or inhibitors (PIA, H-89, insulin). After 60 min of incubation, glycerol and, in some cases, also fatty acids released from adipocytes to the incubation medium were determined. Basal lipolysis was substantially potentiated in cells of fasted rats in comparison to adipocytes isolated from fed animals. The inhibition of protein kinase A activity by H-89 partially suppressed lipolysis in both groups of adipocytes, but did not eliminate this difference. The agonist of adenosine A (1) receptor also did not suppress fasting-enhanced basal lipolysis. The epinephrine-induced triglyceride breakdown was also enhanced by fasting. Similarly, the direct activation of adenylyl cyclase by forskolin or protein kinase A by dibutyryl-cAMP resulted in a higher lipolytic response in cells derived from fasted animals. These results indicate that the fasting-induced rise in lipolysis results predominantly from changes in the lipolytic cascade downstream from protein kinase A. The antagonism of the adenosine A (1) receptor and the inhibition of cAMP phosphodiesterase also induced lipolysis, which was potentiated by food deprivation. Moreover, the rise in basal and epinephrine-stimulated lipolysis in adipocytes of fasted rats was shown to be associated with a diminished non-esterified fatty acids/glycerol molar ratio. This effect was presumably due to increased re-esterification of triglyceride-derived fatty acids in cells of fasted rats. Comparing fed and fasted rats for the antilipolytic effect of insulin in adipocytes revealed that short-term food deprivation resulted in a substantial deterioration of the ability of insulin to suppress epinephrine-induced lipolysis.  相似文献   

12.
In 32PO4-labeled adipocytes, isoproterenol (ISO) or physiologically relevant concentrations of insulin rapidly increased phosphorylation of a particulate 135-kDa protein which has been identified as a cGMP-inhibited "low Km" cAMP phosphodiesterase (CGI-PDE) by several criteria, including selective immunoprecipitation with anti-CGI-PDE IgG (Degerman, E., Smith, C.J., Tornqvist, H., Vasta, V., Belfrage, P., and Manganiello, V.C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 533-537). The time courses and concentration dependences for phosphorylation of CGI-PDE by ISO and insulin correlated with CGI-PDE activation in the presence of these agents; effects of ISO were somewhat more rapid than those of insulin. Adenosine deaminase, which metabolizes the adenylate cyclase inhibitor adenosine, also rapidly induced phosphorylation and activation of CGI-PDE. Phenylisopropyladenosine (an adenosine deaminase-resistant adenosine analog) prevented or reversed both adenosine deaminase-stimulated phosphorylation and activation of CGI-PDE (IC50 approximately 0.2 nM). Incubation of adipocytes with 0.1 nM insulin in the presence of ISO rapidly produced 30-200% greater activation and phosphorylation of CGI-PDE than the expected added effects of insulin and ISO individually; both effects preceded the insulin-induced decreases in protein kinase A activity and inhibition of lipolysis. These and other results indicate that CGI-PDE can be phosphorylated at distinct sites and activated by cAMP-dependent and insulin-dependent serine kinase(s), that the activation state of CGI-PDE reflects its relative phosphorylation state, and that synergistic phosphorylation/activation of CGI-PDE may be important in the antilipolytic action of insulin.  相似文献   

