首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isolation and characterization of an insertion sequence (IS) element, IS427, from Agrobacterium tumefaciens T37 is described. IS427 is present in three nonidentical copies on the pTiT37 plasmid. The copy that was isolated through transposition on the entrapment vector pUCD800 contains at its ends a 16-bp imperfect inverted repeat and generates a 2-bp duplication of the target DNA. IS427 does not show homology with previously characterized IS elements of A. tumefaciens, based on hybridization experiments and/or sequence comparison.  相似文献   

2.
We have determined the nucleotide sequence of IS427, an insertion sequence fromAgrobacterium tumefaciens T37. IS427 is 1271 bp long, contains 16-bp imperfect terminal inverted repeats, and generates a 2-bp target sequence duplication. It is present at three sites in the pTiT37 plasmid and is absent from the chromosome ofA. tumefaciens T37. Each of the IS427 elements sequenced was near a site with sequence homology to integration host factor (IHF)-binding sites which suggested that IHF may be involved in IS427 transposition.  相似文献   

3.
Hasebe A  Iida S 《Plasmid》2000,44(1):44-53
Three insertion sequences, IS1417, IS1418, and IS1419, were isolated from Burkholderia glumae (formerly Pseudomonas glumae), a gram-negative rice pathogenic bacterium, on the basis of their abilities to activate the expression of the neo gene of the entrap vector pSHI1063. The 1335-bp IS1417 element with 17-bp imperfect terminal inverted repeats was found to be flanked by 5-bp direct repeats of the vector sequence. IS1418 is 865 bp in length and carries 15-bp inverted repeats with a target duplication of 3 bp. The 1215-bp IS1419 sequence is bounded by the 36-bp terminal inverted repeats of the element and 7-bp direct repeats of the vector sequence. IS1417 and IS1418 belong to the IS2 subgroup of the IS3 family and the IS427 subgroup of the IS5 family, respectively, whereas IS1419 does not appear to be a member of any known IS family. Southern blot analysis of DNAs from B. glumae field isolates indicated that those IS elements are widely distributed, but the host range of the three IS elements appears to be limited to B. glumae and some other related species such as B. plantarii. The polymorphisms exhibited in B. glumae isolates suggest that those elements are useful for molecular epidemiological studies of B. glumae infections.  相似文献   

4.
We report here that the ends of IS1 are bound and protected in vitro by the heterodimeric protein integration host factor (IHF). Under identical conditions, RNA polymerase binds to one of these ends (IRL) and protects a region that includes the sequences protected by IHF. Other potential sites within IS1, identified by their homology to the apparent consensus sequence, are not protected. Footprinting analysis of deletion derivatives of the ends demonstrates a correspondence between the ability of the end sequence to bind IHF and its ability to function as an end in transposition. Nonetheless, some transposition occurs in IHF- cells, indicating that IHF is not an essential component of the transposition apparatus. IHF also binds and protects four closely spaced regions within the major hot-spot for insertion of IS1 in the plasmid pBR322. This striking correlation of hot-spot and IHF-binding sites suggests a possible role for IHF in IS1 insertion specificity.  相似文献   

5.
P Prentki  M Chandler    D J Galas 《The EMBO journal》1987,6(8):2479-2487
The integration host factor of Escherichia coli (IHF) is a small, histone-like protein which participates in the integration of bacteriophage lambda into the E. coli chromosome and in a number of regulatory processes. Our recent footprinting analysis has shown that IHF binds specifically to the ends of the transposable element IS1, as well as to several sites within a short segment of the plasmid pBR322. We have extended our studies of the binding of the IHF molecule to these sites in vitro using a gel retardation assay. We report here that IHF bends the DNA upon binding, as judged from the strong cyclic dependence of the protein-induced mobility shift on the position of the binding site. Using cloned, synthetic ends of IS1 as substrates, we have found that some mutations within the conserved bases of the IHF consensus binding sequence abolish binding, and that alterations of the flanking sequences can greatly reduce IHF binding. The presence of multiple IHF sites on a single DNA fragment increases binding very little, indicating that IHF does not bind cooperatively in this complex. We discuss the possibility that DNA bending is related to the role IHF plays in forming and stabilizing nucleoprotein complexes, and suggest that bending at the IHF sites may be important to its diverse effects in the cell.  相似文献   

