首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparan sulfate (HS) chains bind and modulate the signaling efficiency of many ligands, including members of the fibroblast growth factor (FGF) and platelet-derived growth factor families. We previously reported the structure of HS synthesized by embryonic fibroblasts from mice with a gene trap mutation of Ext1 that encodes a glycosyltransferase involved in HS chain elongation. The gene trap mutation results in low expression of Ext1, and, as a consequence, HS chain length is substantially reduced. In the present study, Ext1 mutant and wild-type mouse embryonic fibroblasts were analyzed for the functional consequences of the Ext1 mutation for growth factor signaling and interaction with the extracellular matrix. Here, we show that the phosphorylation of ERK1/2 in response to FGF2 stimulation was markedly decreased in the Ext1 mutant fibroblasts, whereas neither PDGF-BB nor FGF10 signaling was significantly affected. Furthermore, Ext1 mutants displayed reduced ability to attach to collagen I and to contract collagen lattices, even though no differences in the expression of collagen-binding integrins were observed. Reintroduction of Ext1in the Ext1 mutant fibroblasts rescued HS chain length, FGF2 signaling, and the ability of the fibroblasts to contract collagen. These data suggest that the length of the HS chains is a critical determinant of HS-protein interactions and emphasize the essential role of EXT1 in providing specific binding sites for growth factors and extracellular matrix proteins.  相似文献   

2.
Hair follicle (HF) morphogenesis and cycling are a result of intricate autonomous epithelial-mesenchymal interactions. Once the first HF cycle is complete it repeatedly undergoes cyclic transformations. Heparan sulfate (HS) proteoglycans are found on the cell surface and in the extracellular matrix where they influence a variety of biological processes by interacting with physiologically important proteins, such as growth factors. Inhibition of heparanase (an HS endoglycosidase) in in vitro cultured HFs has been shown to induce a catagen-like process. Therefore, this study aimed to elucidate the precise role of HS in HF morphogenesis and cycling. An inducible tetratransgenic mouse model was generated to excise exostosin glycosyltransferase 1 (Ext1) in keratin 14-positive cells from P21. Interestingly, EXT1StEpiΔ/StEpiΔ mice presented solely anagen HFs. Moreover, waxing the fur to synchronize the HFs revealed accelerated hair regrowth in the EXT1StEpiΔ/StEpiΔ mice and hindered cycling into catagen. The ablation of HS in the interfollicular epidermal cells of mature skin led to the spontaneous formation of new HFs and an increase in Sonic Hedgehog expression resembling wild-type mice at P0, thereby indicating that the HS/Sonic Hedgehog signaling pathway regulates HF formation during embryogenesis and prevents HF formation in mature skin. Finally, the knock-out of HS also led to the morphogenesis and hyperplasia of sebaceous glands and sweat glands in mature mice, leading to exacerbated sebum production and accumulation on the skin surface. Therefore, our findings clearly show that an intricate control of HS levels is required for HF, sebaceous gland, and sweat gland morphogenesis and HF cycling.  相似文献   

3.
Increasing evidence indicates that heparan sulfate (HS) is an integral component of many morphogen signaling pathways. However, its mechanisms of action appear to be diverse, depending on the type of morphogen and the developmental contexts. To define the function of HS in skeletal development, we conditionally ablated Ext1, which encodes an essential glycosyltransferase for HS synthesis, in limb bud mesenchyme using the Prx1-Cre transgene. These conditional Ext1 mutant mice display severe limb skeletal defects, including shortened and malformed limb bones, oligodactyly, and fusion of joints. In developing limb buds of mutant mice, chondrogenic differentiation of mesenchymal condensations is delayed and impaired, whereas the area of differentiation is diffusely expanded. Correspondingly, the distribution of both bone morphogenic protein (BMP) signaling domains and BMP2 immunoreactivity in the mutant limb mesenchyme is broadened and diffuse. In micromass cultures, chondrogenic differentiation of mutant chondrocytes is delayed, and the responsiveness to exogenous BMPs is attenuated. Moreover, the segregation of the pSmad1/5/8-expressing chondrocytes and fibronectin-expressing perichondrium-like cells surrounding chondrocyte nodules is disrupted in mutant micromass cultures. Together, our results show that HS is essential for patterning of limb skeletal elements and that BMP signaling is one of the major targets for the regulatory role of HS in this developmental context.  相似文献   

