首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
Numerous integral membrane proteins are degraded in the mammalian ER. HMG-CoA reductase (HMG-R), a key enzyme in the mevalonate pathway by which isoprenoids and sterols are synthesized, is one substrate of ER degradation. The degradation of HMG-R is modulated by feedback signals from the mevalonate pathway. We investigated the role of regulated degradation of the two isozymes of HMG-R, Hmg1p and Hmg2p, in the physiology of Saccharomyces cerevisiae. Hmg1p was quite stable, whereas Hmg2p was rapidly degraded. Degradation of Hmg2p proceeded independently of vacuolar proteases or secretory traffic, indicating that Hmg2p degradation occurred at the ER. Hmg2p stability was strongly affected by modulation of the mevalonate pathway through pharmacological or genetic means. Decreased mevalonate pathway flux resulted in decreased degradation of Hmg2p. One signal for degradation of Hmg2p was a nonsterol, mevalonate-derived molecule produced before the synthesis of squalene. Genetic evidence indicated that a farnesylated protein may also be necessary for Hmg2p degradation. Studies with reporter genes demonstrated that the stability of each isozyme was determined by its noncatalytic NH2-terminal domain. Our data show that ER protein degradation is widely conserved among eukaryotes, and that feedback control of HMG-R degradation is an ancient paradigm of regulation.  相似文献   

2.
3-hydroxy-3-methylglutaryl-CoA reductase (HMG-R), a key enzyme of sterol synthesis, is an integral membrane protein of the endoplasmic reticulum (ER). In both humans and yeast, HMG-R is degraded at or in the ER. The degradation of HMG-R is regulated as part of feedback control of the mevalonate pathway. Neither the mechanism of degradation nor the nature of the signals that couple the degradation of HMG-R to the mevalonate pathway is known. We have launched a genetic analysis of the degradation of HMG-R in Saccharomyces cerevisiae using a selection for mutants that are deficient in the degradation of Hmg2p, an HMG-R isozyme. The underlying genes are called HRD (pronounced "herd"), for HMG-CoA reductase degradation. So far we have discovered mutants in three genes: HRD1, HRD2, and HRD3. The sequence of the HRD2 gene is homologous to the p97 activator of the 26S proteasome. This p97 protein, also called TRAP-2, has been proposed to be a component of the mature 26S proteasome. The hrd2-1 mutant had numerous pleiotropic phenotypes expected for cells with a compromised proteasome, and these phenotypes were complemented by the human TRAP-2/p97 coding region. In contrast, HRD1 and HRD3 genes encoded previously unknown proteins predicted to be membrane bound. The Hrd3p protein was homologous to the Caenorhabditis elegans sel-1 protein, a negative regulator of at least two different membrane proteins, and contained an HRD3 motif shared with several other proteins. Hrd1p had no full-length homologues, but contained an H2 ring finger motif. These data suggested a model of ER protein degradation in which the Hrd1p and Hrd3p proteins conspire to deliver HMG-R to the 26S proteasome. Moreover, our results lend in vivo support to the proposed role of the p97/TRAP-2/Hrd2p protein as a functionally important component of the 26S proteasome. Because the HRD genes were required for the degradation of both regulated and unregulated substrates of ER degradation, the HRD genes are the agents of HMG-R degradation but not the regulators of that degradation.  相似文献   

3.
The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMG-R) is the major rate-limiting enzyme of the mevalonate pathway in many organisms, including yeasts. In the yeast Saccharomyces cerevisiae, there are two isoenzymes of HMG-R (Hmg1p and Hmg2p). Both consist of an anchoring transmembrane domain and a catalytic domain. We have removed the known controlling features of HMG-R by overproducing the catalytic domain of Hmg1p. This overproduction leads to an enhancement of squalene production, implying that HMG-R has been deregulated. The enhancement is apparent under semianaerobic and aerobic conditions. Despite the increase in squalene production, the amount of ergosterol produced by the HMG-R-overproducing yeast was not increased. This result suggests the presence of another regulatory step between squalene and ergosterol formation. Squalene levels generated by cells overproducing the catalytic domain of HMG-R were estimated to be up to 10 times those produced by wild-type cells. The enhancement in squalene production coincided with a reduction in growth rate. This reduction may be a direct consequence of the buildup of high concentrations of squalene and presqualene intermediates of the pathway.  相似文献   

