首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Watermelon [ Citrullus lanatus (Thunb.) Matsum and Nakai, cv. Charleston Gray] fruits were examined to determine the effect of ethylene on cell wall hydrolases. pectin degradation, and cell wall ultrastructure. Enzymic studies showed that activity of polygalacturonase (EC 3.2.1.15) increased in placental tissue following 1 day of ethylene treatment and was 10 times higher after 6 days of treatment. The increase in polygalacturonase activity was accompanied by the appearance in ethanol powders of low-molecular-weight pectic polymers and a decrease in total pectin. The enhanced enzyme activity and decrease in total pectins were observed only in fruits exposed to ethylene. Ultrastructural studies of ethylene-treated tissue revealed an early disintegration of the middle lamella. The onset of wall separation coincided with the first notable increase in polygalacturonase activity. Cell wall of untreated fruit showed no evidence of structural changes. The results indicate that initiation of enzymic activity and cell wall separation in response to ethylene are not characteristic phenomena of normal ripening and senescence in watermelon fruit.  相似文献   

2.
Microbial genome sequencing has left a legacy of annotated yet uncharacterized genes or open reading frames, activities that may have useful applications in health and/or the environment. We are interested in the discovery and characterization of potentially new pectinolytic activities for the enzymatic retting of natural bast fibers such as hemp and flax. A highlight in this study is the discovery of a cold-active pectate lyase among five pectate-lyase-encoding sequences and two polygalacturonase-encoding sequences that we have cloned from the genomes of Xanthomonas campestris pv. campestris and Streptomyces coelicolor A3(2). Heterologous expression of these sequences as active pectate lyases and polygalacturonases required their subcloning in Escherichia coli Rosetta™ cells. The most active recombinant pectate lyase (XcPL NP_638163), a cold-active pectate lyase (XcPL NP_636037), and a polygalacturonase (XcPG NP_638805) were purified to near homogeneity and their kinetic parameters were determined. A significant amount of pectin degradation products was shown to be released by the two pectate lyases but not the polygalacturonase when hemp fiber pectin was used as substrate. Results of this study showed that genome data mining, besides an economical approach to new gene acquisition, may uncover new findings such as the discovery of a cold-active pectate-lyase-encoding sequence from X. campestris, a mesophilic microorganism.  相似文献   

3.
Seven strains of filamentous fungi and one yeast were isolated from flax that was dew retted in the United States. These filamentous fungi were subcultured to purity and identified, and six appear not to have been reported earlier as isolates from dew-retted flax. Five of the purified U.S. strains, two fungi isolated from flax that was dew retted in Europe, and a laboratory culture of Aspergillus sojae were tested for their ability to ret flax stems. The monocultures were evaluated for the degree of retting, fiber strength, dry weight loss, and tactile response (i.e., feel of softness) as reflected in the retted fiber. Structural modifications of representative samples of the retted flax were assessed by scanning electron microscopy. All of the filamentous fungi were able to carry out some retting, whereas the isolated yeast could not. All organisms produced pectinases when they were cultivated in shake flasks on ball-milled flax as the sole carbon source. Some fungi also produced cellulases, mannanases, and xylanases. Rhizomucor pusillus and Fusarium lateritium were noteworthy as retting organisms by their high level of pectinase activity, ability to attack noncellulosic cell types without attacking cellulose, capacity to penetrate the cuticular surface of the stem, and efficient fiber release from the core. The results indicated that these organisms deserve further study as potential organisms for retting of bast fibers in industrial applications.  相似文献   