4.
Microglossia is a congenital birth defect in humans and adversely impacts quality of life. In vertebrates, tongue muscle derives from the cranial mesoderm, whereas tendons and connective tissues in the craniofacial region originate from cranial neural crest (CNC) cells. Loss of transforming growth factor β (TGFβ) type II receptor in CNC cells in mice (Tgfbr2fl/fl;Wnt1-Cre) causes microglossia due to a failure of cell-cell communication between cranial mesoderm and CNC cells during tongue development. However, it is still unclear how TGFβ signaling in CNC cells regulates the fate of mesoderm-derived myoblasts during tongue development. Here we show that activation of the cytoplasmic and nuclear tyrosine kinase 1 (ABL1) cascade in Tgfbr2fl/fl;Wnt1-Cre mice results in a failure of CNC-derived cell differentiation followed by a disruption of TGFβ-mediated induction of growth factors and reduction of myogenic cell proliferation and differentiation activities. Among the affected growth factors, the addition of fibroblast growth factor 4 (FGF4) and neutralizing antibody for follistatin (FST; an antagonist of bone morphogenetic protein (BMP)) could most efficiently restore cell proliferation, differentiation, and organization of muscle cells in the tongue of Tgfbr2fl/fl;Wnt1-Cre mice. Thus, our data indicate that CNC-derived fibroblasts regulate the fate of mesoderm-derived myoblasts through TGFβ-mediated regulation of FGF and BMP signaling during tongue development.  相似文献   

5.
The causal link between disparate tropomyosin (Tm) functions and the structural instability in Tm is unknown. To test the hypothesis that the structural instability in the central region of Tm modulates the function of the overlapping ends of contiguous Tm dimers, we used transgenic mice (TmDM) that expressed a mutant α-Tm in the heart; S229E and H276N substitutions induce structural instability in the central region and the overlapping ends of Tm, respectively. In addition, two mouse cardiac troponin T mutants (TnT1–44Δ and TnT45–74Δ) that have a divergent effect on the overlapping ends of Tm were employed. The S229E-induced instability in the central region of TmDM altered the overlapping ends of TmDM, thereby it negated the attenuating effect of H276N on Ca2+-activated maximal tension. The rate of cross-bridge detachment (g) decreased in TmDM+TnTWT and TmH276N+TnTWT fibers but increased in TmDM+TnT45–74Δ fibers; however, TnT45–74Δ did not alter g, demonstrating that S229E in TmDM had divergent effects on g. The S229E substitution in TmDM ablated the H276N-induced desensitization of myofilament Ca2+ sensitivity in TmDM+TnT1–44Δ fibers. To our knowledge, novel findings from this study show that the structural instability in the central region of Tm modifies cardiac contractile function via its effect on the overlapping ends of contiguous Tm.  相似文献   

6.
Glycosaminoglycans are important regulators of multiple signaling pathways. As a major constituent of the heart extracellular matrix, glycosaminoglycans are implicated in cardiac morphogenesis through interactions with different signaling morphogens. Ext1 is a glycosyltransferase responsible for heparan sulfate synthesis. Here, we evaluate the function of Ext1 in heart development by analyzing Ext1 hypomorphic mutant and conditional knockout mice. Outflow tract alignment is sensitive to the dosage of Ext1. Deletion of Ext1 in the mesoderm induces a cardiac phenotype similar to that of a mutant with conditional deletion of UDP-glucose dehydrogenase, a key enzyme responsible for synthesis of all glycosaminoglycans. The outflow tract defect in conditional Ext1 knockout(Ext1 f/f:Mesp1Cre) mice is attributable to the reduced contribution of second heart field and neural crest cells. Ext1 deletion leads to downregulation of FGF signaling in the pharyngeal mesoderm. Exogenous FGF8 ameliorates the defects in the outflow tract and pharyngeal explants. In addition, Ext1 expression in second heart field and neural crest cells is required for outflow tract remodeling. Our results collectively indicate that Ext1 is crucial for outflow tract formation in distinct progenitor cells, and heparan sulfate modulates FGF signaling during early heart development.  相似文献   