4.
In eukaryotic cells all isoprenoids are synthesized from a common precursor, mevalonate. The formation of mevalonate from 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) is catalyzed by HMG-CoA reductase and is the first committed step in isoprenoid biosynthesis. In mammalian cells, synthesis of HMG-CoA reductase is subject to feedback regulation at multiple molecular levels. We examined the state of feedback regulation of the synthesis of the HMG-CoA reductase isozyme encoded by the yeast gene HMG1 to examine the generality of this regulatory pattern. In yeast, synthesis of Hmg1p was subject to feedback regulation. This regulation of HMG-CoA reductase synthesis was independent of any change in the level of HMG1 mRNA. Furthermore, regulation of Hmg1p synthesis was keyed to the level of a nonsterol product of the mevalonate pathway. Manipulations of endogenous levels of several isoprenoid intermediates, either pharmacologically or genetically, suggested that mevalonate levels may control the synthesis of Hmg1p through effects on translation.  相似文献   

5.
Protein degradation is employed in both regulation and quality control. Regulated degradation of specific proteins is often mediated by discrete regions of primary sequence known as degrons, whereas protein quality control involves recognition of structural features common to damaged or misfolded proteins, rather than specific features of an individual protein. The yeast HMG-CoA reductase isozyme Hmg2p undergoes stringently regulated degradation by machinery that is also required for ER quality control. The 523 residue N-terminal transmembrane domain of Hmg2p is necessary and sufficient for regulated degradation. To understand how Hmg2p undergoes regulated degradation by the ER quality control pathway, we analyzed over 300 mutants of Hmg2p. Regulated degradation of Hmg2p requires information distributed over the entire transmembrane domain. Accordingly, we refer to this determinant as a 'distributed' degron, which has functional aspects consistent with both regulation and quality control. The Hmg2p degron functions in the specific, regulated degradation of Hmg2p and can impart regulated degradation to fusion proteins. However, its recognition is based on dispersed structural features rather than primary sequence motifs. This mode of targeting has important consequences both for the prediction of degradation substrates and as a potential therapeutic strategy for targeted protein degradation using endogenous degradation pathways.  相似文献   

6.
The integral ER membrane protein HMG-CoA reductase (HMGR) is a key enzyme of the mevalonate pathway from which sterols and other essential molecules are produced. HMGR degradation occurs in the ER and is regulated by mevalonate-derived signals. Little is known about the mechanisms responsible for regulating HMGR degradation. The yeast Hmg2p isozyme of HMGR undergoes regulated degradation in a manner very similar to mammalian HMGR, allowing us to isolate mutants deficient in regulating Hmg2p stability. We call these mutants cod mutants for the control of HMG-CoA reductase degradation. With this screen, we have identified the first gene of this class, COD1, which encodes a P-type ATPase and is identical to SPF1. Our data suggested that Cod1p is a calcium transporter required for regulating Hmg2p degradation. This role for Cod1p is distinctly different from that of the well-characterized Ca(2+) P-type ATPase Pmr1p which is neither required for Hmg2p degradation nor its control. The identification of Cod1p is especially intriguing in light of the role Ca(2+) plays in the regulated degradation of mammalian HMGR.  相似文献   