13.
Hormone-sensitive lipase (HSL) is the predominant lipase effector of catecholamine-stimulated lipolysis in adipocytes. HSL-dependent lipolysis in response to catecholamines is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin A (Peri A), an essential lipid droplet (LD)-associated protein. It is believed that perilipin phosphorylation is essential for the translocation of HSL from the cytosol to the LD, a key event in stimulated lipolysis. Using adipocytes retrovirally engineered from murine embryonic fibroblasts of perilipin null mice (Peri-/- MEF), we demonstrate by cell fractionation and confocal microscopy that up to 50% of cellular HSL is LD-associated in the basal state and that PKA-stimulated HSL translocation is fully supported by adenoviral expression of a mutant perilipin lacking all six PKA sites (Peri Adelta1-6). PKA-stimulated HSL translocation was confirmed in differentiated brown adipocytes from perilipin null mice expressing an adipose-specific Peri Adelta1-6 transgene. Thus, PKA-induced HSL translocation was independent of perilipin phosphorylation. However, Peri Adelta1-6 failed to enhance PKA-stimulated lipolysis in either MEF adipocytes or differentiated brown adipocytes. Thus, the lipolytic action(s) of HSL at the LD surface requires PKA-dependent perilipin phosphorylation. In Peri-/- MEF adipocytes, PKA activation significantly enhanced the amount of HSL that could be cross-linked to and co-immunoprecipitated with ectopic Peri A. Notably, this enhanced cross-linking was blunted in Peri-/- MEF adipocytes expressing Peri Adelta1-6. This suggests that PKA-dependent perilipin phosphorylation facilitates (either direct or indirect) perilipin interaction with LD-associated HSL. These results redefine and expand our understanding of how perilipin regulates HSL-mediated lipolysis in adipocytes.  相似文献   

14.
Resveratrol is a naturally occurring diphenolic compound exerting numerous beneficial effects in the organism. The present study demonstrated its short-term, direct influence on lipogenesis, lipolysis and the antilipolytic action of insulin in freshly isolated rat adipocytes. In fat cells incubated for 90 min with 125 and 250 μM resveratrol (but not with 62.5 μM resveratrol), basal and insulin-induced lipogenesis from glucose was significantly reduced. The antilipogenic effect was accompanied by a significant diminution of CO2 release and enhanced production of lactate. The inhibition of glucose conversion to lipids found in the presence of resveratrol was not attenuated by activator of protein kinase C. However, acetate conversion to lipids appeared to be insensitive to resveratrol.In adipocytes incubated for 90 min with epinephrine, 10 and 100 μM resveratrol significantly enhanced lipolysis, especially at lower concentrations of the hormone. However, the lipolytic response to dibutyryl-cAMP, a direct activator of protein kinase A, was unchanged. Further studies demonstrated that, in cells stimulated with epinephrine, 1, 10 and 100 μM resveratrol significantly enhanced glycerol release despite the presence of insulin or H-89, an inhibitor of protein kinase A. The influence of resveratrol on epinephrine-induced lipolysis and on the antilipolytic action of insulin was not abated by the blocking of estrogen receptor and was accompanied by a significant (with the exception of 1 μM resveratrol in experiment with insulin) increase in cAMP in adipocytes. It was also revealed that resveratrol did not change the proportion between glycerol and fatty acids released from adipocytes exposed to epinephrine.Results of the present study revealed that resveratrol reduced glucose conversion to lipids in adipocytes, probably due to disturbed mitochondrial metabolism of the sugar. Moreover, resveratrol increased epinephrine-induced lipolysis. This effect was found also in the presence of insulin and resulted from the synergistic action of resveratrol and epinephrine. The obtained results provided evidence that resveratrol affects lipogenesis and lipolysis in adipocytes contributing to reduced lipid accumulation in these cells.  相似文献   

15.
Insulin inhibition of lipolysis in the presence of forskolin was reversed by a four hour exposure of adipocytes to pertussis toxin. In contrast, the antilipolytic action of insulin against lipolysis due to theophylline was unaffected by pertussis toxin as was the ability of insulin to lower cyclic AMP in the presence of either forskolin or theophylline. The stimulation of adenylate cyclase by norepinephrine in crude plasma membranes obtained from rat adipocytes was inhibited by N6-(Phenylisopropyl)adenosine (PIA) and abolished by pretreating rat adipocytes with pertussis toxin. The stimulation of glucose metabolism by insulin was not altered by pertussis toxin pretreatment of rat adipocytes. These findings suggest that pertussis toxin selectively abolishes the antilipolytic effect of insulin in the presence of forskolin through a cyclic AMP independent mechanism.  相似文献   

