首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glucosaminoglycans isolated from the skin of control and streptozotocin-diabetic rats were fractionated on ion-exchange chromatography into a heparan sulfate (HS)-like and a heparin-like species. In addition, a low sulfated fraction was isolated from the diabetics. The HS and heparin-like fractions isolated from the diabetics (in contrast to the low sulfated fractions) retained high affinity for the acidic (FGF-1) and basic (FGF-2) fibroblast growth factors. In culture, the fractions purified from the control rats and the heparin-like material isolated from the diabetics mediated the biological activity of both FGFs in a dose-dependent manner. By contrast, the diabetic HS-like fractions promoted the biological activity of FGF-2 but not of FGF-1. The results support the idea that the structural motives in HS required for FGF-1 and FGF-2 mediated receptor signalling are different. They may be relevant to the impaired wound healing observed in the disease. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) play essential roles in bone formation and osteoblast activity through the extracellular signal‐regulated kinase 1/2 (ERK1/2) and Smad pathways. Sprouty family members are intracellular inhibitors of the FGF signaling pathway, and four orthologs of Sprouty have been identified in mammals. In vivo analyses have revealed that Sprouty2 is associated with bone formation. However, the mechanism by which the Sprouty family controls bone formation has not been clarified. In this study, we investigated the involvement of Sprouty2 in osteoblast proliferation and differentiation. We examined Sprouty2 expression in MC3T3‐E1 cells, and found that high levels of Sprouty2 expression were induced by basic FGF stimulation. Overexpression of Sprouty2 in MC3T3‐E1 cells resulted in suppressed proliferation compared with control cells. Sprouty2 negatively regulated the phosphorylation of ERK1/2 after basic FGF stimulation, and of Smad1/5/8 after BMP stimulation. Furthermore, Sprouty2 suppressed the expression of osterix, alkaline phosphatase, and osteocalcin mRNA, which are markers of osteoblast differentiation. Additionally, Sprouty2 inhibited osteoblast matrix mineralization. These results suggest that Sprouty2 is involved in the control of osteoblast proliferation and differentiation by downregulating the FGF‐ERK1/2 and BMP‐Smad pathways, and suppresses the induction of markers of osteoblast differentiation.  相似文献   

3.
In the present study, we investigated the involvement of rhombomere 1 patterning proteins in the regulation of the major noradrenergic centre of the brain, the locus coeruleus. Primary cultures of rat embryonic day 13.5 locus coeruleus were treated with fibroblast growth factor-8, noggin and members of the bone morphogenetic and Wnt protein families. We show that bone morphogenetic proteins 2, 5 and 7 increase and noggin decreases the number of tyrosine hydroxylase-positive locus coeruleus neurons. Interestingly, from all Wnts expressed in the first rhombomere by embryonic day 12.5 in the mice, we only found expression of wnt5a mRNA in the vicinity of the locus coeruleus. In agreement with this finding, from all Wnts studied in vitro, only Wnt5a increased the number of tyrosine hydroxylase-positive neurons in locus coeruleus cultures. Finally, we also found that fibroblast growth factor-8 increased the number of tyrosine hydroxylase-positive cells in locus coeruleus cultures. Neither of the identified factors affected the survival of tyrosine hydroxylase-positive locus coeruleus noradrenergic neurons or the proliferation of their progenitors or neurogenesis. Instead, our results suggest that these patterning signals of rhombomere 1 may work to promote the differentiation of noradrenergic progenitors at later stages of development.  相似文献   

4.
Previous study has suggested that distinct populations of myeloid cells exist in the anterior ventral blood islands (aVBI) and posterior ventral blood islands (pVBI) in Xenopus neurula embryo. However, details for differentiation programs of these two populations have not been elucidated. In the present study, we examined the role of Wnt, vascular endothelial growth factor (VEGF) and fibroblast growth factor signals in the regulation of myeloid cell differentiation in the dorsal marginal zone and ventral marginal zone explants that are the sources of myeloid cells in the aVBI and pVBI. We found that regulation of Wnt activity is essential for the differentiation of myeloid cells in the aVBI but is not required for the differentiation of myeloid cells in the pVBI. Endogenous activity of the VEGF signal is necessary for differentiation of myeloid cells in the pVBI but is not involved in the differentiation of myeloid cells in the aVBI. Overall results reveal that distinct mechanisms are involved in the myeloid, erythroid and endothelial cell differentiation in the aVBI and pVBI.  相似文献   