7.
Sterol synthesis by the mevalonate pathway is modulated, in part, through feedback-regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). In both mammals and yeast, a non-sterol isoprenoid signal positively regulates the rate of HMGR degradation. To define more precisely the molecule that serves as the source of this signal, we have conducted both pharmacological and genetic manipulations of the mevalonate pathway in yeast. We now demonstrate that farnesyl diphosphate (FPP) is the source of the positive signal for Hmg2p degradation in yeast. This FPP-derived signal does not act by altering the endoplasmic reticulum degradation machinery in general. Rather, the FPP-derived signal specifically modulates Hmg2p stability. In mammalian cells, an FPP-derived molecule also serves as a positive signal for HMGR degradation. Thus, both yeast and mammalian cells employ the same strategy for regulation of HMGR degradation, perhaps by conserved molecular processes.  相似文献   

8.
The sterol-sensing domain (SSD) is a conserved motif in membrane proteins responsible for sterol regulation. Mammalian proteins SREBP cleavage-activating protein (SCAP) and HMG-CoA reductase (HMGR) both possess SSDs required for feedback regulation of sterol-related genes and sterol synthetic rate. Although these two SSD proteins clearly sense sterols, the range of signals detected by this eukaryotic motif is not clear. The yeast HMG-CoA reductase isozyme Hmg2, like its mammalian counterpart, undergoes endoplasmic reticulum (ER)-associated degradation that is subject to feedback control by the sterol pathway. The primary degradation signal for yeast Hmg2 degradation is the 20-carbon isoprene geranylgeranyl pyrophosphate, rather than a sterol. Nevertheless, the Hmg2 protein possesses an SSD, leading us to test its role in feedback control of Hmg2 stability. We mutated highly conserved SSD residues of Hmg2 and evaluated regulated degradation. Our results indicated that the SSD was required for sterol pathway signals to stimulate Hmg2 ER-associated degradation and was employed for detection of both geranylgeranyl pyrophosphate and a secondary oxysterol signal. Our data further indicate that the SSD allows a signal-dependent structural change in Hmg2 that promotes entry into the ER degradation pathway. Thus, the eukaryotic SSD is capable of significant plasticity in signal recognition or response. We propose that the harnessing of cellular quality control pathways to bring about feedback regulation of normal proteins is a unifying theme for the action of all SSDs.  相似文献   

9.
3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR), the rate-limiting enzymes of sterol synthesis, undergoes feedback-regulated endoplasmic reticulum degradation in both mammals and yeast. The yeast Hmg2p isozyme is subject to ubiquitin-mediated endoplasmic reticulum degradation by the HRD pathway. We had previously shown that alterations in cellular levels of the 15-carbon sterol pathway intermediate farnesyl pyrophosphate (FPP) cause increased Hmg2p ubiquitination and degradation. We now present evidence that the FPP-derived, 20-carbon molecule geranylgeranyl pyrophosphate (GGPP) is a potent endogenous regulator of Hmg2p degradation. This work was launched by the unexpected observation that GGPP addition directly to living yeast cultures caused high potency and specific stimulation of Hmg2p degradation. This effect of GGPP was not recapitulated by FPP, GGOH, or related isoprenoids. GGPP-caused Hmg2p degradation met all the criteria for the previously characterized endogenous signal. The action of added GGPP did not require production of endogenous sterol molecules, indicating that it did not act by causing the build-up of an endogenous pathway signal. Manipulation of endogenous GGPP by several means showed that naturally made GGPP controls Hmg2p stability. Analysis of the action of GGPP indicated that the molecule works upstream of retrotranslocation and can directly alter the structure of Hmg2p. We propose that GGPP is the FPP-derived regulator of Hmg2p ubiquitination. Intriguingly, the sterol-dependent degradation of mammalian HMGR is similarly stimulated by the addition of GGOH to intact cells, implying that a dependence on 20-carbon geranylgeranyl signals may be a common conserved feature of HMGR regulation that may lead to highly specific therapeutic approaches for modulation of HMGR.  相似文献   