16.
The acylated peptide ghrelin (AG) and its endogenous non-acylated isoform (UAG) protect cardiomyocytes, pancreatic β-cells, and preadipocytes from apoptosis, and induce preadipocytes differentiation into adipocytes. These events are mediated by AG and UAG binding to a still unidentified receptor, which determines the activation of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) ERK1/2. AG and UAG also possess antilipolytic activity in vitro, but the underlying mechanism remains unknown. Thus, the objective of the current study was to characterize the molecular events involved in AG/UAG receptor signaling cascade. We treated rat primary visceral adipocytes with isoproterenol (ISO) and forskolin (FSK) to stimulate lipolysis, simultaneously incubating them with or without AG or UAG. Both peptides blocked ISO- and FSK-induced lipolysis. By direct measurement of cAMP intracellular content, we demonstrated that AG/UAG effect was associated to a reduction of ISO-induced cAMP accumulation. Moreover, the cAMP analog 8Br-cAMP abolished AG/UAG effect. As AG and UAG were ineffective against lipolysis induced by db-cAMP, another poorly hydrolyzable cAMP analog, phosphodiesterase (PDE) involvement was hypothesized. Indeed, cilostamide, a specific PDE3B inhibitor, blocked AG/UAG effect on ISO-induced lipolysis. Furthermore, the PI3K inhibitor wortmannin and AKT inhibitor 1,3-dihydro-1-(1-((4-(6-phenyl-1H-imidazo(4,5-g)quinoxalin-7-yl)phenyl)methyl)-4piperidinyl)-2H-benzimidazol-2-one trifluoroacetate also blocked AG/UAG action, suggesting a role in PDE3B activation. In particular, PI3K isoenzyme gamma (PI3Kγ) selective inhibition through the compound AS605240 prevented AG/UAG effect on ISO-stimulated lipolysis, hampering AKT phosphorylation on Ser(473). Taken together, these data demonstrate for the first time that AG/UAG attenuation of ISO-induced lipolysis involves PI3Kγ/AKT and PDE3B.  相似文献   

17.
Phosphatidylinositol 3-kinase mediates several actions of insulin including its antilipolytic effect. This effect is elicited by the insulin-stimulated serine phosphorylation and activation of cGMP-inhibited phosphodiesterase (PDE3B). In human adipocytes, we found that insulin differentially stimulated phosphatidylinositol 3-kinase activity; the lipid kinase activity was associated with IRS-1, whereas the serine kinase activity was associated with the insulin receptor and phosphorylated a number of proteins including p85, p110, and a 135-kDa protein identified as PDE3B. PDE3B phosphorylation was associated with enzyme activation, thus initiating the antilipolytic effect of insulin. These results show a novel pathway for intracellular signaling through the insulin receptor leading to the serine phosphorylation of key proteins involved in insulin action.  相似文献   

18.
The extent to which a fall in cellular cyclic AMP could account for the antilipolytic action in rat epididymal adipocytes incubated with adrenocorticotrophic hormone was studied. The antilipolytic effect, measured by suppression of glycerol release, was always associated with a decrease in cyclic AMP, but the magnitude of the fall was modified by several factors. For example, it was greater when the cAMP level was high, as when it is at its peak after hormone stimulation, or when cell concentrations are low. Glucose did not modify appreciably the insulin effect on the nucleotide level. The inhibitory effects of insulin on corticotrophin-stimulated lipolysis and cyclic AMP levels were detectable at the concentrations of 1 microU/ml and were biphasic, with maximal effects at 10-100 microU/ml. Protein kinase activity ratio was similarly affected. Activity of cyclic-AMP-dependent protein kinase conformed closely to the level of cyclic AMP. There was no indication that insulin modified the sensitivity of the kinase to cyclic AMP. Insulin did not alter the relationship of cellular cyclic AMP levels to glycerol when adipocytes were incubated with various concentrations of corticotrophin. This was true, irrespective of whether measurements were made when cyclic AMP was on the upward rise after hormone stimulation, or on the decline. The curves obtained with and without insulin were superimposable. It is concluded that the inhibitory action of insulin on lipolysis in fat cells can be fully accounted for by a decrease in cyclic AMP.  相似文献   

