首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Choline/ethanolamine kinase (CK/EK) is the first enzyme in phosphatidylcholine/phosphatidylethanolamine biosynthesis in all animal cells. The highly purified CKs from mammalian sources and their recombinant gene products so far were all shown to have EK activity also, indicating that both activities reside on the same protein. CK/EK in most animal cells exists as several isoforms, for two of which (alpha and beta) their cDNAs have been cloned from both the rat and mouse, and they are found to be separate gene products. The physiological significance for the existence of more than one CK/EK enzyme, however, remains to be clarified. In this study, we isolated mouse genes encoding both types of CK/EK isozyme and determined their entire structure. The 5'-flanking promoter regions were found to have quite different features from each other, indicating that their expression could be under distinct control. Comparison of the nucleotide sequence between the corresponding coding exons showed the best homology (75%) residing on exon VIII. A search of the database resulted in the possible existence of 17 different origins of eukaryotic CK and/or EK, each of which presumably contained the entire amino acid sequence. Multialignment of their putative amino acid sequences led to an identification of the novel consensus sequence possibly required for the expression of either CK or EK activity, which corresponded to the sequence within exons VII and VIII of CK/EK-alpha and -beta genes from the mouse. This sequence was localized in close proximity to the C-terminal region of the general (Brenner's) phosphotransferase concensus sequence which was also completely conserved in all of the putative eukaryotic CK/EK proteins. The results demonstrated that, while both CK/EK-alpha and -beta genes were composed of 11 major exons, the size of their genes was quite different: 40 kb for CK/EK-alpha, whereas it was only 3.5 kb for CK/EK-beta.  相似文献   

3.
PPAR: a mediator of peroxisome proliferator action   总被引:6,自引:0,他引:6  
Stephen Green 《Mutation research》1995,333(1-2):101-109
  相似文献   

4.
5.
6.
7.
8.
9.
Various antihyperlipemic peroxisome proliferators are known to be carcinogenic in rodents but not in human, other primates and guinea pig, which species lost their ability to synthesize ascorbate due to mutations in the gulonolactone oxidase gene. Ascorbate synthesis is accompanied by H2O2 production, consequently its induction can be potentially harmful; therefore, the in vivo effect of the peroxisome proliferator clofibrate was investigated on gulonolactone oxidase expression in mouse liver. Liver weights and peroxisomal protein contents were increased upon clofibrate treatment. Elevated plasma ascorbate concentrations were found in clofibrate-treated mice due to the higher microsomal gulonolactone oxidase activities. Remarkable gulonolactone oxidase activity appeared in the peroxisomal fraction upon the treatment. Increased activity of the enzyme was associated with an elevation of its mRNA level. According to the present results the evolutionary loss of gulonolactone oxidase may contribute to the explanation of the missing carcinogenic effect of peroxisome proliferators in humans.  相似文献   

10.
11.
Peroxisome proliferators in general are nongenotoxic mouse liver carcinogens for which DNA hypomethylation and altered gene expression are proposed mechanisms. Therefore, the peroxisome proliferators 2,4-dichlorophenoxyacetic acid (2,4-D), dibutyl phthalate (DBP), gemfibrozil, and Wy-14,643 were evaluated for the ability to alter the methylation and expression of the c-myc protooncogene. Male B6C3F1 mice were administered for 6 days in their diet Wy-14,643 (5-500 ppm), 2,4-D (1,680 ppm), DBP (20,000 ppm), or gemfibrozil (8,000 ppm). All four peroxisome proliferators caused hypomethylation of the c-myc gene in the liver. Wy-14,643 appeared to be the most efficacious with a threshold between 10 and 50 ppm. The level of the c-myc protein was increased by Wy-14,643, but not the other peroxisome proliferators. When female B6C3F1 mice received a two-thirds partially hepatectomy and 16 h later were administered 50 mg/kg Wy-14,643 by gavage, hypomethylation of the gene occurred 24 h later. Hypomethylation was not found in mice that received Wy-14,643 following a sham operation. Hypomethylation of the c-myc gene within 24 h of administering Wy-14,643 after a partial hepatectomy but not after a sham operation supports the hypothesis that the peroxisome proliferators prevent methylation of hemimethylated sites formed by DNA replication.  相似文献   