10.
The endoplasmic reticulum (ER) quality control pathway destroys misfolded and unassembled proteins in the ER. Most substrates of this ER-associated degradation (ERAD) pathway are constitutively targeted for destruction through recognition of poorly understood structural hallmarks of misfolding. However, the normal yeast ER membrane protein 3-hydroxy-3-methylglutaryl-CoA reductase (Hmg2p) undergoes ERAD that is physiologically regulated by sterol pathway signals. We have proposed that Hmg2p ERAD occurs by a regulated transition to an ERAD quality control substrate. Consistent with this, we had previously shown that Hmg2p is strongly stabilized by chemical chaperones such as glycerol, which stabilize misfolded proteins. To understand the features of Hmg2p that permit regulated ERAD, we have thoroughly characterized the effects of chemical chaperones on Hmg2p. These agents caused a reversible, immediate, direct change in Hmg2p degradation consistent with an effect on Hmg2p structure. We devised an in vitro limited proteolysis assay of Hmg2p in its native membranes. In vitro, chemical chaperones caused a dramatic, rapid change in Hmg2p structure to a less accessible form. As in the living cell, the in vitro action of chemical chaperones was highly specific for Hmg2p and completely reversible. To evaluate the physiological relevance of this model behavior, we used the limited proteolysis assay to examine the effects of changing in vivo degradation signals on Hmg2p structure. We found that changes similar to those observed with chemical chaperones were brought about by alteration of natural degradation signal. Thus, Hmg2p can undergo significant, reversible structural changes that are relevant to the physiological control of Hmg2p ERAD. These findings support the idea that Hmg2p regulation is brought about by regulated alteration of folding state. Considering the ubiquitous nature of quality control pathways in biology, it may be that this strategy of regulation is widespread.  相似文献   

11.
Sesquiterpene phytoalexins, a class of plant defense metabolites, are synthesized from the cytosolic acetate/mevalonate pathway in isoprenoids biosynthetic system of plants. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the synthesis of mevalonate, which is the specific precursor of this pathway, as a multi gene family. Three kinds of cDNA clones encoding HMGR were isolated from Korean red pepper (Capsicum annuum L. cv. NocKwang) and the HMGR2 gene (Hmg2) was especially obtained from a cDNA library constructed with Phytophthora capsici-infected pepper root RNAs. The Hmg2 encoding a 604-amino-acid peptide had typical features as an elicitor-induced isoform among HMGRs on its gene structure and had a predicted amino acid sequence homology. In addition, the expression of Hmg2 was rapidly induced within 1 h in response to a fungal pathogen and continuously increased up to 48 h. Together with sesquiterpene cyclase gene that was strongly induced 24 h after pathogen-infection, the Hmg2 and farnesyl pyrophosphate synthase gene were coordinately and sequentially regulated for the biosynthesis of defense-related sesquiterpene phytoalexins in pepper.  相似文献   

12.
INSIGs are proteins that underlie sterol regulation of the mammalian proteins SCAP (SREBP cleavage activating protein) and HMG-CoA reductase (HMGR). The INSIGs perform distinct tasks in the regulation of these effectors: they promote ER retention of SCAP, but ubiquitin-mediated degradation of HMGR. Two questions that arise from the discovery and study of INSIGs are: how do they perform these distinct tasks, and how general are the actions of INSIGs in biology? We now show that the yeast INSIG homologs NSG1 and NSG2 function to control the stability of yeast Hmg2p, the HMGR isozyme that undergoes regulated ubiquitination. Yeast Nsgs inhibit degradation of Hmg2p in a highly specific manner, by directly interacting with the sterol-sensing domain (SSD)-containing transmembrane region. Nsg1p functions naturally to limit degradation of Hmg2p when both proteins are at native levels, indicating a long-standing functional interplay between these two classes of proteins. One way to unify the known, disparate actions of INSIGs is to view them as known adaptations of a chaperone dedicated to SSD-containing client proteins.  相似文献   

