首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ubiquitin-protein ligases (E3s) are implicated in various human disorders and are attractive targets for therapeutic intervention. Although most cellular proteins are ubiquitinated, ubiquitination cannot be linked directly to a specific E3 for a large fraction of these proteins, and the substrates of most E3 enzymes are unknown. We have developed a luminescent assay to detect ubiquitination in vitro, which is more quantitative, effective, and sensitive than conventional ubiquitination assays. By taking advantage of the abundance of purified proteins made available by genomic efforts, we screened hundreds of purified yeast proteins for ubiquitination, and we identified previously reported and novel substrates of the yeast E3 ligase Rsp5. The relevance of these substrates was confirmed in vivo by showing that a number of them interact genetically with Rsp5, and some were ubiquitinated by Rsp5 in vivo. The combination of this sensitive assay and the availability of purified substrates will enable the identification of substrates for any purified E3 enzyme.  相似文献   

3.
4.
In eukaryotes, endoplasmic reticulum-associated degradation (ERAD) functions in cellular quality control and regulation of normal ER-resident proteins. ERAD proceeds by the ubiquitin-proteasome pathway, in which the covalent attachment of ubiquitin to proteins targets them for proteasomal degradation. Ubiquitin-protein ligases (E3s) play a crucial role in this process by recognizing target proteins and initiating their ubiquitination. Here we show that Hrd1p, which is identical to Der3p, is an E3 for ERAD. Hrd1p is required for the degradation and ubiquitination of several ERAD substrates and physically associates with relevant ubiquitin-conjugating enzymes (E2s). A soluble Hrd1 fusion protein shows E3 activity in vitro - catalysing the ubiquitination of itself and test proteins. In this capacity, Hrd1p has an apparent preference for misfolded proteins. We also show that Hrd1p functions as an E3 in vivo, using only Ubc7p or Ubc1p to specifically program the ubiquitination of ERAD substrates.  相似文献   

5.
In-depth analyses of cancer cell proteomes are needed to elucidate oncogenic pathomechanisms, as well as to identify potential drug targets and diagnostic biomarkers. However, methods for quantitative proteomic characterization of patient-derived tumors and in particular their cellular subpopulations are largely lacking. Here we describe an experimental set-up that allows quantitative analysis of proteomes of cancer cell subpopulations derived from either liquid or solid tumors. This is achieved by combining cellular enrichment strategies with quantitative Super-SILAC-based mass spectrometry followed by bioinformatic data analysis. To enrich specific cellular subsets, liquid tumors are first immunophenotyped by flow cytometry followed by FACS-sorting; for solid tumors, laser-capture microdissection is used to purify specific cellular subpopulations. In a second step, proteins are extracted from the purified cells and subsequently combined with a tumor-specific, SILAC-labeled spike-in standard that enables protein quantification. The resulting protein mixture is subjected to either gel electrophoresis or Filter Aided Sample Preparation (FASP) followed by tryptic digestion. Finally, tryptic peptides are analyzed using a hybrid quadrupole-orbitrap mass spectrometer, and the data obtained are processed with bioinformatic software suites including MaxQuant. By means of the workflow presented here, up to 8,000 proteins can be identified and quantified in patient-derived samples, and the resulting protein expression profiles can be compared among patients to identify diagnostic proteomic signatures or potential drug targets.  相似文献   

6.
7.
Pathogens exploit host machinery to establish an environment that favors their propagation. Because of their pivotal roles in cellular physiology, protein degradation pathways are common targets for viral proteins. Protein-linking integrin-associated protein and cytoskeleton 1 (PLIC1), also called ubiquilin, contains an amino-terminal ubiquitin-like (UBL) domain and a carboxy-terminal ubiquitin-associated (UBA) domain. PLIC1 is proposed to function as a regulator of the ubiquitination complex and proteasome machinery. Kaposi's sarcoma-associated herpesvirus (KSHV) contains a small membrane protein, K7, that protects cells from apoptosis induced by various stimuli. We report here that cellular PLIC1 is a K7-interacting protein and that the central hydrophobic region of K7 and the carboxy-terminal UBA domain of PLIC1 are responsible for their interaction. Cellular PLIC1 formed a dimer and bound efficiently to polyubiquitinated proteins through its carboxy-terminal UBA domain, and this activity correlated with its ability to stabilize cellular I kappa B protein. In contrast, K7 interaction prevented PLIC1 from forming a dimer and binding to polyubiquitinated proteins, leading to the rapid degradation of I kappa B. Furthermore, K7 expression promoted efficient degradation of the p53 tumor suppressor, resulting in inhibition of p53-mediated apoptosis. These results indicate that KSHV K7 targets a regulator of the ubiquitin- and proteasome-mediated degradation machinery to deregulate cellular protein turnover, which potentially provides a favorable environment for viral reproduction.  相似文献   