7.
White adipose tissue (WAT) functions as an energy reservoir where excess circulating fatty acids are transported to WAT, converted to triglycerides, and stored as unilocular lipid droplets. Fat-specific protein 27 (FSP27, CIDEC in humans) is a lipid-coating protein highly expressed in mature white adipocytes that contributes to unilocular lipid droplet formation. However, the influence of FSP27 in adipose tissue on whole-body energy homeostasis remains unclear. Mice with adipocyte-specific disruption of the Fsp27 gene (Fsp27ΔAd) were generated using an aP2-Cre transgene with the Cre/LoxP system. Upon high-fat diet feeding, Fsp27ΔAd mice were resistant to weight gain. In the small WAT of these mice, small adipocytes containing multilocular lipid droplets were dispersed. The expression levels of the genes associated with mitochondrial abundance and brown adipocyte identity were increased, and basal lipolytic activities were significantly augmented in adipocytes isolated from Fsp27ΔAd mice compared with the Fsp27F/F counterparts. The impaired fat-storing function in Fsp27ΔAd adipocytes and the resultant lipid overflow from WAT led to marked hepatosteatosis, dyslipidemia, and systemic insulin resistance in high-fat diet-treated Fsp27ΔAd mice. These results demonstrate a critical role for FSP27 in the storage of excess fat in WAT with minimizing ectopic fat accumulation that causes insulin-resistant diabetes and non-alcoholic fatty liver disease. This mouse model may be useful for understanding the significance of fat-storing properties of white adipocytes and the role of local FSP27 in whole-body metabolism and estimating the pathogenesis of human partial lipodystrophy caused by CIDEC mutations.  相似文献   

8.
Pluripotent embryonic stem cells (ESCs) must select between alternative fates of self-renewal and lineage commitment at each division during continuous proliferation. Heparan sulfate (HS) is a highly sulfated polysaccharide and is present abundantly on the ESC surface. In this study, we investigated the role of HS in ESC self-renewal by examining Ext1−/− ESCs that are deficient in HS. We found that Ext1−/− ESCs retained their self-renewal potential but failed to transit from self-renewal to differentiation upon removal of leukemia inhibitory factor. Furthermore, we found that the aberrant cell fate commitment is caused by defects in fibroblast growth factor signaling, which directly retained high expression of the pluripotency gene Nanog in Ext1−/− ESCs. Therefore, our studies identified and defined HS as a novel factor that controls ESC fate commitment and also delineates that HS facilitates fibroblast growth factor signaling, which, in turn, inhibits Nanog expression and commits ESCs to lineage differentiation.  相似文献   

9.
More than 200 heterozygous mutations in the type 2 BMP receptor gene, BMPR2, have been identified in patients with Heritable Pulmonary Arterial Hypertension (HPAH). More severe clinical outcomes occur in patients with BMPR2 mutations by-passing nonsense-mediated mRNA decay (NMD negative mutations). These comprise 40% of HPAH mutations and are predicted to express BMPR2 mutant products. However expression of endogenous NMD negative BMPR2 mutant products and their effect on protein trafficking and signaling function have never been described. Here, we characterize the expression and trafficking of an HPAH-associated NMD negative BMPR2 mutation that results in an in-frame deletion of BMPR2 EXON2 (BMPR2ΔEx2) in HPAH patient-derived lymphocytes and in pulmonary endothelial cells (PECs) from mice carrying the same in-frame deletion of Exon 2 (Bmpr2 ΔEx2/+ mice). The endogenous BMPR2ΔEx2 mutant product does not reach the cell surface and is retained in the endoplasmic reticulum. Moreover, chemical chaperones 4-PBA and TUDCA partially restore cell surface expression of Bmpr2ΔEx2 in PECs, suggesting that the mutant product is mis-folded. We also show that PECs from Bmpr2 ΔEx2/+ mice have defects in the BMP-induced Smad1/5/8 and Id1 signaling axis, and that addition of chemical chaperones restores expression of the Smad1/5/8 target Id1. These data indicate that the endogenous NMD negative BMPRΔEx2 mutant product is expressed but has a folding defect resulting in ER retention. Partial correction of this folding defect and restoration of defective BMP signaling using chemical chaperones suggests that protein-folding agents could be used therapeutically in patients with these NMD negative BMPR2 mutations.  相似文献   