13.
In all eucaryotic cell types analyzed, proliferations of the endoplasmic reticulum (ER) can be induced by increasing the levels of certain integral ER proteins. One of the best characterized of these proteins is HMG-CoA reductase, which catalyzes the rate-limiting step in sterol biosynthesis. We have investigated the subcellular distributions of the two HMG-CoA reductase isozymes in Saccharomyces cerevisiae and the types of ER proliferations that arise in response to elevated levels of each isozyme. At endogenous expression levels, Hmg1p and Hmg2p were both primarily localized in the nuclear envelope. However, at increased levels, the isozymes displayed distinct subcellular localization patterns in which each isozyme was predominantly localized in a different region of the ER. Specifically, increased levels of Hmg1p were concentrated in the nuclear envelope, whereas increased levels of Hmg2p were concentrated in the peripheral ER. In addition, an Hmg2p chimeric protein containing a 77-amino acid lumenal segment from Hmg1p was localized in a pattern that resembled that of Hmg1p when expressed at increased levels. Reflecting their different subcellular distributions, elevated levels of Hmg1p and Hmg2p induced sets of ER membrane proliferations with distinct morphologies. The ER membrane protein, Sec61p, was localized in the membranes induced by both Hmg1p and Hmg2p green fluorescent protein (GFP) fusions. In contrast, the lumenal ER protein, Kar2p, was present in Hmg1p:GFP membranes, but only rarely in Hmg2p:GFP membranes. These results indicated that the membranes synthesized in response to Hmg1p and Hmg2p were derived from the ER, but that the membranes were not identical in protein composition. We determined that the different types of ER proliferations were not simply due to quantitative differences in protein amounts or to the different half-lives of the two isozymes. It is possible that the specific distributions of the two yeast HMG-CoA reductase isozymes and their corresponding membrane proliferations may reveal regions of the ER that are specialized for certain branches of the sterol biosynthetic pathway.  相似文献   

14.
Lipid-mediated, reversible misfolding of a sterol-sensing domain protein   总被引:1,自引:0,他引:1  
Cellular quality control requires recognition of common features of misfolding, and so is not typically associated with the specific targeting of individual proteins. However, physiologically regulated degradation of yeast HMG-CoA reductase (Hmg2p) occurs by the HRD endoplasmic reticulum quality control pathway, implying that Hmg2p undergoes a regulated transition to a quality control substrate in response to a sterol pathway molecule. Using in vitro structural assays, we now show that the pathway derivative farnesol causes Hmg2p to undergo a change to a less folded structure. The effect is reversible, biologically relevant by numerous criteria, highly specific for farnesol structure, and requires an intact Hmg2p sterol-sensing domain. This represents a distinct lipid-sensing function for this highly conserved motif that suggests novel approaches to cholesterol management. More generally, our observation of reversible small-molecule-mediated misfolding may herald numerous examples of regulated quality control to be discovered in biology or applied in the clinic.  相似文献   

15.
In all eukaryotic cells that have been examined, specific membrane arrays are induced in response to increased levels of the ER membrane protein, HMG-CoA reductase. Analysis of these inducible membranes has the potential to reveal basic insights into general membrane assembly. Yeast express two HMG-CoA reductase isozymes, and each isozyme induces a morphologically distinct proliferation of the endoplasmic reticulum. The isozyme encoded by HMG1 induces karmellae, which are long stacks of membranes that partially enclose the nucleus. In contrast, the isozyme encoded by HMG2 induces short stacks of membrane that may be associated with the nucleus, but are frequently present at the cell periphery. To understand the molecular nature of the different cellular responses to Hmg1p and Hmg2p, we mapped the region of Hmg1p that is needed for karmellae assembly. For this analysis, a series of exchange alleles was examined in which a portion of the Hmg2p membrane domain was replaced with the corresponding Hmg1p sequences. Results of this analysis indicated that the ER lumenal loop between predicted transmembrane domains 6 and 7 was both necessary and sufficient for karmellae assembly, when present in the context of an HMG-CoA reductase membrane domain. Immunoblotting experiments ruled out the simple possibility that differences in the amounts of the various chimeric HMG-CoA reductase proteins was responsible for the altered cellular responses. Our results are consistent with the hypothesis that each yeast isozyme induces or organizes a qualitatively different organization of ER membrane.  相似文献   