6.
The IS 1-encoded protein InsA binds specifically to both ends of IS1, and acts as a repressor of IS1 gene expression and may be a direct inhibitor of the transposition process. We show here, using DNasel 'foot-printing' and gel retardation, that the InsA binding sites are located within the 24/25 bp minimal active ends of IS1 and that InsA induces DNA bending upon binding. Conformational modification of the ends of IS1 as a result of binding of the host protein integration host factor (IHF) to its site within the minimal ends has been previously observed. Using a collection of synthetic mutant ends we have mapped some of the nucleotide sequence requirements for InsA binding and for transposition activity. We show that sequences necessary for InsA binding are also essential for transposition activity. We demonstrate that InsA and IHF binding sites overlap since some sequence determinants are shared by both InsA and IHF. The data suggest that these ends contain two functional domains: one for binding of InsA and IHF, and the other for transposition activity. A third region, when present, may enhance transposition activity with an intact right end. This 'architecture' of the ends of IS1 is remarkably similar to that of IS elements IS10, IS50 and IS903.  相似文献   

7.
Y Cai 《Journal of bacteriology》1991,173(18):5771-5777
IS892, one of the several insertion sequence (IS) elements discovered in Anabaena sp. strain PCC 7120 (Y. Cai and C. P. Wolk, J. Bacteriol. 172:3138-3145, 1990), is 1,675 bp with 24-bp near-perfect inverted terminal repeats and has two open reading frames (ORFs) that could code for proteins of 233 and 137 amino acids. Upon insertion into target sites, this IS generates an 8-bp directly repeated target duplication. A 32-bp sequence in the region between ORF1 and ORF2 is similar to the sequence of the inverted termini. Similar inverted repeats are found within each of those three segments, and the sequences of these repeats bear some similarity to the 11-bp direct repeats flanking the 11-kb insertion interrupting the nifD gene of this strain (J. W. Golden, S. J. Robinson, and R. Haselkorn, Nature [London] 314:419-423, 1985). A sequence similar to that of a binding site for the Escherichia coli integration host factor is found about 120 bp from the left end of IS892. Partial nucleotide sequences of active IS elements IS892N and IS892T, members of the IS892 family from the same Anabaena strain, were shown to be very similar to the sequence of IS892.  相似文献   

8.
In the Bacillus thuringiensis strains toxic for the lepidopteran larvae, the delta-endotoxin genes cryIA are frequently found within a composite transposonlike structure flanked by two inverted repeat sequences. We report that these elements are true insertion sequences and designate them IS232. IS232 is a 2,184-bp element and is delimited by two imperfect inverted repeats (28 of 37 bp are identical). Two adjacent open reading frames, overlapping for three codons, span almost the entire sequence of IS232. The potential encoded polypeptides of 50 and 30-kDa are homologous to the IstA and IstB proteins of the gram-negative insertion sequence IS21. The N-terminal part of the 50-kDa polypeptide contains a helix-turn-helix DNA-binding motif. The junctions at the insertion sites of three IS232 elements were analyzed. Each case was different, with 0, 4, or 6 bp of the target DNA being duplicated. Transposition of IS232 in Escherichia coli was demonstrated by using a genetic marker inserted upstream of the two open reading frames.  相似文献   

9.
G Bonnard  F Vincent  L Otten 《Plasmid》1989,22(1):70-81
We have identified a new insertion sequence, IS866, located in the auxin synthesis gene TA iaaH of Tm4, a wide host range biotype III octopine/cucumopine type Agrobacterium tumefaciens strain with two T regions on its tumor-inducing (Ti) plasmid, TA, and TB. IS866 is 2716 bp long, has inverted repeats of 27 bp with three mismatches, and generates 8-bp direct repeats upon integration. In addition to IS866, pTiTm4 carries two copies of a related element, IS867, associated with TA and TB, respectively. A systematic study of 92 virulent Agrobacterium strains has shown that among the three biotypes all octopine/cucumopine and vitopine biotype III isolates contain IS866-like elements. The various octopine/cucumopine Ti plasmids always carry IS866 and IS867 at the same position as in pTiTm4. The chromosomes of the bacteria which contain these Ti plasmids also carry IS866 and IS867 copies but in varying numbers and locations.  相似文献   

10.
In studies of DNA replication in Escherichia coli, an important question concerns the role of the initiator protein DnaA. This protein is known to bind to a specific 9-bp sequence in the origin of replication, but it is not understood how it can recognize another, relatively distant, 13-bp sequence that has no homology to the binding site but is where the DnaA protein serves its catalytic function in the initiation of DNA replication. This effect of DnaA might be achieved by bending of DNA in this region. I have searched for putative binding sites for integration host factor (IHF), a protein known to bend DNA. Here I report the finding of an IHF binding site in the E. coli origin and present direct evidence that IHF binds and causes DNA bending in this region. On the basis of these results I propose a model wherein formation of a higher-order nucleoprotein structure would facilitate the action of DnaA protein in the initiation events.  相似文献   