4.
Flax (Linum usitatissimum L.) is a raw material used for important industrial products. Linen has very high quality textile properties, such as its strength, water absorption, comfort and feel. However, it occupies less than 1% of the total textile market. The major reason for this is the long and difficult retting process by which linen fibres are obtained. In retting, bast fibre bundles are separated from the core, the epidermis and the cuticle. This is accomplished by the cleavage of pectins and hemicellulose in the flax cell wall, a process mainly carried out by plant pathogens like filamentous fungi. The remaining bast fibres are mainly composed of cellulose and lignin. The aim of this study was to generate plants that could be retted more efficiently. To accomplish this, we employed the novel approach of transgenic flax plant generation with increased polygalacturonase (PGI ) and rhamnogalacturonase (RHA) activities. The constitutive expression of Aspergillus aculeatus genes resulted in a significant reduction in the pectin content in tissue-cultured and field-grown plants. This pectin content reduction was accompanied by a significantly higher (more than 2-fold) retting efficiency of the transgenic plant fibres as measured by a modified Fried’s test. No alteration in the lignin or cellulose content was observed in the transgenic plants relative to the control. This indicates that the over-expression of the two enzymes does not affect flax fibre composition. The growth rate and soluble sugar and starch contents were in the range of the control levels. It is interesting to note that the RHA and PGI plants showed higher resistance to Fusarium culmorum and F. oxysporum attack, which correlates with the increased phenolic acid level. In this report, we demonstrate for the first time that over-expression of the A. aculeatus genes results in flax plants more readily usable for fibre production. The biochemical parameters of the cell wall components indicated that the fibre quality remains similar to that of wild-type plants, which is an important pre-requisite for industrial applications. Magdalena Musialak and Magdalena Wróbel-Kwiatkowska participated equally in the preparation of this paper  相似文献   

5.
Enzyme-retting of flax was accomplished via individual treatment with four polygalacturonase (PGase) containing solutions of various fungal sources and the resulting fibers were characterized. The retting solutions were equilibrated to contain 2.19 U of PGase activity as determined via a dinitrosalicylic acid (DNS) reducing sugar assay. As compared with the buffer control, treatment with the various enzyme solutions increased the yield of fine fibers. Treatment with Aspergillus niger PGase resulted in a 62% increase in fine fiber yield as compared with the buffer control and fiber strength did not statistically differ (P相似文献   

6.
The zygomycete Rhizopus oryzae sb is a very efficient organism for retting of flax, the initial microbiological step in the process of making linen. An extracellular polygalacturonase, when isolated could perform retting, and therefore probably is the key component in the retting system of R. oryzae. This was purified and characterized. The purified enzyme has a molecular mass of 37,436 Da from mass spectrometric determination, an isoelectric point of 8.4, and has non-methylated polygalacturonic acid as its preferred substrate. Peptide sequences indicate that the enzyme belongs to family 28, in similarity with other polygalacturonases (EC. 3.2.1.15). It contains, however an N-terminal sequence absent in other fungal pectinases, but present in an enzyme from the phytopathogenic bacterium Ralstonia solanacearum. The biochemical background for the superior retting efficiency of R. oryzae sb is discussed.  相似文献   

7.
Flax stem is a source of fiber used by the textile industry. Flax fibers are separated from other parts of stems in the process called retting and are probably the first plant fibers used by man for textile purposes (1). Nowadays flax cultivation is often limited because of its lower elastic property compared to cotton fibers. Thus the goal of this study was to increase the flax fiber quality using a transgenic approach. Expression of three bacterial genes coding for beta-ketothiolase (phb A), acetoacetyl-CoA reductase (phb B), and PHB synthase (phb C) resulted in poly-beta-hydroxybutyrate (PHB) accumulation in the plant stem. PHB is known as a biodegradable thermoplastic displaying chemical and physical properties similar to those of conventional plastics (i.e., polypropylene). The fibers isolated from transgenic flax plants cultivated in the field and synthesizing PHB were then studied for biomechanical properties. All measured parameters, strength, Young's modulus, and energy for failure of flax fibers, were significantly increased. Thus the substantial improvement in elastic properties of fibers from the transgenic line has been achieved. Since the acetyl CoA, substrate for PHB synthesis, is involved not only for energy production but also for synthesis of many cellular constituents, the goal of this study was also the analysis of those metabolites, which interfere with plant physiology and thus fiber quality. The analyzed plants showed that reduction in lignin, pectin, and hemicellulose levels resulted in increased retting efficiency. A significant increase in phenolic acids was also detected, and this was the reason for improved plant resistance to pathogen infection. However, a slight decrease in crop production was detected.  相似文献   