16.
Insulin-induced gene proteins (INSIGs) function in control of cellular cholesterol. Mammalian INSIGs exert control by directly interacting with proteins containing sterol-sensing domains (SSDs) when sterol levels are elevated. Mammalian 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR) undergoes sterol-dependent, endoplasmic-reticulum (ER)-associated degradation (ERAD) that is mediated by INSIG interaction with the HMGR SSD. The yeast HMGR isozyme Hmg2 also undergoes feedback-regulated ERAD in response to the early pathway-derived isoprene gernanylgeranyl pyrophosphate (GGPP). Hmg2 has an SSD, and its degradation is controlled by the INSIG homologue Nsg1. However, yeast Nsg1 promotes Hmg2 stabilization by inhibiting GGPP-stimulated ERAD. We have proposed that the seemingly disparate INSIG functions can be unified by viewing INSIGs as sterol-dependent chaperones of SSD clients. Accordingly, we tested the role of sterols in the Nsg1 regulation of Hmg2. We found that both Nsg1-mediated stabilization of Hmg2 and the Nsg1-Hmg2 interaction required the early sterol lanosterol. Lowering lanosterol in the cell allowed GGPP-stimulated Hmg2 ERAD. Thus, Hmg2-regulated degradation is controlled by a two-signal logic; GGPP promotes degradation, and lanosterol inhibits degradation. These data reveal that the sterol dependence of INSIG-client interaction has been preserved for over 1 billion years. We propose that the INSIGs are a class of sterol-dependent chaperones that bind to SSD clients, thus harnessing ER quality control in the homeostasis of sterols.  相似文献   

17.
HMG-CoA reductase (HMGR) catalyzes a rate-limiting step in sterol biosynthesis and is a key control point in the feedback inhibition that regulates this pathway. Through the action of the membrane protein Insig, HMGR synthesis and degradation are regulated to maintain sterol homeostasis. The fission yeast Schizosaccharomyces pombe encodes homologs of HMGR and Insig called hmg1(+) and ins1(+), respectively. In contrast to the mammalian system, Ins1 regulates Hmg1 by a nondegradative mechanism involving phosphorylation of the Hmg1 active site. Here, we investigate the role of the Ins1-Hmg1 system in coupling glucose sensing to regulation of sterol biosynthesis. We show that Ins1-dependent Hmg1 phosphorylation is strongly induced in response to glucose withdrawal and that HMGR activity is correspondingly reduced. We also find that inability to activate Hmg1 phosphorylation under nutrient limiting conditions results in overaccumulation of sterol pathway intermediates. Furthermore, we show that regulation of Hmg1 phosphorylation requires the protein phosphatase 2A-related phosphatase Ppe1 and its regulator Sds23. These results describe a mechanism by which cells tune the rate of sterol synthesis to match nutrient availability.  相似文献   

