共查询到20条相似文献,搜索用时 0 毫秒
1.
Hai-Long Zhang Wei Han Yin-Quan Du Bing Zhao Pin Yang Dong-Min Yin 《The Journal of biological chemistry》2021,297(3)
Protein acetylation is a reversible posttranslational modification, which is regulated by lysine acetyltransferase (KAT) and lysine deacetyltransferase (KDAC). Although protein acetylation has been shown to regulate synaptic plasticity, this was mainly for histone protein acetylation. The function and regulation of nonhistone protein acetylation in synaptic plasticity and learning remain largely unknown. Calmodulin (CaM), a ubiquitous Ca2+ sensor, plays critical roles in synaptic plasticity such as long-term potentiation (LTP). During LTP induction, activation of NMDA receptor triggers Ca2+ influx, and the Ca2+ binds with CaM and activates calcium/calmodulin-dependent protein kinase IIα (CaMKIIα). In our previous study, we demonstrated that acetylation of CaM was important for synaptic plasticity and fear learning in mice. However, the KAT responsible for CaM acetylation is currently unknown. Here, following an HEK293 cell-based screen of candidate KATs, steroid receptor coactivator 3 (SRC3) is identified as the most active KAT for CaM. We further demonstrate that SRC3 interacts with and acetylates CaM in a Ca2+ and NMDA receptor-dependent manner. We also show that pharmacological inhibition or genetic downregulation of SRC3 impairs CaM acetylation, synaptic plasticity, and contextual fear learning in mice. Moreover, the effects of SRC3 inhibition on synaptic plasticity and fear learning could be rescued by 3KQ-CaM, a mutant form of CaM, which mimics acetylation. Together, these observations demonstrate that SRC3 acetylates CaM and regulates synaptic plasticity and learning in mice. 相似文献
2.
Ling Zhong Tiffani Cherry Christine E Bies Matthew A Florence Nashaat Z Gerges 《The EMBO journal》2009,28(19):3027-3039
Learning‐correlated plasticity at CA1 hippocampal excitatory synapses is dependent on neuronal activity and NMDA receptor (NMDAR) activation. However, the molecular mechanisms that transduce plasticity stimuli to postsynaptic potentiation are poorly understood. Here, we report that neurogranin (Ng), a neuron‐specific and postsynaptic protein, enhances postsynaptic sensitivity and increases synaptic strength in an activity‐ and NMDAR‐dependent manner. In addition, Ng‐mediated potentiation of synaptic transmission mimics and occludes long‐term potentiation (LTP). Expression of Ng mutants that lack the ability to bind to, or dissociate from, calmodulin (CaM) fails to potentiate synaptic transmission, strongly suggesting that regulated Ng–CaM binding is necessary for Ng‐mediated potentiation. Moreover, knocking‐down Ng blocked LTP induction. Thus, Ng–CaM interaction can provide a mechanistic link between induction and expression of postsynaptic potentiation. 相似文献
3.
SAD‐B kinase regulates pre‐synaptic vesicular dynamics at hippocampal Schaffer collateral synapses and affects contextual fear memory 下载免费PDF全文
Ayako M. Watabe Masashi Nagase Akari Hagiwara Yamato Hida Megumi Tsuji Toshitaka Ochiai Fusao Kato Toshihisa Ohtsuka 《Journal of neurochemistry》2016,136(1):36-47
4.
Lochner JE Spangler E Chavarha M Jacobs C McAllister K Schuttner LC Scalettar BA 《Developmental neurobiology》2008,68(10):1243-1256
Recent data suggest that tissue plasminogen activator (tPA) influences long-term plasticity at hippocampal synapses by converting plasminogen into plasmin, which then generates mature brain-derived neurotrophic factor (mBDNF) from its precursor, proBDNF. Motivated by this hypothesis, we used fluorescent chimeras, expressed in hippocampal neurons, to elucidate (1) mechanisms underlying plasminogen secretion from hippocampal neurons, (2) if tPA, plasminogen, and proBDNF are copackaged and cotransported in hippocampal neurons, especially within dendritic spines, and (3) mechanisms mediating the transport of these neuromodulators to sites of release. We find that plasminogen chimeras traffic through the regulated secretory pathway of hippocampal neurons in dense-core granules (DCGs) and that tPA, plasminogen, and proBDNF chimeras are extensively copackaged in DCGs throughout hippocampal neurons. We also find that 80% of spines that contain DCGs contain chimeras of these neuromodulators in the same DCG. Finally, we demonstrate, for the first time, that neuromodulators undergo cotransport along dendrites in rapidly mobile DCGs, indicating that neuromodulators can be efficiently recruited into active spines. These results support the hypothesis that tPA mediates synaptic activation of BDNF by demonstrating that tPA, plasminogen, and proBDNF colocalize in DCGs in spines, where these neuromodulators can undergo activity-dependent release and then interact and/or mediate changes that influence synaptic efficacy. The results also raise the possibility that frequency-dependent changes in extents of neuromodulator release from DCGs influence the direction of plasticity at hippocampal synapses by altering the relative proportions of two proteins, mBDNF and proBDNF, that exert opposing effects on synaptic efficacy. 相似文献
5.