8.
Fusarium culmorum and Fusarium oxysporum are the most common fungal pathogens of flax (Linum usitatissimum L.), thus leading to the greatest losses in crop yield. A subtractive cDNA library was constructed from flax seedlings exposed for two days to F. oxysporum. This revealed a set of genes that are potentially involved in the flax defense responses. Two of those genes directly participate in cell wall sugar polymer metabolism: UDP-d-glucuronate 4-epimerase (GAE; EC 5.1.3.6) and formate dehydrogenase (FDH; EC 1.2.1.2). GAE delivers the main substrate for pectin biosynthesis, and decreases were detected in its mRNA level after Fusarium infection. FDH participates in the metabolism of formic acid, and the expression level of its gene increased after Fusarium infection. However, metabolite profiling analysis disclosed that the pectin content in the infected plants remained unchanged, but that there were reductions in both the levels of the soluble sugars that serve as pectin precursors, and in the level of formic acid. Since formic acid is the product of pectin demethylesterification, the level of mRNAs coding for pectin methylesterase (EC 3.1.1.11) in the infected flax was measured, revealing a decrease in its expression upon plant infection. Transgenic flax plants overexpressing fungal polygalacturonase (EC 3.2.1.15) and rhamnogalacturonase (EC 3.2.1.-) showed a decrease in the pectin content and an elevated level of formic acid, but the level of expression of the FDH gene remained unchanged. It is suspected that the expression of the formate dehydrogenase gene is directly controlled by the pathogen in the early stage of infection, and additionally by pectin degradation in the later stages.  相似文献   

9.
Wi SG  Singh AP  Lee KH  Kim YS 《Annals of botany》2005,95(5):863-868
BACKGROUNDS AND AIMS: Information on the micro-distribution of lignin within the middle lamella is only just beginning to emerge. This paper provides evidence of marked heterogeneity in the micro-distribution of lignin, pectin, peroxidase and hydrogen peroxide in the middle lamella of alfalfa (Medicago sativa). METHODS: Specimens from alfalfa stems were collected and processed for transmission electron microscopy. The middle lamella architecture was examined prior to and during lignification, using transmission electron microscopy in combination with pectin- and lignin-specific staining. In addition, immuno-gold labelling of peroxidase and cytochemical localization of hydrogen peroxide (H2O2) were undertaken. KEY RESULTS: Lignin showed inhomogeneity in its distribution in the middle lamella. It was found that the distribution of pectin was irregular and corresponded to the pattern of deposited lignin. Additionally, a similarity in the pattern of the deposited lignin to the pattern of distribution of peroxidase and H2O2 was also observed. CONCLUSIONS: Irregular distribution of pectin in the middle lamella may be related to subsequent inhomegeneity in lignin in this region.  相似文献   

10.
亚麻微生物脱胶菌种的筛选与鉴定   总被引:12,自引:0,他引:12  
在研究天然水沤法脱胶的过程中,通过初筛、复筛,从沤麻主生物期的沤麻液中筛选出两株茵落周围产生透明圈较大、脱胶酶活较高的菌株。通过形态观察,并对其多项生理、生化指标进行了分析研究,初步鉴定并命名为枯草芽孢杆菌A1和B1。初步加茵脱胶实验表明:枯草芽孢杆菌A1产生果胶酶、木聚糖酶,而不产生纤维素酶,脱胶周期为72小时;枯草芽孢杆茵B1产生果胶酶、木聚糖酶和纤维素酶,脱胶周期为50小时。  相似文献   