5.
Adipose tissue contains one of the largest reservoirs of cholesterol in the body. Adipocyte dysfunction in obesity is associated with intracellular cholesterol accumulation, and alterations in cholesterol homeostasis have been shown to alter glucose metabolism in cultured adipocytes. ABCA1 plays a major role in cholesterol efflux, suggesting a role for ABCA1 in maintaining cholesterol homeostasis in the adipocyte. However, the impact of adipocyte ABCA1 on adipose tissue function and glucose metabolism is unknown. Our aim was to determine the impact of adipocyte ABCA1 on adipocyte lipid metabolism, body weight, and glucose metabolism in vivo. To address this, we used mice lacking ABCA1 specifically in adipocytes (ABCA1−ad/−ad). When fed a high-fat, high-cholesterol diet, ABCA1−ad/−ad mice showed increased cholesterol and triglyceride stores in adipose tissue, developed enlarged fat pads, and had increased body weight. Associated with these phenotypic changes, we observed significant changes in the expression of genes involved in cholesterol and glucose homeostasis, including ldlr, abcg1, glut-4, adiponectin, and leptin. ABCA1−ad/−ad mice also demonstrated impaired glucose tolerance, lower insulin sensitivity, and decreased insulin secretion. We conclude that ABCA1 in adipocytes influences adipocyte lipid metabolism, body weight, and whole-body glucose homeostasis.  相似文献   

6.
Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet β-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in β-cells. These mice exhibited abnormal islet morphology with reduced β-cell proliferation after 1 week of age and glucose intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.  相似文献   

7.
Heparan sulfate proteoglycans on the cell surface act as low affinity binding sites for acidic and basic fibroblast growth factor (FGF) [Moscatelli (1887): J Cell Physiol 131:123–130] and play an important role in the interaction of FGF with the FGF receptor (FGFR). In this study, several aspects of the interaction of FGFs with cell surface heparan sulfate proteoglycans were examined. Reciprocal cross blocking studies demonstrated that acidic FGF (aFGF) and basic FGF (bFGF) bind to identical or closely associated heparan sulfate motifs on BALB/c 3T3 cell surface heparan sulfate proteoglycans. However, the binding affinity of the two growth factros for these heparan sulfate proteoglycans differs considerably, competition binding data indicating that aFGF has a 4.7-fold lower affinity than bFGF for 3T3 heparan sulfate proteoglycan. Subsequent studies of dissociation kinetics demonstrated that bFGF dissociates form the FGFR at least 10-fold slower than aFGF, whereas, following removal of cell surface heparan sulfate proteoplycan. Subsequent studies of dissociation kinetic demonstrated that bFGF dissociates from the FGFR at least 10-fold slwer than aFGF, whereas, following removal of cell surface heparan sulfate proteoglycans by heparinase treatment, the dissociation rate of both FGFs is similar and rapid. These results support the concept that cell surface heparan sulfate proteoglycans stabilize the interactio fo FGF with FGFR, possibly by the formatin of a ternary complex. © Wiley-Liss, Inc.  相似文献   

8.
Heparan sulfate (HS) comprises a structurally diverse group of glycosaminoglycans present ubiquitously on cell surfaces and in the extracellular matrix. The spatially and temporally regulated expression of specific HS structures is essential for various developmental processes in the nervous system but their distributions in the mouse olfactory system have not been explored. Here, we examined the spatiotemporal distribution of particular HS species in the developing mouse olfactory system using three structure‐specific monoclonal antibodies (HepSS‐1, JM403 and NAH46). The major findings were as follows. (i) During olfactory bulb morphogenesis, the HepSS‐1 epitope was strongly expressed in anterior telencephalic cells and coexpressed with fibroblast growth factor receptor 1. (ii) In early postnatal glomeruli, the JM403 epitope was expressed at different levels among individual glomeruli. The expression pattern and levels of the JM403 epitope were both associated with those of ephrin‐A3. (iii) In the vomeronasal system, the JM403 epitope was expressed in all vomeronasal axons but became increasingly restricted to vomeronasal axons terminating in the anterior region of the accessory olfactory bulb by 3 weeks of age. Our results demonstrate that each HS epitope exhibits a unique expression pattern during the development of the mouse olfactory system. Thus, each HS epitope is closely associated with particular developmental processes of the olfactory system and might have a particular role in developmental events.  相似文献   