Parkinson's disease (PD)-like symptoms and cognitive deficits are inducible by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Since cognitive abilities, including memory formations rely also on hippocampus, we set out to clarify the effects of MPTP on hippocampal physiology. We show that bath-application of MPTP (25?μM) to acute hippocampal slices enhanced AMPA receptor-mediated field excitatory postsynaptic potentials (AMPAr-fEPSPs) transiently, whereas N-methyl-D-aspartate (NMDA) receptor-mediated fEPSPs (NMDAr-fEPSPs) were facilitated persistently. The MPTP-mediated transient AMPAr-fEPSP facilitation was antagonized by the dopamine D2-like receptor antagonists, eticlopride (1?μM) and sulpiride (1 and 40?μM). In contrast, the persistent enhancement of NMDAr-fEPSPs was prevented by the dopamine D1-like receptor antagonist SCH23390 (10?μM). In addition, we show that MPTP decreased paired-pulse facilitation of fEPSPs and mEPSCs frequency. Regarding activity-dependent synaptic plasticity, 25?μM MPTP transformed short-term potentiation (STP) into a long-term potentiation (LTP) and caused a slow onset potentiation of a non-tetanized synaptic input after induction of LTP in a second synaptic input. This heterosynaptic slow onset potentiation required activation of dopamine D1-like and NMDA-receptors. We conclude that acute MPTP application affects basal synaptic transmission by modulation of presynaptic vesicle release and facilitates NMDAr-fEPSPs as well as activity-dependent homo- and heterosynaptic plasticity under participation of dopamine receptors. 相似文献
6.
Hui Lu Hyungju Park Mu-Ming Poo 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1633)
In acute hippocampal slices, we found that the presence of extracellular brain-derived neurotrophic factor (BDNF) is essential for the induction of spike-timing-dependent long-term potentiation (tLTP). To determine whether BDNF could be secreted from postsynaptic dendrites in a spike-timing-dependent manner, we used a reduced system of dissociated hippocampal neurons in culture. Repetitive pairing of iontophoretically applied glutamate pulses at the dendrite with neuronal spikes could induce persistent alterations of glutamate-induced responses at the same dendritic site in a manner that mimics spike-timing-dependent plasticity (STDP)—the glutamate-induced responses were potentiated and depressed when the glutamate pulses were applied 20 ms before and after neuronal spiking, respectively. By monitoring changes in the green fluorescent protein (GFP) fluorescence at the dendrite of hippocampal neurons expressing GFP-tagged BDNF, we found that pairing of iontophoretic glutamate pulses with neuronal spiking resulted in BDNF secretion from the dendrite at the iontophoretic site only when the glutamate pulses were applied within a time window of approximately 40 ms prior to neuronal spiking, consistent with the timing requirement of synaptic potentiation via STDP. Thus, BDNF is required for tLTP and BDNF secretion could be triggered in a spike-timing-dependent manner from the postsynaptic dendrite. 相似文献
7.
8.
We assume that Hebbian learning dynamics (HLD) and spatiotemporal learning dynamics (SLD) are involved in the mechanism of
synaptic plasticity in the hippocampal neurons. While HLD is driven by pre- and postsynaptic spike timings through the backpropagating
action potential, SLD is evoked by presynaptic spike timings alone. Since the backpropagation attenuates as it nears the distal
dendrites, we assume an extreme case as a neuron model where HLD exists only at proximal dendrites and SLD exists only at
the distal dendrites. We examined how the synaptic weights change in response to three types of synaptic inputs in computer
simulations. First, in response to a Poisson train having a constant mean frequency, the synaptic weights in HLD and SLD are
qualitatively similar. Second, SLD responds more rapidly than HLD to synchronous input patterns, while each responds to them.
Third, HLD responds more rapidly to more frequent inputs, while SLD shows fluctuating synaptic weights. These results suggest
an encoding hypothesis in that a transient synchronous structure in spatiotemporal input patterns will be encoded into distal
dendrites through SLD and that persistent synchrony or firing rate information will be encoded into proximal dendrites through
HLD. 相似文献
9.
10.