18.
Endoplasmic reticulum (ER)-associated degradation (ERAD) is responsible for the ubiquitin-mediated destruction of both misfolded and normal ER-resident proteins. ERAD substrates must be moved from the ER to the cytoplasm for ubiquitination and proteasomal destruction by a process called retrotranslocation. Many aspects of retrotranslocation are poorly understood, including its generality, the cellular components required, the energetics, and the mechanism of transfer through the ER membrane. To address these questions, we have developed an in vitro assay, using the 8-transmembrane span ER-resident Hmg2p isozyme of HMG-CoA reductase fused to GFP, which undergoes regulated ERAD mediated by the Hrd1p ubiquitin ligase. We have now directly demonstrated in vitro retrotranslocation of full-length, ubiquitinated Hmg2p-GFP to the aqueous phase. Hrd1p was rate-limiting for Hmg2p-GFP retrotranslocation, which required ATP, the AAA-ATPase Cdc48p, and its receptor Ubx2p. In addition, the adaptors Dsk2p and Rad23p, normally implicated in later parts of the pathway, were required. Hmg2p-GFP retrotranslocation did not depend on any of the proposed ER channel candidates. To examine the role of the Hrd1p transmembrane domain as a retrotranslocon, we devised a self-ubiquitinating polytopic substrate (Hmg1-Hrd1p) that undergoes ERAD in the absence of Hrd1p. In vitro retrotranslocation of full-length Hmg1-Hrd1p occurred in the absence of the Hrd1p transmembrane domain, indicating that it did not serve a required channel function. These studies directly demonstrate polytopic membrane protein retrotranslocation during ERAD and delineate avenues for mechanistic understanding of this general process.The endoplasmic reticulum (ER)2-associated degradation (ERAD) pathway mediates the destruction of numerous integral membrane or lumenal ER-localized proteins (1, 2). ERAD functions mainly in the disposal of misfolded or unassembled proteins but also participates in the physiological regulation of some normal residents of the organelle. This ER-localized degradation pathway has been implicated in a wide variety of normal and pathophysiological processes, including sterol synthesis (3, 4), rheumatoid arthritis (5), fungal differentiation (6), cystic fibrosis (7, 8), and several neurodegenerative diseases (9). Accordingly, there is great impetus to understand the molecular mechanisms that mediate this broadly important route of protein degradation.ERAD proceeds by the ubiquitin-proteasome pathway, by which an ER-localized substrate is covalently modified by the addition of multiple copies of 7.6-kDa ubiquitin to form a multiubiquitin chain that is recognized by the cytosolic 26S proteasome (10, 11). Ubiquitin is added to the substrate by the successive action of three enzymes. The E1 ubiquitin-activating enzyme uses ATP to covalently add ubiquitin to an E2 ubiquitin-conjugating (UBC) enzyme. Ubiquitin is then transferred from the charged E2 to the substrate or the growing ubiquitin chain by the action of an E3 ubiquitin ligase, resulting in a substrate-attached multiubiquitin chain that is recognized by the proteasome, leading to degradation of the ubiquitinated substrate. This is a skeletal picture; in most cases, ancillary factors participate in substrate recognition and transfer of the ubiquitinated substrate to the proteasome (1214).ERAD substrates are either sequestered in the lumen or embedded in the ER membrane with lumenal portions. Thus, a critical step in the ERAD pathway involves transfer of the ERAD substrate to the cytosol for proteasomal degradation by a process referred to as retrotranslocation or dislocation (15). Retrotranslocation requires the hexameric AAA-ATPase called Cdc48p in yeast and p97 in mammals, and it is thought that a protein channel mediates the movement of substrates across the ER membrane. Channel candidates include the derlins (16, 17), the Sec61p anterograde channel (18, 19), or the multispanning domains of the ER ligases themselves (1820).The yeast HRD pathway mediates ERAD of numerous misfolded ER proteins and the physiologically regulated degradation of the Hmg2p isozyme of HMG-CoA reductase, an 8-transmembrane span (8-spanning) integral membrane protein critical for sterol synthesis (3). The integral membrane ER ligase Hrd1p, in conjunction with Hrd3p, is responsible for ubiquitination of Hmg2p. Efficient delivery of ubiquitinated Hmg2p to the proteasome requires the Cdc48p-Ufd1p-Npl4p complex presumably by promoting retrotranslocation of ER-embedded Hmg2p.Due to the requirement for retrotranslocation in all ERAD pathways we have adapted our in vitro assay of Hrd1p-mediated ubiquitination of the normally degraded fusion Hmg2p-GFP to study this ER removal step in ERAD. We have reconstituted Hrd1p-mediated ubiquitination and retrotranslocation of Hmg2p-GFP in vitro (21, 22). We have now directly demonstrated that the entire 8-spanning Hmg2p-GFP protein is removed from the membrane by this process, remaining intact yet soluble after retrotranslocation. The dislocation of intact Hmg2p-GFP required both Cdc48p and hydrolysis of the β–γ bond of ATP. The Ubx2p adaptor protein functioned in a manner consistent with its proposed role in Cdc48p anchoring to the ER. Surprisingly, the Dsk2p/Rad23p proteasomal coupling factors were also required for retrotranslocation. Neither derlins nor Sec61p were implicated in Hmg2p-GFP retrotranslocation by our assay. Furthermore, an engineered substrate based on HMG-CoA reductase underwent ERAD in the complete absence of Hrd1p or Doa10p and in vitro, full-length retrotranslocation, both indicating that the large transmembrane domains of either of these ERAD E3 ligases were not required for membrane extraction. Taken together, these studies define a core set of proteins that can mediate recognition and retrotranslocation of the HRD substrate Hmg2p-GFP and will allow mechanistic analysis along all points of the ERAD pathway.  相似文献   