11.
Flax (Linum usitatissimum L.) is a very important source of natural fibres used by the textile industry. Flax fibres are called lignocellulosic, because they contain mainly cellulose (about 70%), with hemicellulose, pectin and lignin. Lignin is a three-dimensional polymer with a high molecular weight, and it gives rigidity and mechanical resistance to the fibre and plant. Its presence means the fibres have worse elastic properties than non-lignocellulosic fibres, e.g. cotton fibres, which contain no lignin. The main aim of this study was to produce low-lignin flax plants with fibres with modified elastic properties. An improvement in the mechanical properties was expected. The used strategy for CAD down-regulation was based on gene silencing RNAi technology. Manipulation of the CAD gene caused changes in enzyme activity, lignin content and in the composition of the cell wall in the transgenic plants. The detected reduction in the lignin level in the CAD-deficient plants resulted in improved mechanical properties. Young's modulus was up to 75% higher in the generated transgenic plants (CAD33) relative to the control plants. A significant increase in the lignin precursor contents and a reduction in the pectin and hemicellulose constituents was also detected. A decrease in pectin and hemicellulose, as well as a lower lignin content, might lead to improved extractability of the fibres. However, the resistance of the transgenic lines to Fusarium oxysporum was over two-fold lower than for the non-transformed plants. Since Fusarium species are used as retting organisms and had been isolated from retted flax, the increased sensitivity of the CAD-deficient plant to F. oxysporum infection might lead to improved flax retting.  相似文献   

12.
Treatment with ethylene accelerated the abscission of branches of Azolla filiculoides plants. An Azolla plantlet treated with ethylene at 10 microl liter(-1) divided into 4-5 fragments after a lag period of 6-8 h. Ethylene-induced abscission was effectively inhibited by cycloheximide and was associated with an increase in the activities of cellulase and polygalacturonase. At the fracture surface abscised after treatment with ethylene, dissolution of the primary walls of the abscission zone cells was apparent. However, the middle lamella between abscission zone cells was still present. Immunoelectron microscopy using anti-unesterified pectin (JIM5) and anti-methylesterified pectin (JIM7) monoclonal antibodies revealed the presence of both JIM5 and JIM7 epitopes in the wall between abscission zone cells of branches before abscission occurred. In the middle lamella remaining after ethylene-induced abscission, only JIM7 epitopes were observed. The features of ethylene-induced abscission described herein were different from those of the rapid abscission induced by sodium azide, which implies that they are mediated by different mechanisms. The possible mechanisms are discussed.  相似文献   

13.
The fungi present on glyphosate-treated flax plants were isolated. Cladosporium herbarum, Epicoccum nigrum, Botrytis cinerea and yeasts occurred most frequently immediately after glyphosate treatment but as retting progressed the frequency of occurrence of Fusarium culmorum, Alternaria alternata and a Phoma sp. increased. Many of the fungi isolated from retting flax were also present as epiphytes on healthy flax stems. Glyphosate was shown to be fungitoxic in vitro but it had only a very slight effect on fungi colonising the flax. The application of sucrose and urea to flax 1 wk after glyphosate treatment resulted in more rapid fungal colonisation of the stems, but did not significantly enhance retting. When grown on sterilised flax stem sections, fungi known to be saprophytic on flax produced polysaccharide-degrading enzymes. All seven fungi tested produced polygalacturonase, pectin-lyase and xylanase. The greatest cellulase activity was present in stem tissues inoculated with F. culmorum and the Phoma sp. while no cellulase was detected in tissue inoculated with B. cinerea, a Mucor sp. or a Penicillium sp. Extracts from flax inoculated with the cellulolytic fungi caused the solubilisation of native cellulose. Pectinases, xylanase and cellulase were also detected in naturally-colonised senescing and dead flax stems. Stems which had been treated with a sucrose solution tended to contain the greatest enzyme activity.  相似文献   