9.
The range of biological outcomes generated by many signalling proteins in development and homeostasis is increased by their interactions with glycosaminoglycans, particularly heparan sulfate (HS). This interaction controls the localization and movement of these signalling proteins, but whether such control depends on the specificity of the interactions is not known. We used five fibroblast growth factors with an N-terminal HaloTag (Halo-FGFs) for fluorescent labelling, with well-characterized and distinct HS-binding properties, and measured their binding and diffusion in pericellular matrix of fixed rat mammary 27 fibroblasts. Halo-FGF1, Halo-FGF2 and Halo-FGF6 bound to HS, whereas Halo-FGF10 also interacted with chondroitin sulfate/dermatan sulfate, and FGF20 did not bind detectably. The distribution of bound FGFs in the pericellular matrix was not homogeneous, and for FGF10 exhibited striking clusters. Fluorescence recovery after photobleaching showed that FGF2 and FGF6 diffused faster, whereas FGF1 diffused more slowly, and FGF10 was immobile. The results demonstrate that the specificity of the interactions of proteins with glycosaminoglycans controls their binding and diffusion. Moreover, cells regulate the spatial distribution of different protein-binding sites in glycosaminoglycans independently of each other, implying that the extracellular matrix has long-range structure.  相似文献   

10.
To investigate the alterations of glucose homeostasis and variables of the insulin‐like growth factor‐1 (IGF‐1) growth system in sedentary and trained diabetic (TD) rats, Wistar rats were divided into sedentary control (SC), trained control (TC), sedentary diabetic (SD), and TD groups. Diabetes was induced by Alloxan (35 mg kg?1 b.w.). Training program consisted of swimming 5 days week?1, 1 h day?1, during 8 weeks. Rats were sacrificed and blood was collected for determinations of serum glucose, insulin, growth hormone (GH), IGF‐1, and IGF binding protein‐3 (IGFBP‐3). Muscle and liver were removed to evaluate glycogen content. Cerebellum was extracted to determinate IGF‐1 content. Diabetes decreased serum GH, IGF‐1, IGFBP‐3, liver glycogen, and cerebellum IGF‐1 peptide content in baseline condition. Physical training recovered liver glycogen and increased serum and cerebellum IGF‐1 peptide in diabetic rats. Physical training induces important metabolic and hormonal alterations that are associated with an improvement in glucose homeostasis and serum and cerebellum IGF‐1 concentrations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Peroxisome proliferator-activated receptor-α (PPARα) is a dietary lipid sensor, whose activation results in hypolipidemic effects. In this study, we investigated whether PPARα activation affects energy metabolism in white adipose tissue (WAT). Activation of PPARα by its agonist (bezafibrate) markedly reduced adiposity in KK mice fed a high-fat diet. In 3T3-L1 adipocytes, addition of GW7647, a highly specific PPARα agonist, during adipocyte differentiation enhanced glycerol-3-phosphate dehydrogenase activity, insulin-stimulated glucose uptake, and adipogenic gene expression. However, triglyceride accumulation was not increased by PPARα activation. PPARα activation induced expression of target genes involved in FA oxidation and stimulated FA oxidation. In WAT of KK mice treated with bezafibrate, both adipogenic and FA oxidation-related genes were significantly upregulated. These changes in mRNA expression were not observed in PPARα-deficient mice. Bezafibrate treatment enhanced FA oxidation in isolated adipocytes, suppressing adipocyte hypertrophy. Chromatin immunoprecipitation (ChIP) assay revealed that PPARα was recruited to promoter regions of both adipogenic and FA oxidation-related genes in the presence of GW7647 in 3T3-L1 adipocytes. These findings indicate that the activation of PPARα affects energy metabolism in adipocytes, and PPARα activation in WAT may contribute to the clinical effects of fibrate drugs.  相似文献   