12.
13.
14.
15.
In mice and other sensitive species, PPARalpha mediates the induction of mitochondrial, microsomal, and peroxisomal fatty acid oxidation, peroxisome proliferation, liver enlargement, and tumors by peroxisome proliferators. In order to identify PPARalpha-responsive human genes, HepG2 cells were engineered to express PPARalpha at concentrations similar to mouse liver. This resulted in the dramatic induction of mRNAs encoding the mitochondrial HMG-CoA synthase and increases in fatty acyl-CoA synthetase (3-8-fold) and carnitine palmitoyl-CoA transferase IA (2-4-fold) mRNAs that were dependent on PPARalpha expression and enhanced by exposure to the PPARalpha agonist Wy14643. A PPAR response element was identified in the proximal promoter of the human HMG-CoA synthase gene that is functional in its native context. These data suggest that humans retain a capacity for PPARalpha regulation of mitochondrial fatty acid oxidation and ketogenesis. Human liver is refractory to peroxisome proliferation, and increased expression of mRNAs for the peroxisomal fatty acyl-CoA oxidase, bifunctional enzyme, or thiolase, which accompanies peroxisome proliferation in responsive species, was not evident following Wy14643 treatment of cells expressing elevated levels of PPARalpha. Additionally, no significant differences were seen for the expression of apolipoprotein AI, AII, or CIII; medium chain acyl-CoA dehydrogenase; or stearoyl-CoA desaturase mRNAs.  相似文献   

16.
17.
Besides their involvement in the control of nuclear gene expression by activating several peroxisome proliferator-activated receptors (PPARs), peroxisome proliferators influence mitochondrial activity. By analogy with the previous characterization of a mitochondrial T3 receptor (p43), we searched for the presence of a peroxisome proliferator target in the organelle. Using several antisera raised against different domains of PPARs, we demonstrated by Western blotting, immunoprecipitation and electron microscopy experiments, that a 45 kDa protein related to PPARgamma2 (mt-PPAR) is located in the matrix of rat liver mitochondria. In addition, we found that the amounts of mt-PPAR are increased by clofibrate treatment. Moreover, in EMSA experiments mt-PPAR bound to a DR2 sequence located in the mitochondrial D-loop, by forming a complex with p43. Last, studies of tissue-specific expression indicated that mt-PPAR is detected in mitochondria of all tissues tested except the brain in amounts positively related to p43 abundance. Besides their involvement in the control of nuclear gene expression by activating several peroxisome proliferator-activated receptors (PPARs), peroxisome proliferators influence mitochondrial activity. By analogy with the previous characterization of a mitochondrial T3 receptor (p43), we searched for the presence of a peroxisome proliferator target in the organelle. Using several antisera raised against different domains of PPARs, we demonstrated by Western blotting, immunoprecipitation and electron microscopy experiments, that a 45 kDa protein related to PPARgamma2 (mt-PPAR) is located in the matrix of rat liver mitochondria. In addition, we found that the amounts of mt-PPAR are increased by clofibrate treatment. Moreover, in EMSA experiments mt-PPAR bound to a DR2 sequence located in the mitochondrial D-loop, by forming a complex with p43. Last, studies of tissue-specific expression indicated that mt-PPAR is detected in mitochondria of all tissues tested except the brain in amounts positively related to p43 abundance.  相似文献   

18.
19.
To better understand the changes that occur following exposure to peroxisome proliferators, we utilized mRNA differential display and microarray to screen for peroxisome proliferator target genes apart from those involved in lipid metabolism in male C57B6 mice by using the ubiquitous plasticizer, di(2-ethylhexyl)phthalate (DEHP). One noted change was the dose-dependent suppression of the mouse hormone metabolizing 3 beta-hydroxysteroid dehydrogenase V (HSD3b5), which is specifically expressed in the male mouse liver. Northern analysis showed that HSD3b5 mRNA levels decreased dramatically upon one-day exposure to 2.0% dietary DEHP, and were nearly undetectable by one week of treatment. Food restriction also significantly suppressed HSD3b5 expression; however, in this case the suppression was delayed and to a lesser extent. Another mouse 3 beta-hydroxysteroid dehydrogenase, HSD3b4, predominantly expressed in kidneys, was also regulated by DEHP and food restriction. The sex-specific gene, HSD3b5, was affected more by DEHP and food restriction than the tissue-specific gene, HSD3b4.  相似文献   

20.
Rosiglitazone regulates IL-6-stimulated lipolysis in porcine adipocytes   总被引:1,自引:0,他引:1  
Interleukin (IL)-6, a proinflammatory cytokine, stimulates adipocyte lipolysis and induces insulin resistance in obese and diabetic subjects. However, the effects of the anti-diabetic drug rosiglitazone on IL-6-stimulated lipolysis and the underlying molecular mechanism are largely unknown. In this study, we demonstrated that rosiglitazone suppressed IL-6-stimulated lipolysis in differentiated porcine adipocytes by inactivation of extracellular signal-related kinase (ERK). Meanwhile, rosiglitazone enhanced the lipolysis response of adipocytes to isoprenaline. In addition, rosiglitazone significantly reversed IL-6-induced down-regulation of several genes such as perilipin A, peroxisome proliferators activated receptor gamma (PPARγ), and fatty acid synthetase, as well as the up-regulation of IL-6 mRNA. However, mRNA expression of PPARγ coactivator-1 alpha (PCG-1α) was enhanced by rosiglitazone in IL-6-stimulated adipocytes. These results indicate that rosiglitazone suppresses IL-6-stimulated lipolysis in porcine adipocytes through multiple molecular mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号