首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The nucleotide sequence of the ribosomal protein gene rpsO (S15) and its flanking region were determined. The amino acid sequence of S15 protein deduced from the nucleotide sequence is in good agreement with the published amino acid sequence with one exception. The nucleotide sequence shows two probable promoter sites about 100 nucleotides upstream from the initiation codon (AUG) of rpsO. Inspection of the sequence also revealed structural homology between the distal part of rpsO and the reported S15 binding region in 16S rRNA.  相似文献   

2.
3.
Summary An amber mutation has been induced in the gene rpsA (which codes fo ribosomal protein S1) of Escherichia coli K-12 strain in the presence of an amber suppressor (supD) and mutations sueA, sueB and sueC that additively enhance the efficiency of suppression. That the amber mutation has occurred in the gene rpsA was confirmed by complementation with a plasmid which carried the wild-type allele of rpsA. The mutation is lethal in the absence of an amber suppressor, indicating that ribosomal protein S1 is indispensable to E. coli.  相似文献   

4.
Summary pTU 100 is a hybrid plasmid constructed by cloning a 7.5 Kb EcoRI fragment (carrying the wildtype ompA gene) onto pSC 101 (Henning et al., 1979). This plasmid confers sensitivity to phages Tull* and K3h1 when present in an ompA host strain, due to the expression of the phage receptor protein II* from the plasmid ompA + gene. Plasmid mutants have been isolated that have become resistant to one or both of these phages. Restriction endonuclease analysis and DNA-sequencing studies in these plasmids demonstrate that a BamHI site and two PvuII sites are located within the ompA gene. BamHI cuts the gene at a site corresponding to residue 227 within a total of 325 amino acid residues.Neither the wildtype ompA gene nor the BamHI fragment encoding the NH2-terminal part of the protein (residues 1–227) could be transferred to a high copy number plasmid, presumably due to lethal overproduction of the protein or its NH2-terminal fragment. However, the NH2-terminal fragment derived from one of the ompA mutants of pTU100 could be transferred to the high copy number plasmid pBR322, and was expressed in the presence of the amber suppressors supD or supF. Under these conditions two new envelope proteins with apparent molecular weights of 30,000 and 24,000 were synthesized, and the cells became sensitive to phage TuII*, indicating the presence of phage receptor activity in the outer membrane. The major, 24,000 dalton protein has the molecular weight expected of a protein comprising residues 1–227 of protein II*. DNA-sequencing studies demonstrated that no termination codons are present in the DNA region immediately downstream from the BamHI site at residue 227 in this hybrid plasmid, and it is therefore likely that the 24,000-dalton protein arises from the posttranslational proteolytic cleavage of a larger polypeptide. The 30,000-dalton protein is a likely candidate for such a larger polypeptide. These results also demonstrate that the 98 CO2H-terminal residues of wildtype protein II* (resisdues 228–325) are not required either for the activity of the protein as a phage receptor or for its incorporation into the outer membrane.  相似文献   

5.
Summary The isolation and characterization of two mutants of Escherichia coli K12 with an altered outer membrane protein c is described. The first mutant, strain CE1151, was isolated as a bacteriophage Mel resistant strain which contains normal levels of protein c. Mutant cells adsorbed the phage with a strongly decreased rate. Complexes of purified nonheat modified wild type protein c and wild type lipopolysaccharide inactivated phage Me1, indicating that these components are required for receptor activity for phage Me1. When wild type protein c was replaced by protein c of strain CE1151, the receptorcomplex was far less active, showing that protein c of strain CE1151 is altered. The second mutant produces a protein c with a decreased electrophoretic mobility, designated as protein c*. An altered apparent molecular weight was also observed for one or more fragments obtained after fragmentation of the mutant protein with cyanogen bromide, trypsin and chymotrypsin. Alteration of protein c was not accompanied by a detectable alteration in protein b or its fragments. Both mutations are located at minute 48 of the Escherichia coli K12 linkage map. The results strongly suggest that meoA is the structural gene for protein c.  相似文献   

6.
Summary Two genes involved in the enzymatic conversion of D-alanine to pyruvate are described, alnA and alnR. The alnA gene, located between ara and leu, is probably the structural gene for alaninase. The alnR gene, which can be cotransduced with thr but not with leu, could be demonstrated to be a regulatory gene with the aid of a mutation resulting in permanent repression and a thermosensitive revertant of this mutation restoring inducibility at 28°C, but not at 42°C.  相似文献   

7.
8.
Summary P1 transduction studies of a mutation of Escherichia coli affecting the rpsB gene previously suggested the map order popC-rpsB-dapD. Biochemical analysis of transductants has now revealed that the rpsB gene lies in fact to the right hand (tsf) side of the dapD marker.  相似文献   