12.
13.
14.
In this study, the internalization mechanism of basic fibroblast growth factor (bFGF) at the blood-brain barrier (BBB) was investigated using a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4 cells) as an in vitro model of the BBB and the corresponding receptor was identified using immunohistochemical analysis. The heparin-resistant binding of [125I]bFGF to TM-BBB4 cells was found to be time-, temperature-, osmolarity- and concentration-dependent. Kinetic analysis of the cell-surface binding of [125I]bFGF to TM-BBB4 cells revealed saturable binding with a half-saturation constant of 76 +/- 24 nm and a maximal binding capacity of 183 +/- 17 pmol/mg protein. The heparin-resistant binding of [125I]bFGF to TM-BBB4 was significantly inhibited by a cationic polypeptide poly-L-lysine (300 micro m), and compounds which contain a sulfate moiety, e.g. heparin and chondroitin sulfate-B (each 10 micro g/mL). Moreover, the heparin-resistant binding of [125I]bFGF in TM-BBB4 cells was significantly reduced by 50% following treatment with sodium chlorate, suggesting the loss of perlecan (a core protein of heparan sulfate proteoglycan, HSPG) from the extracellular matrix of the cells. This type of binding is consistent with the involvement HSPG-mediated endocytosis. RT-PCR analysis revealed that HSPG mRNA and FGFR1 and FGFR2 (tyrosine-kinase receptors for bFGF) mRNA are expressed in TM-BBB4 cells. Moreover, immunohistochemical analysis demonstrated that perlecan is expressed on the abluminal membrane of the mouse brain capillary. These results suggest that bFGF is internalized via HSPG, which is expressed on the abluminal membrane of the BBB. HSPG at the BBB may play a role in maintaining the BBB function due to acceptance of the bFGF secreted from astrocytes.  相似文献   

15.
16.
17.
The increase in body and white adipose tissue weights induced by a high-fat diet were prevented by treatment with the beta3-adrenergic agonist Trecadrine. Plasma insulin levels were slightly elevated in overweight rats, while a decrease was observed in Trecadrine-treated groups. Insulin-dependent glucose uptake was impaired in adipocytes of the overweight rats in relation to lean animals. The beta3-adrenergic agonist induced an increase in insulin-stimulated glucose uptake by adipocytes as compared to the nontreated animals. In fact, Trecadrine treatment was able to restore to control values the impairment in insulin-mediated glucose uptake induced by the cafeteria diet, suggesting that Trecadrine prevents the development of insulin resistance in overweight animals. Basal leptin secretion was increased in adipocytes of the overweight rats in relation to lean animals. Trecadrine treatment induced a decrease in basal leptin secretion compared to the untreated animals. Insulin-stimulated leptin secretion reached similar levels in adipocytes of the overweight rats as in lean animals. There was a trend for insulin-induced leptin secretion to be lower at 24 h in Trecadrine-treated rats, but it did not reach statistical significance. In conclusion, adipocytes of diet-induced overweight animals have a higher basal leptin secretion, which is reduced by treatment with Trecadrine. However, neither the cafeteria diet nor the Trecadrine treatment significantly alters the ability of adipocytes to increase leptin secretion in response to insulin.  相似文献   

18.
Fat metabolism is an important and complex biochemical reaction in vivo and is regulated by many factors. Recently, the findings on high expression of fibroblast growth factor-16 (FGF16) in brown adipose tissue have led to an interest in exploring its role in lipogenesis and lipid metabolism. The study cloned the goat’s FGF16 gene 624 bp long, including the complete open reading frame that encodes 207 amino acids. We found that FGF16 expression is highest in goat kidneys and hearts, followed by subcutaneous fat and triceps. Moreover, the expression of FGF16 reached its peak on the 2nd day of adipocyte differentiation (P < 0.01) and then decreased significantly. We used overexpression and interference to study the function of FGF16 gene in goat intramuscular preadipocytes. Silencing of FGF16 decreased adipocytes lipid droplet aggregation and triglyceride synthesis. This is in contrast to the situation where FGF16 is overexpressed. Furthermore, knockdown of FGF16 also caused down-regulated expression of genes associated with adipocyte differentiation including CCAAT enhancer-binding protein beta (P < 0.01), fatty acid-binding protein-2 (P < 0.01) and sterol regulatory element binding protein-1 (P < 0.05), but the preadipocyte factor-1 was up-regulated. At the same time, the genes adipose triglyceride lipase (P < 0.01) and hormone-sensitive lipase (P < 0.05) associated with triglyceride breakdown were highly expressed. Next, we locked the fibroblast growth factor receptor-4 (FGFR4) through the protein interaction network and interfering with FGF16 to significantly reduce FGFR4 expression. It was found that the expression profile of FGFR4 in adipocyte differentiation was highly similar to that of FGF16. Overexpression and interference methods confirmed that FGFR4 and FGF16 have the same promoting function in adipocyte differentiation. Finally, using co-transfection technology, pc-FGF16 and siRNA-FGFR4, siRNA2-FGF16 and siRNA-FGFR4 were combined to treat adipocytes separately. It was found that in the case of overexpression of FGF16, cell lipid secretion and triglyceride synthesis showed a trend of first increase and then decrease with increasing interference concentration. In the case of interference with FGF16, lipid secretion and triglyceride synthesis showed a downward trend with the increase of interference concentration. These findings illustrated that FGF16 mediates adipocyte differentiation via receptor FGFR4 expression and contributed to further study of the functional role of FGF16 in goat fat formation.  相似文献   