19.
We have examined the amino terminal membrane anchoring domain of Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase (Hmg1p), a key enzyme of the isoprenoid biosynthetic pathway. Using both in vitro and in vivo approaches, we have analyzed a series of recombinant derivatives to identify key structural elements which play a role in defining Hmg1p transmembrane topology. Based on our results, we have proposed a topological model for Hmg1p in which the enzyme spans the lipid bilayer twice. We have shown the two transmembrane segments, designated TMS1 and TMS2, to be structurally and functionally inequivalent in their ability to direct the targeting and orientation of reporter proteins. Furthermore, we provide evidence indicating both the extreme amino terminal end and carboxyl terminal domain of the protein reside in the cytosol. This model therefore provides a key basis for the future examination of the role of the transmembrane domain in the targeting and regulation of Hmg1p in plant cells. J. Cell. Biochem. 65:443–459. © 1997 Wiley-Liss Inc.  相似文献   

20.
The endoplasmic reticulum (ER) is highly plastic, and increased expression of distinct single ER-resident membrane proteins, such as HMG-CoA reductase (HMGR), can induce a dramatic restructuring of ER membranes into highly organized arrays. Studies on the ER-remodeling behavior of the two yeast HMGR isozymes, Hmg1p and Hmg2p, suggest that they could be mechanistically distinct. We examined the features of Hmg2p required to generate its characteristic structures, and we found that the molecular requirements are similar to those of Hmg1p. However, the structures generated by Hmg1p and Hmg2p have distinct cell biological features determined by the transmembrane regions of the proteins. In parallel, we conducted a genetic screen to identify HER genes (required for Hmg2p-induced ER Remodeling), further confirming that the mechanisms of membrane reorganization by these two proteins are distinct because most of the HER genes were required for Hmg2p but not Hmg1p-induced ER remodeling. One of the HER genes identified was PSD1, which encodes the phospholipid biosynthetic enzyme phosphatidylserine decarboxylase. This direct connection to phospholipid biosynthesis prompted a more detailed examination of the effects of Hmg2p on phospholipid mutants and composition. Our analysis revealed that overexpression of Hmg2p caused significant and specific growth defects in nulls of the methylation pathway for phosphatidylcholine biosynthesis that includes the Psd1p enzyme. Furthermore, increased expression of Hmg2p altered the composition of cellular phospholipids in a manner that implied a role for PSD1. These phospholipid effects, unlike Hmg2p-induced ER remodeling, required the enzymatic activity of Hmg2p. Together, our results indicate that, although related, Hmg2p- and Hmg1p-induced ER remodeling are mechanistically distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号