9.
Summary The ribosomal RNA synthesis in a cell-free system containing the nucleoids and the cytoplasmic fraction prepared from Escherichia coli cells has been investigated. The addition of the 4S fraction from the cytoplasm to the isolated nucleoids induces RNA synthesis by a new chain initiation. In this system a preferential initiation of rRNA chains occurs. The experimental results suggest that the 4S fraction contains at least two activities, one for releasing RNA-polymerases from the nucleoids, and another for the frequent initiation of rRNA chains. No restriction of the rRNA synthesis has been observed in the nucleoids and the 4S fraction from the amino acidstarved rel + cells. The rRNA synthesized in the above system is detected at about 23S and 16S rRNA regions.  相似文献   

10.
We have isolated a nuclear mutant (tsp-1) of Chlamydomonas reinhardtii which is resistant to thiostrepton, an antibiotic that blocks bacterial protein synthesis. The tsp-1 mutant grows slowly in the presence or absence of thiostrepton, and its chloroplast ribosomes, although resistant to the drug, are less active than chloroplast ribosomes from the wild type. Chloroplast ribosomal protein L-23 was not detected on stained gels or immunoblots of total large subunit proteins from tsp-1 probed with antibody to the wild-type L-23 protein from C. reinhardtii. Immunoprecipitation of proteins from pulse-labeled cells showed that tsp-1 synthesizes small amounts of L-23 and that the mutant protein is stable during a 90 min chase. Therefore the tsp-1 phenotype is best explained by assuming that the mutant protein synthesized is unable to assemble into the large subunit of the chloroplast ribosome and hence is degraded over time. L-23 antibodies cross-react with Escherichia coli r-protein L11, which is known to be a component of the GTPase center of the 50S ribosomal subunit. Thiostrepton-resistant mutants of Bacillus megaterium and B. subtilis lack L11, show reduced ribosome activity, and have slow growth rates. Similarities between the thiostreptonresistant mutants of bacteria and C. reinhardtii and the immunological relatedness of Chlamydomonas L-23 to E. coli L11 suggest that L-23 is functionally homologous to the bacterial r-protein L11.  相似文献   

11.
Summary A ribosome preparation from E. coli made without stringent washing procedures has been shown to contain the same relative amounts of nearly all the ribosomal proteins as ribosomes in intact cells. Stoichiometric measurements on all the proteins of this preparation except for L8, L20, L31 and L34 have been made using an isotope dilution technique. When the scatter of the values obtained, the uncertainty in the molecular weights, and the losses occurring during extraction are taken into account, none of the proteins except L7/L12 is present at a level significantly different from one molecule per ribosome. There are multiple copies of L7/L12. These data suggest that the ribosomes of Escherichia coli are homogeneous in vivo.  相似文献   

12.
Summary A mutant of Escherichia coli K12 has been isolated which shows an alteration in the ribosomal protein S18. Genetic analyses have revealed that the mutation causing this alteration maps at 99.3 min of the E. coli genetic map, between dnaC and deo. This indicated that the mutation has occurred in a gene different from the structural gene for this protein which has been located at 94 min. From the N-terminal amino acid sequence analysis it is concluded that the mutation has resulted in loss of the N-terminal acetyl group of this protein. The gene which is affected in this mutant is termed rimI that most likely specifies an enzyme acetylating the N-terminal alanine of protein S18. The mutation does not affect the acetylation of two other ribosomal proteins, S5 and L12, both of which are known to be acetylated in wild-type E. coli K12.  相似文献   

13.
Summary Episomes of E. coli, which cover argG but not the str region, were transferred to Serratia marcescens. Ribosomal proteins from these hybrid strains were analyzed with phospho-cellulose or carboxymethyl-cellulose column chromatography. Two E. coli ribosomal proteins, L21 and S15, could be detected in the ribosome from the hybrid strains in addition to the ribosomal proteins of S. marcescens.  相似文献   

14.
Summary Among mutants of E. coli selected for temperaturesensitive growth, four were found to possess alterations in ribosomal proteins L7/L12. Of these, three apparently lack protein L7, the acetylated form of protein L12. Genetic analyses have revealed that the mutation responsible for this alteration maps at a locus around 34 min of the current E. coli genetic map, which is clearly different from the location for the structural gene for protein L7/L12 which is situated at 89 min. Hence, the gene affected in these mutants was termed rimL. Tryptic and thermolysin fingerprints of the protein L12 purified from the rimL mutants showed a profile indistinguishable from that of wild-type protein. It was found that the acetylase activity specific for protein L12 was negligible, when assayed in vitro, in the high-speed supernatant prepared from mutant cells. These results indicated that the three mutants contain mutations in the gene rimL that codes for an acetylating enzyme specific for ribosomal protein L12.Previous paper in this series is Isono and Isono (1980)  相似文献   