19.
Cartilage injury can trigger crucial pathomechanisms, including excessive cell death and expression of matrix‐destructive enzymes, which contribute to the progression of a post‐traumatic osteoarthritis (PTOA). With the intent to create a novel treatment strategy for alleviating trauma‐induced cartilage damage, we complemented a promising antioxidative approach based on cell and chondroprotective N‐acetyl cysteine (NAC) by chondroanabolic stimulation. Overall, three potential pro‐anabolic growth factors – IGF‐1, BMP7 and FGF18 – were tested comparatively with and without NAC in an ex vivo human cartilage trauma‐model. For that purpose, full‐thickness cartilage explants were subjected to a defined impact (0.59 J) and subsequently treated with the substances. Efficacy of the therapeutic approaches was evaluated by cell viability, as well as various catabolic and anabolic biomarkers, representing the present matrix turnover. Although monotherapy with NAC, FGF18 or BMP7 significantly prevented trauma‐induced cell dead and breakdown of type II collagen, combination of NAC and one of the growth factors did not yield significant benefit as compared to NAC alone. IGF‐1, which possessed only moderate cell protective and no chondroprotective qualities after cartilage trauma, even reduced NAC‐mediated cell and chondroprotection. Despite significant promotion of type II collagen expression by IGF‐1 and BMP7, addition of NAC completely suppressed this chondroanabolic effect. All in all, NAC and BMP7 emerged as best combination. As our findings indicate limited benefits of the simultaneous multidirectional therapy, a sequential application might circumvent adverse interferences, such as suppression of type II collagen biosynthesis, which was found to be reversed 7 days after NAC withdrawal.  相似文献   

20.
Type 2 diabetes mellitus (DM) appears to be a significant risk factor for Alzheimer disease (AD). Insulin and insulin-like growth factor-1 (IGF-1) also have intense effects in the central nervous system (CNS), regulating key processes such as neuronal survival and longevity, as well as learning and memory. Hyperglycaemia induces increased peripheral utilization of insulin, resulting in reduced insulin transport into the brain. Whereas the density of brain insulin receptor decreases during age, IGF-1 receptor increases, suggesting that specific insulin-mediated signals is involved in aging and possibly in cognitive decline. Molecular mechanisms that protect CNS neurons against β-amyloid-derived-diffusible ligands (ADDL), responsible for synaptic deterioration underlying AD memory failure, have been identified. The protection mechanism does not involve simple competition between ADDLs and insulin, but rather it is signalling dependent down-regulation of ADDL-binding sites. Defective insulin signalling make neurons energy deficient and vulnerable to oxidizing or other metabolic insults and impairs synaptic plasticity. In fact, destruction of mitochondria, by oxidation of a dynamic-like transporter protein, may cause synapse loss in AD. Moreover, interaction between Aβ and τ proteins could be cause of neuronal loss. Hyperinsulinaemia as well as complete lack of insulin result in increased τ phosphorylation, leading to an imbalance of insulin-regulated τ kinases and phosphatates. However, amyloid peptides accumulation is currently seen as a key step in the pathogenesis of AD. Inflammation interacts with processing and deposit of β-amyloid. Chronic hyperinsulinemia may exacerbate inflammatory responses and increase markers of oxidative stress. In addition, insulin appears to act as 'neuromodulator', influencing release and reuptake of neurotransmitters, and improving learning and memory. Thus, experimental and clinical evidence show that insulin action influences cerebral functions. In this paper, we reviewed several mechanisms by which insulin may affect pathophysiology in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号