14.
Experiments were carried out to compare the retting of moist flax preserved with sulphur dioxide with that of green dried flax, using whole straw samples. When retted in water at either a constant 20°C or 28°C dried flax was fully retted after 15 and 10 days respectively whereas the sulphur dioxide treated flax (20 g sulphur dioxide kg“1 flax DM) had undergone almost no retting after 20 days at 20dC or 10 days at 28°C. Pre-soaking the treated flax for 24 h in water and changing the acidified water, raised the pH of the retting liquor to a more normal value but did not significantly increase the rate of retting. Addition of the pectinase enzyme preparation ‘Flaxzyme’ to retting liquor at the rate of either 1.5 g kg-1 or 3.0 g kg-1 water, and at a constant temperature of 20°C, substantially increased the rate of retting of both sulphur dioxide treated and dried flax. Optimum degree of retting was achieved at 24 h with the treated flax and at 97 h with the dried flax. Pre-rinsing of the sulphur dioxide treated straw only served to reduce the rate of retting. It was concluded that natural water retting of sulphur dioxide treated flax is retarded by the presence of acidic residues of sulphur dioxide, while enzyme retting is enhanced by these. In further smaller scale experiments using bundles of cut flax straw Flaxzyme was added at concentrations ranging from 0–8.0 ml litre 1 to containers containing flax in water at ratios from 1:10 to 1: 600 flax:water and the producion of galacturonic acid was used as an indicator of retting progress. Retting took place more rapidly at higher flax to water ratios for a given enzyme concentration. This effect was attributed to the lower pH of higher flax to water ratios which created pH conditions closer to the pH optimum for the retting enzymes. When enzyme retting was compared at a range of buffered pH's the optimum was pH 4.0. At a buffered pH of 4.0 and a temperature of 19°C, retting of sulphur dioxide treated moist flax (flax to water ratio of 1:10) was achieved with Flaxzyme concentrations as low as 0.5 ml litre”‘,much lower than the previously reported minimum of 3.0 ml litre’.  相似文献   

15.
This study is focused on enzymatically upgrading the functional properties of flax fibres. Green flax fibres were treated with a polygalacturonase and a pectate lyase (PaL) and their properties were compared with dew-retted fibres. Morphological observations, vapour-sorption analyses and mechanical measurements showed that PaL-treatment was able not only to mime retting in terms of bundle division, but also to improve the mechanical properties of technical fibres. Conversely, these properties were shifted down after the polygalacturonase treatment, mainly due to the presence of contaminating glycanases. At the level of the elementary fibres, nanoindentation data indicated the highest stiffness of the secondary wall for PaL-treated fibres. The tensile properties exhibited equal, but moderate values of the Young's modulus (∼37 ± 14 GPa) and breaking strength (∼650 ± 300 MPa) for retted and PaL-treated fibres; we hypothesize an impact of the growth conditions on the fibre chemical structure with an excess of matrix pectins compared to the amount of glucomannan coating the cellulose microfibrils.  相似文献   

16.
The origin of root softening during cassava retting was investigated in a natural retting and in a sterile fermentation. Softening only occurred in the natural retting. Although high activities of endogenous pectin methyl esterase were found in cassava extracts from both fermentations, the depolymerizing enzymes polygalacturonase, active at low pH, and pectate lyase were only found in the non-sterile retting. No cellulase or xylanase activity was observed. The role of pectinases in the softening of cassava roots was confirmedin vitro using commericial enzymes. Root softening is therefore due to the combined action of endogenous pectin methyl esterase and exogenous bacterial depolymerizing enzymes. Detoxification occurred in both fermentations, confirming that the linamarase responsible for the destruction of cassava cyanide glycosides was mainly endogenous, even though microbial -glucosidases may help in the detoxication.F. Ampe is and A. Brauman was with the Laboratoire de Microbiologie et de Biotechnologie, ORSTOM, BP 181-Brazzaville, Congo. A. Brauman is now with the Laboratoire d'Ecophysiologie des Invertébrés, Université Paris XII, Avenue du Général De Gaulle, 94 010 Créteil, France  相似文献   