19.
The effect of insulin on the state of phosphorylation of hormone-sensitive lipase, cellular cAMP-dependent protein kinase activity and lipolysis was investigated in isolated adipocytes. Increased phosphorylation of hormone-sensitive lipase in response to isoproterenol stimulation was closely paralleled by increased lipolysis. Maximal phosphorylation and lipolysis was obtained when the cAMP-dependent protein kinase activity ratio was greater than or equal to 0.1, and this corresponded to a 50% increase in the state of phosphorylation of hormone-sensitive lipase. Insulin (1 nM) reduced cAMP-dependent protein kinase activity and also reduced lipolysis with both cAMP-dependent and cAMP-independent antilipolytic effects up to an activity ratio of approximately 0.4, above which the antilipolytic effect was lost. Insulin caused a decrease in the state of phosphorylation of hormone-sensitive lipase at all levels of cAMP-dependent protein kinase activity. Under basal conditions, with cAMP-dependent protein kinase activity at a minimum, this reflected a dephosphorylation of the basal phosphorylation site of hormone-sensitive lipase in a manner not mediated by cAMP. When the cAMP-dependent protein kinase was stimulated to phosphorylate the regulatory phosphorylation site of hormone-sensitive lipase, the insulin-induced dephosphorylation occurred both at the basal and regulatory sites. At low levels of cAMP-dependent protein kinase activity ratios (0.05-0.1), dephosphorylation of the regulatory site correlated with reduced cAMP-dependent protein kinase activity, but not at higher activity ratios (greater than 0.1). Stimulation of cells with isoproterenol produced a transient (1-5 min) peak of cAMP-dependent protein kinase activity and of phosphorylation of hormone-sensitive lipase. The state of phosphorylation also showed a transient peak when the protein kinase was maximally and constantly activated. In the presence of raised levels of cellular cAMP, insulin (1 nM) caused a rapid (t1/2 approximately 1 min) dephosphorylation of hormone-sensitive lipase. In unstimulated cells the reduction in phosphorylation caused by insulin was distinctly slower (t1/2 approximately 5 min). These findings are interpreted to suggest that insulin affects the state of phosphorylation of hormone-sensitive lipase and lipolysis through a cAMP-dependent pathway, involving reduction of cAMP, and through a cAMP-independent pathway, involving activation of a protein phosphatase activity that dephosphorylates both the regulatory and basal phosphorylation sites of hormone-sensitive lipase.  相似文献   

20.
Visceral obesity is associated with resistance to the antilipolytic effect of insulin in vivo. We investigated whether subcutaneous abdominal and gluteal adipocytes from viscerally obese women exhibit insulin resistance in vitro. Subjects were obese black and white premenopausal nondiabetic women matched for visceral adipose tissue (VAT), total adiposity, and age. Independently of race and adipocyte size, increased VAT was associated with decreased sensitivity to insulin's antilipolytic effect in subcutaneous abdominal and gluteal adipocytes. Absolute lipolytic rates at physiologically relevant concentrations of insulin or the adenosine receptor agonist N(6)-(phenylisopropyl)adenosine were higher in subjects with the highest vs. lowest VAT area. Independently of cell size, abdominal adipocytes were less sensitive to the antilipolytic effect of insulin than gluteal adipocytes, which may partly explain increased nonesterified fatty acid fluxes in upper vs. lower body obese women. Moreover, increased VAT was associated with decreased responsiveness, but not decreased sensitivity, to insulin's stimulatory effect on glucose transport in abdominal adipocytes. These data suggest that insulin resistance of subcutaneous abdominal and, to a lesser extent, gluteal adipocytes may contribute to increased systemic lipolysis in both black and white viscerally obese women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号