Our laboratory demonstrated previously that PGE2-induced modulation of hippocampal synaptic transmission is via a pre-synaptic PGE2 EP2 receptor. However, little is known about whether the EP2 receptor is involved in hippocampal long-term synaptic plasticity and cognitive function. Here we show that long-term potentiation at the hippocampal perforant path synapses was impaired in mice deficient in the EP2 (KO), while membrane excitability and passive properties in granule neurons were normal. Importantly, escape latency in the water maze in EP2 KO was longer than that in age-matched EP2 wild-type littermates (WT). We also observed that long-term potentiation was potentiated in EP2 WT animals that received lipopolysaccharide (LPS, i.p.), but not in EP2 KO. Bath application of PGE2 or butaprost, an EP2 receptor agonist, increased synaptic transmission and decreased paired-pulses ratio in EP2 WT mice, but failed to induce the changes in EP2 KO mice. Meanwhile, synaptic transmission was elevated by application of forskolin, an adenylyl cyclase activator, both in EP2 KO and WT animals. In addition, the PGE2-enhanced synaptic transmission was significantly attenuated by application of PKA, IP3 or MAPK inhibitors in EP2 WT animals. Our results show that hippocampal long-term synaptic plasticity is impaired in mice deficient in the EP2, suggesting that PGE2-EP2 signaling is important for hippocampal long-term synaptic plasticity and cognitive function. 相似文献
11.
12.
神经胶质细胞与突触可塑性研究新进展 总被引:2,自引:0,他引:2
突触的可塑性是研究学习与记忆的基础,很长时间以来人们对突触的可塑性研究主要集中在神经元和突触上;而胶质细胞的作用较少受到注意。最近的研究发现胶质细胞也参与突触的构成并影响突触的活动。研究表明中枢神经系统中的胶质细胞包括星形胶质细胞、小胶质细胞和少突胶质细胞可分别通过谷氨酸、丝氨酸、甘氨酸、ATP等信号调节突触的可塑性,从而为突触的可塑性研究提供了新的思路和方向,并有助于阐明突触的发生以及学习与记忆的机制。 相似文献
13.
Agis-Balboa RC Arcos-Diaz D Wittnam J Govindarajan N Blom K Burkhardt S Haladyniak U Agbemenyah HY Zovoilis A Salinas-Riester G Opitz L Sananbenesi F Fischer A 《The EMBO journal》2011,30(19):4071-4083
Extinction learning refers to the phenomenon that a previously learned response to an environmental stimulus, for example, the expression of an aversive behaviour upon exposure to a specific context, is reduced when the stimulus is repeatedly presented in the absence of a previously paired aversive event. Extinction of fear memories has been implicated with the treatment of anxiety disease but the molecular processes that underlie fear extinction are only beginning to emerge. Here, we show that fear extinction initiates upregulation of hippocampal insulin-growth factor 2 (Igf2) and downregulation of insulin-growth factor binding protein 7 (Igfbp7). In line with this observation, we demonstrate that IGF2 facilitates fear extinction, while IGFBP7 impairs fear extinction in an IGF2-dependent manner. Furthermore, we identify one cellular substrate of altered IGF2 signalling during fear extinction. To this end, we show that fear extinction-induced IGF2/IGFBP7 signalling promotes the survival of 17-19-day-old newborn hippocampal neurons. In conclusion, our data suggest that therapeutic strategies that enhance IGF2 signalling and adult neurogenesis might be suitable to treat disease linked to excessive fear memory. 相似文献
14.
Genes and neurons: molecular insights to fear and anxiety 总被引:1,自引:0,他引:1
Experimental animal models provide an important tool for the identification of inheritable components of fear and anxiety. 'Pavlovian' fear conditioning has been tremendously successful to characterize the neuronal circuitry and cellular mechanisms of the formation, consolidation and extinction of fear memories. Here we summarize recent progress that has led to the identification of gene products contributing to such experience-dependent changes in fear and anxiety and may guide the search for genetic factors involved in the development and treatment of human anxiety disorders. 相似文献
15.
Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity 总被引:5,自引:0,他引:5
Meighan SE Meighan PC Choudhury P Davis CJ Olson ML Zornes PA Wright JW Harding JW 《Journal of neurochemistry》2006,96(5):1227-1241
Rats learning the Morris water maze exhibit hippocampal changes in synaptic morphology and physiology that manifest as altered synaptic efficacy. Learning requires structural changes in the synapse, and multiple cell adhesion molecules appear to participate. The activity of these cell adhesion molecules is, in large part, dependent on their interaction with the extracellular matrix (ECM). Given that matrix metalloproteinases (MMPs) are responsible for transient alterations in the ECM, we predicted that MMP function is critical for hippocampal-dependent learning. In support of this, it was observed that hippocampal MMP-3 and -9 increased transiently during water maze acquisition as assessed by western blotting and mRNA analysis. The ability of the NMDA receptor channel blocker MK801 to attenuate these changes indicated that the transient MMP changes were in large part dependent upon NMDA receptor activation. Furthermore, inhibition of MMP activity with MMP-3 and -9 antisense oligonucleotides and/or MMP inhibitor FN-439 altered long-term potentiation and prevented acquisition in the Morris water maze. The learning-dependent MMP alterations were shown to modify the stability of the actin-binding protein cortactin, which plays an essential role in regulating the dendritic cytoskeleton and synaptic efficiency. Together these results indicate that changes in MMP function are critical to synaptic plasticity and hippocampal-dependent learning. 相似文献
16.
Previous studies have indicated that neonatal handling influences development of hypothalamic-pituitary-adrenal (HPA) control of corticosterone. In addition, corticosterone influences memory consolidation processes in contextual fear conditioning. Therefore, neonatal handling may affect hippocampal-dependent memory processes present in contextual fear conditioning by influencing the development of HPA control of corticosterone. To investigate the effects of neonatal handling on early learning, rat pups were either handled (15-min removal from home cage) on the first 15 days after birth or left undisturbed in their home cage. Handled rats and nonhandled rats were fear conditioned at 18, 21, or 30 days of age and then tested at two time points--24 h following conditioning and at postnatal day 45. Subsequently, at approximately postnatal day 60, rats were exposed to restraint stress and corticosterone levels were assessed during restraint and recovery. Handled and nonhandled rats did not differ significantly in their freezing response immediately following footshock on the conditioning day. However, when tested for contextual fear conditioning at 24 h following conditioning and at postnatal day 45, handled rats showed more freezing behavior than nonhandled rats. When exposed to restraint stress, handled rats had a more rapid return of corticosterone to basal levels than nonhandled rats. These results indicate that neonatal handling enhances developmentally early memory processes involved in contextual fear conditioning and confirms previously reported effects of neonatal handling on HPA control of corticosterone. 相似文献
17.
Although generally accepted to play an important role in development, the precise functional significance of NCAM remains to be elucidated. Correlative and interventive studies suggest a role for polysialylated NCAM in neurite elaboration. In the adult NCAM polysialylation continues to be expressed in regions of the central nervous system which retain neuroplastic potential. During memory formation modulation of polysialylation on the synapse-enriched isoform of NCAM occurs in the hippocampus. The polysialylated neurons of this structure have been located at the border of the granule cell layer and hilar region of the dentate and their number increases dramatically during memory consolidation. The converse is also true for a profound decline in the basal number of polysialylated neurons occurs with ageing when neural plasticity becomes attenuated. In conclusion, it is suggested that NCAM polysialylation regulates ultrastructural plasticity associated with synaptic elaboration.Abbreviations PSA
polysialic acid
- NCAM
neural cell adhesion molecule
- SGL
sub-granular cell layer
- MF
mossy fibers
Special issue dedicated to Dr. Robert Balazs. 相似文献
18.
Gould TJ 《Molecular neurobiology》2006,34(2):93-107
Addiction is a complex disorder because many factors contribute to the development and maintenance of addiction. One factor
is learning. For example, drug-context associations that develop during drug use could facilitate drug craving upon re-exposure
to contexts previously associated with drugs. Additionally, deficits in cognitive processes associated with withdrawal could
precipitate relapse in attempts to ameliorate those deficits. Because addiction and learning involve common neural areas and
cell signaling cascades, addiction-related changes in processes underlying plasticity may contribute to addiction. This article
examines similarities between addiction and learning at the behavioral, neural, and cellular levels, with emphasis on the
neural substrates underlying the effects of acute nicotine, chronic nicotine, and withdrawal from chronic nicotine on hippocampus-dependent
contextual, learning. 相似文献
19.
20.
突触可塑性对于脑发育过程中的神经环路重构以及学习记忆等脑的高级功能是非常重要的。许多受体酪氨酸激酶家族成员,包括TrkB、ErbB和Eph在神经连接的建立和重构过程中起到核心作用。比如,突触后EphB依赖的信号会导致树突棘的产生和神经递质受体的聚集,而ephrinA引起的EphA4激活可以导致树突棘的回缩。但是,目前对EphA4依赖的树突棘重组和对神经递质受体的调节背后的机制还知之甚少。本文将集中探讨EphA4及其下游的信号通路在神经肌肉接头和中枢神经的突触中,对神经递质受体的调节功能。 相似文献