15.
16.
A variant form of Escherichia coli ribosomal protein L7/L12 that lacked residues 42 to 52 (L7/L12 Δ42–52) in the hinge region was shown previously to be completely inactive in supporting polyphenylalanine synthesis although it bound to L7/L12 deficient core particles with the normal stoichiometry of four copies per particle (Oleinikov AV, Perroud B, Wang B, Traut RR (1993) J Biol Chem, 268, 917–922). The result suggested that the hinge confers flexibility that is required for activity because the resulting bent conformation allows the distal C-terminal domain to occupy a location on the body of the large ribosomal subunit proximal to the base of the L7/L12 stalk where elongation factors bind. Factor binding to the hinge-truncated variant was tested. As an alternative strategy to deleting residues from the hinge, seven amino acid residues within the putative hinge region were replaced by seven consecutive proline residues in an attempt to confer increased rigidity that might reduce or eliminate the bending of the molecule inferred to be functionally important. This variant, L7/L12: (Pro)7, remained fully active in protein synthesis. Whereas the binding of both factors in ribosomes containing L7/L12:Δ42–52 was decreased by about 50%, there was no loss of factor binding in ribosomes containing L7/L12:(Pro)7, as predicted from the retention of protein synthesis activity. The factor:ribosome complexes that contained L7/L12:Δ42–52 had the same low level of GTP hydrolysis as the core particles completely lacking L7/L12 and EF-G did not support translocation measured by the reaction of phe-tRNA bounds in hr Asite with puromycin. It is concluded that the hinge region is required for the functionally productive binding of elongation factors, and the defect in protein synthesis reported previously is due to this defect. The variant produced by the introduction of the putative rigid Pro7 sequence retains sufficient flexibility for full activity.  相似文献   

17.
Summary Amber mutants of Escherichia coli K-12 affected in the structural gene (rpoD) for th subunit of RNA polymerase have been obtained from a strain harboring a temperature-sensitive amber suppressor (supF-Ts6) which is active only at low temperatures. These mutants grow normally at low temperature (30°C) but do not grow at high temperature (42°C) due to the inability to synthesize factor. In one mutant studied in detail (rpoD40), the rate of -factor synthesis at 30°C is about half that of the wild type and is decreased to 10%–15% within 1 h of incubation at 42°C. The synthesis of core polymerase subunits or bulk protein is virtually unaffected at least for 2 h. The defect of the mutant in synthesis and growth at high temperature can be suppressed by any of the amber suppressors tested (supD, supE or supF). RNA-polymerase holoenzymes prepared from the mutant cells carrying each of the suppressors (grown at 42°C) exhibit different thermostabilities attributable to alterations in the factor. The reduced synthesis in the mutant is accompanied by the synthesis of polypeptide tentatively identified as amber fragment. These results as well as the genetic mapping data indicate that the amber mutation (rpoD40) resides within the structural gene for the factor and directly affects synthesis upon inactivation of the suppressor at high temperature.  相似文献   

18.
Summary Antibodies raised against D. melanogaster ribosomal proteins were used to examine possible structural relationships between eukaryotic and prokaryotic ribosomal proteins. The antisera were raised against either groups of ribosomal proteins or purified individual ribosomal proteins from D. melanogaster. The specificity of each antiserum was confirmed and the identity of the homologous E. coli ribosomal protein was determined by immunochemical methods. Immuno-overlay assays indicated that the antiserum against the D. melanogaster small subunit protein S14 (anti-S14) was highly specific for protein S14. In addition, anti-S14 showed a cross-reaction with total E. coli ribosomal proteins in Ouchterlony double immunodiffusion assays and with only E. coli protein S6 in immuno-overlay assays. From these and other experiments with adsorption of anti-S14 with individual purified proteins, the E. coli protein homologous to the D. melanogaster protein S14 was established as protein S6.  相似文献   

19.
Summary In Escherichia coli, a number of ribosomal proteins are methylated. The time of methylation of L7 and L11 during ribosome assembly was studied. It was observed that the methylation of L7 could occur in the free protein stage. Both the 32S and 40S ribonucleoprotein intermediates also contained methylated L7 although the extent of methylation in these particles was not as high as in the free L7, the 45S or the 50S particles. Free L11 could also be partially methylated but the bulk of methylation of this protein was found in the 45S and the 50S particles.It was previously reported that the methylation of L7 is inversely proportional to the growth temperature (Chang 1978), we now show that once L7 is methylated at 25°, the methyl group is stable when the culture is shifted to 37°C. However, a partial turnover of the methyl group of L7 is observed when the methylated ribosome is chased at 25°C. On the other hand, the methyl groups of L11 appear to be stable at either 25°C or 37°C. We also observe that the extent of methylation of both L7 and L11 stays nearly constant during the cell growth cycle from early log to stationary phase.  相似文献   

20.
Summary A segment of the Escherichia coli genome which complements the ionising radiation sensitivity of the rorB mutation was cloned into pBR322. This DNA segment also complements the mitomycin C sensitivity of the rorB mutation. The gene was subcloned until defined in a fragment of 1.05 kb. Only one gene product, a protein of approximately 16.5 kDa, was found on maxicell analysis of the various subclones. Iso-electric focusing of this gene product suggests it may function in a complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号