17.
Aluminium (Al) tolerance in plants may be conferred by reduced binding of Al in the cell wall through low root cation exchange capacity (CEC) or by organic acid exudation. Root CEC is related to the degree of esterification (DE) of pectin in the cell wall, and pectin hydrolysis plays a role in cell expansion. Therefore, it was hypothesised that Al-tolerant plants with a low root CEC maintain pectin hydrolysis in the presence of Al, allowing cell expansion to continue. Irrespective of the DE, binding of Al to pectin reduced the enzymatic hydrolysis of Al-pectin gels by polygalacturonase (E.C. 3.2.1.15). Pectin gels with calcium (Ca) were slightly hydrolysed by polygalacturonase. It was concluded, therefore, that Al tolerance conferred by low root CEC is not mediated by the ability to maintain pectin hydrolysis. Citrate and malate, but not acetate, effectively dissolved Al-pectate gel and led to hydrolysis of the dissolved pectin by polygalacturonase. The organic acids did not dissolve Ca-pectate, nor did they increase pectin hydrolysis by polygalacturonase. It was concluded that exudation of some organic acids can remove Al bound to pectin and this could alleviate toxicity, constituting a tolerance mechanism.  相似文献   

18.
An important aspect of the ripening process of tomato fruit is softening. Softening is accompanied by hydrolysis of the pectin in the cell wall by pectinases, causing loss of cell adhesion in the middle lamella. One of the most significant pectin-degrading enzymes is polygalacturonase (PG). Previous reports have shown that PG in tomato may exist in different forms (PG1, PG2a, PG2b, and PGx) commonly referred to as PG isoenzymes. The gene product PG2 is differentially glycosylated and is thought to associate with other proteins to form PG1 and PGx. This association is thought to modulate its pectin-degrading activity in planta. An 8 kDa protein that is part of the tomato PG1 multiprotein complex has been isolated, purified, and functionally characterized. This protein, designated 'activator' (ACT), belongs to the class of non-specific lipid transfer proteins (nsLTPs). ACT is capable of 'converting' the gene product PG2 into a more active and heat-stable form, which increases PG-mediated pectin degradation in vitro and stimulates PG-mediated tissue breakdown in planta. This finding suggests a new, not previously identified, function for nsLTPs in the modification of hydrolytic enzyme activity. It is proposed that ACT plays a role in the modulation of PG activity during tomato fruit softening.  相似文献   

19.
Pectic activity in autolyzed cultures of Botrytis cinerea in a medium with and without pectin was similar, but in the medium with pectin maximal activities occurred in younger cultures. The pectic activities found were polygalacturonase, polymethylgalacturonase, endo activity (pectin as substrate) and pectin lyase. The molecular weights of polygalacturonase, polymethylgalacturonase and endo activity (pectin as substrate) were 36000, 33000 and 30200 daltons respectively, and the molecular weight of pectin lyase was 18200 daltons. By gel electrophoresis four different pectic activities were detected, three in the top of the gel and one in the bottom. Two enzymes were characterized, the polygalacturonase activity (first band in the top) inhibited by Ca++ and the pectin lyase activity (in the bottom) which was not inhibited by Ca++. These enzymes are not induced by the presence of pectin in the medium during degradation of Botrytis cinerea.  相似文献   

20.
亚麻脱胶菌种的选育及脱胶过程的初步研究   总被引:8,自引:0,他引:8  
  刘晓兰  郑喜群  夏敬义   《微生物学通报》1998,25(3):150-153
从沤麻主生物期的水中分离产果胶酶的菌株经初筛、复筛获得了三株专性厌氧细菌,初步鉴定为费氏芽孢杆菌,对其亚麻脱胶性能进行了初步研究,确定人工加菌沤麻的最适工艺条件为:加菌量2%,加菌时间:沤麻进入主生物期零时,菌株A优于其它菌株.结果表明:采用上述工艺进行沤麻实验,可缩短沤麻时间30%,并可提高麻纤维质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号