10.
Single chain factor V (fV) circulates as an Mr 330,000 quiescent pro-cofactor. Removal of the B domain and generation of factor Va (fVa) are vital for procoagulant activity. We investigated the role of the basic amino acid region 1000–1008 within the B domain of fV by constructing a recombinant mutant fV molecule with all activation cleavage sites (Arg709/Arg1018/Arg1545) mutated to glutamine (fVQ3), a mutant fV molecule with region 1000–1008 deleted (fVΔB9), and a mutant fV molecule containing the same deletion with activation cleavage sites changed to glutamine (fVΔB9/Q3). The recombinant molecules along with wild type fV (fVWT) were transiently expressed in COS-7L cells, purified, and assessed for their ability to bind factor Xa (fXa) prior to and following incubation with thrombin. The data showed that fVQ3 was severely impaired in its interaction with fXa before and after incubation with thrombin. In contrast, KD(app) values for fVΔB9 (0.9 nm), fVaΔB9 (0.4 nm), and fVΔB9/Q3 (0.7 nm) were similar to the affinity of fVaWT for fXa (0.3 nm). Two-stage clotting assays revealed that although fVQ3 was deficient in its clotting activity, fVΔB9/Q3 had clotting activity comparable with fVaWT. The kcat value of prothrombinase assembled with fVΔB9/Q3 was minimally affected, whereas the Km value of the reaction was increased 57-fold compared with the Km value obtained with prothrombinase assembled with fVaWT. These findings strongly suggest that amino acid region 1000–1008 of fV is a regulatory sequence protecting the organisms from spontaneous binding to fXa and unnecessary prothrombinase complex formation, which in turn results in catastrophic physiological consequences.  相似文献   

11.
12.
Delta-9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, is known to suppress the immune responses to bacterial, viral and protozoan infections, but its effects on fungal infections have not been studied. Therefore, we investigated the effects of chronic Δ9-THC treatment on mouse resistance to systemic Candida albicans (C. albicans) infection. To determine the outcome of chronic Δ9-THC treatment on primary, acute systemic candidiasis, c57BL/6 mice were given vehicle or Δ9-THC (16 mg/kg) in vehicle on days 1–4, 8–11 and 15–18. On day 19, mice were infected with 5×105 C. albicans. We also determined the effect of chronic Δ9-THC (4–64 mg/kg) treatment on mice infected with a non-lethal dose of 7.5×104 C. albicans on day 2, followed by a higher challenge with 5×105 C. albicans on day 19. Mouse resistance to the infection was assessed by survival and tissue fungal load. Serum cytokine levels were determine to evaluate the immune responses. In the acute infection, chronic Δ9-THC treatment had no effect on mouse survival or tissue fungal load when compared to vehicle treated mice. However, Δ9-THC significantly suppressed IL-12p70 and IL-12p40 as well as marginally suppressed IL-17 versus vehicle treated mice. In comparison, when mice were given a secondary yeast infection, Δ9-THC significantly decreased survival, increased tissue fungal burden and suppressed serum IFN-γ and IL-12p40 levels compared to vehicle treated mice. The data showed that chronic Δ9-THC treatment decreased the efficacy of the memory immune response to candida infection, which correlated with a decrease in IFN-γ that was only observed after the secondary candida challenge.  相似文献   

13.
14.
15.
16.
Plac8 belongs to an evolutionary conserved family of proteins, mostly abundant in plants where they control fruit weight through regulation of cell number. In mice, Plac8 is expressed both in white and brown adipose tissues and we previously showed that Plac8−/− mice develop late-onset obesity, with abnormal brown fat differentiation and reduced thermogenic capacity. We also showed that in brown adipocytes, Plac8 is an upstream regulator of C/EBPβ expression. Here, we first assessed the role of Plac8 in white adipogenesis in vitro. We show that Plac8 is induced early after induction of 3T3-L1 adipocytes differentiation, a process that is prevented by Plac8 knockdown; similarly, embryonic fibroblasts obtained from Plac8 knockout mice failed to form adipocytes upon stimulation of differentiation. Knockdown of Plac8 in 3T3-L1 was associated with reduced expression of C/EBPβ, Krox20, and Klf4, early regulators of the white adipogenic program, and we show that Plac8 could transactivate the C/EBPβ promoter. In vivo, we show that absence of Plac8 led to increased white fat mass with enlarged adipocytes but reduced total number of adipocytes. Finally, even though Plac8−/− mice showed impaired thermogenesis due to brown fat dysfunction, this was not associated with changes in glycemia or plasma free fatty acid and triglyceride levels. Collectively, these data indicate that Plac8 is an upstream regulator of C/EBPβ required for adipogenesis in vitro. However, in vivo, Plac8 is dispensable for the differentiation of white adipocytes with preserved fat storage capacity but is required for normal fat cell number regulation.  相似文献   