11.
Insertion sequence IS6120 from Mycobacterium smegmatis was identified by its ability to transpose into different sites in the lambda repressor gene, cl857, carried on an Escherichia coli/mycobacteria shuttle plasmid. IS6120 is a novel 1.5 kb insertion sequence, which has 24-bp imperfect terminal inverted repeats and generates 9-bp duplications of the target DNA following insertion. IS6120 is present in at least three copies in M. smegmatis but was not found in other species, including Mycobacterium tuberculosis. Nucleotide sequence analysis revealed that IS6120 contains two open reading frames, one of which encodes a putative transposase with similarities to those found in IS256 from Staphylococcus aureus, IST2 from Thiobacillus ferrooxidans, and ISRm3 from Rhizobium meliloti. The fact that IS6120 does not recognize a consensus target sequence for insertion and has no homologous sequences in the other strains studied makes IS6120 useful for transposon mutagenesis in mycobacteria.  相似文献   

12.
An insertion sequence has been identified in the genome of Lactobacillus sanfranciscensis DSM 20451T as segment of 1351 nucleotides containing 37-bp imperfect terminal inverted repeats. The sequence of this element encodes two out of phase, overlapping open reading frames, orfA and orfB, from which three putative proteins are produced. OrfAB is a transframe protein produced by -1 translational frame shifting between orf A and orf B that is presumed to be the transposase. The large orfAB of this element encodes a 342 amino acid protein that displays similarities with transposases encoded by bacterial insertion sequences belonging to the IS3 family. In L. sanfranciscensis type strain DSM 20451T multiple truncated IS elements were identified. Inverse PCR was used to analyze target sites of four of these elements, but except of their highly AT rich character not any sequence specificity was identified so far. Moreover, no flanking direct repeats were identified. Multiple copies of IS153 were detected by hybridization in other strains of L. sanfranciscensis. Resulting hybridization patterns were shown to differentiate between organisms at strain level rather than a probe targeted against the 16S rDNA. With a PCR based approach IS153 or highly similar sequences were detected in L. acidophilus, L. casei, L. malefermentans, L. plantarum, L. hilgardii, L. collinoides L. farciminis L. sakei and L. salivarius, L. reuteri as well as in Enterococcus faecium, Pediococcus acidilactici and P. pentosaceus.  相似文献   

13.
A 14-bp segment in the promoter region of the tdcABC operon of Escherichia coli shows sequence identity with the consensus binding site for the E. coli integration host factor (IHF). In an himA (IHF-deficient) strain, expression of beta-galactosidase from a tdcB'-'lacZ protein fusion plasmid was about 10% of that seen with an isogenic himA+ strain. Threonine dehydratase activity from the chromosomal tdcB gene in the himA mutant was also about 10% of the wild-type enzyme level. Two different mutations introduced into the putative IHF-binding site in the fusion plasmid greatly reduced the plasmid-coded beta-galactosidase activity in cells containing IHF. In vitro gel retardation and DNase I footprinting analyses showed binding of purified IHF to the wild-type but not to the mutant promoter. IHF protected a 31-bp region between -118 and -88 encompassing the conserved IHF consensus sequence. These results suggest that efficient expression of the tdc operon in vivo requires a functional IHF and an IHF-binding site in the tdc promoter.  相似文献   

14.
The gram-negative marine bacterium Pseudoalteromonas atlantica produces extracellular polysaccharide (EPS) that is important in biofilm formation by this bacterium. Insertion and precise excision of IS492 at a locus essential for extracellular polysaccharide production (eps) controls phase variation of EPS production in P. atlantica. Examination of IS492 transposition in P. atlantica by using a PCR-based assay revealed a circular form of IS492 that may be an intermediate in transposition or a terminal product of excision. The DNA sequence of the IS492 circle junction indicates that the ends of the element are juxtaposed with a 5-bp spacer sequence. This spacer sequence corresponds to the 5-bp duplication of the chromosomal target sequence found at all IS492 insertion sites on the P. atlantica chromosome that we identified by using inverse PCR. IS492 circle formation correlated with precise excision of IS492 from the P. atlantica eps target sequence when introduced into Escherichia coli on a plasmid. Deletion analyses of the flanking host sequences at the eps insertion site for IS492 demonstrated that the 5-bp duplicated target sequence is essential for precise excision of IS492 and circle formation in E. coli. Excision of IS492 in E. coli also depends on the level of expression of the putative transposase, MooV. A regulatory role for the circular form of IS492 is suggested by the creation of a new strong promoter for expression of mooV by the joining of the ends of the insertion sequence element at the circle junction.  相似文献   