17.
Fibroblast growth factor 21 (FGF21) is a regulator of glucose and lipid metabolism. It has been widely considered as a promising candidate for the treatment of type 2 diabetes mellitus (T2DM) and other related metabolic disorders. However, lack of structural and dynamic information has limited FGF21‐based drug development. Here, using nuclear magnetic resonance (NMR) spectroscopy, we determine the structure of FGF21 and find that its non‐canonical flexible β‐trefoil conformation affects the folding of β2‐β3 hairpin and further overall protein stability. To modulate folding dynamics, we designed an FGF21‐FGF19 chimera, FGF21SS. As expected, FGF21SS shows better thermostability without inducing hepatocyte proliferation. Functional characterization of FGF21SS shows its better insulin sensitivity, reduced inflammation in 3T3‐L1 adipocytes, and lower blood glucose and insulin levels in ob/ob mice compared with wild type. Our dynamics‐based rational design provides a promising approach for FGF21‐based therapeutic development against T2DM.  相似文献   

18.
Recently, we have identified two 3′-phosphoadenosine 5′-phosphosulfate (PAPS) transporters (PAPST1 and PAPST2), which contribute to PAPS transport into the Golgi, in both human and Drosophila. Mutation and RNA interference (RNAi) of the Drosophila PAPST have shown the importance of PAPST-dependent sulfation of carbohydrates and proteins during development. However, the functional roles of PAPST in mammals are largely unknown. Here, we investigated whether PAPST-dependent sulfation is involved in regulating signaling pathways required for the maintenance of mouse embryonic stem cells (mESCs), differentiation into the three germ layers, and neurogenesis. By using a yeast expression system, mouse PAPST1 and PAPST2 proteins were shown to have PAPS transport activity with an apparent Km value of 1.54 µM or 1.49 µM, respectively. RNAi-mediated knockdown of each PAPST induced the reduction of chondroitin sulfate (CS) chain sulfation as well as heparan sulfate (HS) chain sulfation, and inhibited mESC self-renewal due to defects in several signaling pathways. However, we suggest that these effects were due to reduced HS, not CS, chain sulfation, because knockdown of mouse N-deacetylase/N-sulfotransferase, which catalyzes the first step of HS sulfation, in mESCs gave similar results to those observed in PAPST-knockdown mESCs, but depletion of CS chains did not. On the other hand, during embryoid body formation, PAPST-knockdown mESCs exhibited abnormal differentiation, in particular neurogenesis was promoted, presumably due to the observed defects in BMP, FGF and Wnt signaling. The latter were reduced as a result of the reduction in both HS and CS chain sulfation. We propose that PAPST-dependent sulfation of HS or CS chains, which is regulated developmentally, regulates the extrinsic signaling required for the maintenance and normal differentiation of mESCs.  相似文献   

19.
20.
Heparan sulfate (HS) has been implicated in regulating cell fate decisions during differentiation of embryonic stem cells (ESCs) into advanced cell types. However, the necessity and the underlying molecular mechanisms of HS in early cell lineage differentiation are still largely unknown. In this study, we examined the potential of EXT1(-/-) mouse ESCs (mESCs), that are deficient in HS, to differentiate into primary germ layer cells. We observed that EXT1(-/-) mESCs lost their differentiation competence and failed to differentiate into Pax6(+)-neural precursor cells and mesodermal cells. More detailed analyses highlighted the importance of HS for the induction of Brachyury(+) pan-mesoderm as well as normal gene expression associated with the dorso-ventral patterning of mesoderm. Examination of developmental cell signaling revealed that EXT1 ablation diminished FGF and BMP but not Wnt signaling. Furthermore, restoration of FGF and BMP signaling each partially rescued mesoderm differentiation defects. We further show that BMP4 is more prone to degradation in EXT1(-/-) mESCs culture medium compared with that of wild type cells. Therefore, our data reveal that HS stabilizes BMP ligand and thereby maintains the BMP signaling output required for normal mesoderm differentiation. In summary, our study demonstrates that HS is required for ESC pluripotency, in particular lineage specification into mesoderm through facilitation of FGF and BMP signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号