15.
16.
Nucleotide sequencing of Rhizobium meliloti insertion sequence ISRm1 showed that it is 1319 nucleotides long and includes 32/31 nucleotide terminal inverted repeats. Analysis of five different insertion sites using sequencing primers complementary to sequences within the left and right ends demonstrated that ISRm1 generates five bp direct repeats at the sites of insertion. Although ISRm1 has shown a target preference for certain short regions (hot spots), there was no apparent similarity in the DNA sequences near the insertion sites. On one strand ISRm1 contains two contiguous open reading frames (ORFs) spanning most of its length. ISRm1 was found to have over 50% sequence homology to insertion sequences IS2 from Escherichia coli and IS426 from Agrobacterium tumefaciens. Their sizes, the sequences of their inverted repeats, and the characteristics of their insertion sites are also comparable, indicating that ISRm1, IS2 and IS426 belong to a class of related insertion sequences. Comparison of the proteins potentially encoded by these insertion sequences showed that the two ORFs found in ISRm1 are also present in IS2 and IS426, suggesting that they may be functional genes.  相似文献   

17.
Mutational analysis of IS10''s outside end.   总被引:30,自引:7,他引:23       下载免费PDF全文
  相似文献   

18.
We demonstrate that base substitutions in the IS1 sequence affect the length of the nucleotide sequence which is duplicated during IS1-mediated co-integration. IS1K, an IS1 variant present in the Escherichia coli chromosome, has seven base substitutions in its sequence as compared with that of IS1R derived from the plasmid R100. All substitutions are located in the internal region of IS1K. We have constructed plasmids containing IS1R, IS1K and hybrids between them: one contains four base substitutions causing an amino acid substitution in the insA gene and the other has three substitutions producing an amino acid substitution in the insB gene. We have isolated co-integrate plasmids formed by each IS1 and analysed nucleotide sequences of the target sites duplicated at the co-integration junctions. The results show that IS1K generates duplications of 8 or 14 bp as well as 9 bp, while IS1R exclusively generates the 9-bp duplications. Both hybrid IS1s also create 8- or 7-bp target duplications in addition to 9-bp duplications. These results indicate that the base substitutions in either insA or insB are sufficient for the occurrence of unusual target duplications, suggesting that both genes are involved in the target duplication.  相似文献   

19.
20.
An Escherichia coli strain, ECOR28, was found to have insertions of an identical sequence (1,279 bp in length) at 10 loci in its genome. This insertion sequence (named IS621) has one large open reading frame encoding a putative protein that is 326 amino acids in length. A computer-aided homology search using the DNA sequence as the query revealed that IS621 was homologous to the piv genes, encoding pilin gene invertase (PIV). A homology search using the amino acid sequence of the putative protein encoded by IS621 as the query revealed that the protein also has partial homology to transposases encoded by the IS110/IS492 family elements, which were known to have partial homology to PIV. This indicates that IS621 belongs to the IS110/IS492 family but is most closely related to the piv genes. In fact, a phylogenetic tree constructed on the basis of amino acid sequences of PIV proteins and transposases revealed that IS621 belongs to the piv gene group, which is distinct from the IS110/IS492 family elements, which form several groups. PIV proteins and transposases encoded by the IS110/IS492 family elements, including IS621, have four acidic amino acid residues, which are conserved at positions in their N-terminal regions. These residues may constitute a tetrad D-E(or D)-D-D motif as the catalytic center. Interestingly, IS621 was inserted at specific sites within repetitive extragenic palindromic (REP) sequences at 10 loci in the ECOR28 genome. IS621 may not recognize the entire REP sequence in transposition, but it recognizes a 15-bp sequence conserved in the REP sequences around the target site. There are several elements belonging to the IS110/IS492 family that also transpose to specific sites in the repeated sequences, as does IS621. IS621 does not have terminal inverted repeats like most of the IS110/IS492 family elements. The terminal sequences of IS621 have homology with the 26-bp inverted repeat sequences of pilin gene inversion sites that are recognized and used for inversion of pilin genes by PIV. This suggests that IS621 initiates transposition through recognition of their terminal regions and cleavage at the ends by a mechanism similar to that used for PIV to promote inversion at the pilin gene inversion sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号