8.
9.
Ubiquitination regulates a host of cellular processes by labeling proteins for degradation, but also by functioning as a regulatory, nonproteolytic posttranslational modification. Proteome-wide strategies to monitor changes in ubiquitination profiles are important to obtain insight into the various cellular functions of ubiquitination. Here we describe generation of stable cell lines expressing a tandem hexahistidine-biotin tag (HB-tag) fused to ubiquitin for two-step purification of the ubiquitinated proteome under fully denaturing conditions. Using this approach we identified 669 ubiquitinated proteins from HeLa cells, including 44 precise ubiquitin attachment sites on substrates and all seven possible ubiquitin chain-linkage types. To probe the dynamics of ubiquitination in response to perturbation of the ubiquitin/proteasome pathway, we combined ubiquitin profiling with quantitative mass spectrometry using the stable isotope labeling with amino acids in cell culture (SILAC) strategy. We compared untreated cells and cells treated with the proteasome inhibitor MG132 to identify ubiquitinated proteins that are targeted to the proteasome for degradation. A number of proteasome substrates were identified. In addition, the quantitative approach allowed us to compare proteasome targeting by different ubiquitin chain topologies in vivo. The tools and strategies described here can be applied to detect changes in ubiquitination dynamics in response to various changes in growth conditions and cellular stress and will contribute to our understanding of the ubiquitin/proteasome system.  相似文献   

10.
RING for destruction?   总被引:26,自引:0,他引:26  
Ubiquitination targets proteins for degradation and is a potent regulator of cellular protein function. Recent results implicate the RING finger domain in specific ubiquitination events; it is possible that all RING proteins act as E3 ubiquitin protein ligases, with implications for a variety of biological areas.  相似文献   

11.
12.
泛素化修饰(ubiquitination modification)广泛存在于真核生物,通过26S蛋白酶体降解途径或信号传递等,改变蛋白质稳定性、定位和活性等功能,参与细胞的周期、转录、炎症、肿瘤和免疫等各项功能,是一类复杂的动态调控系统.泛素化调节是一个可逆过程,被泛素连接酶(ubiquitin ligase,E3)...  相似文献   

13.
The microRNA miR-21 is overexpressed in most human cancers and accumulating evidence indicates that it functions as an oncogene. Since miRNAs suppress the expression of their target genes, we hypothesized that some miR-21 targets may act as tumor suppressors, and thus their expression would be anticipated to be reduced by the high miR-21 levels observed in various human cancers. By microarray analysis and quantitative PCR we identified and validated FBXO11 (a member of the F-box subfamily lacking a distinct unifying domain) as a miR-21 target gene. FBXO11 is a component of the SKP1-CUL1-F-box ubiquitin ligase complex that targets proteins for ubiquitination and proteosomal degradation. By loss of function and gain of function studies, we show that FBXO11 acts as a tumor suppressor, promotes apoptosis and mediates the degradation of the oncogenic protein BCL6. The critical role that FBXO11 plays in miR-21-mediated tumorigenesis was demonstrated by a rescue experiment, in which silencing FBXO11 in miR-21KD cancer cells restored their high tumorigenicity. Expression of miR-21 and FBXO11 are inversely correlated in tumor tissue, and their expression correlates with patient survival and tumor grade. High FBXO11 expression correlates with better patient survival and lower tumor grade consistent with its tumor suppressor activity. In contrast high miR-21 expression, which correlates with poor patient survival and higher tumor grade, is consistent with its oncogenic activity. Our results identify FBXO11 as a novel miR-21 target gene, and demonstrate that the oncogenic miRNA miR-21 decreases the expression of FBXO11, which normally acts as a tumor suppressor, and thereby promotes tumorigenesis.  相似文献   

14.
15.
A small molecule inhibitor of NF-kappaB-dependent cytokine expression was discovered that blocked tumor necrosis factor (TNF) alpha-induced IkappaB(alpha) degradation in MM6 cells but not the degradation of beta-catenin in Jurkat cells. Ro106-9920 blocked lipopolysaccharide (LPS)-dependent expression of TNFalpha, interleukin-1beta, and interleukin-6 in fresh human peripheral blood mononuclear cells with IC(50) values below 1 microm. Ro106-9920 also blocked TNFalpha production in a dose-dependent manner following oral administration in two acute models of inflammation (air pouch and LPS challenge). Ro106-9920 was observed to inhibit an ubiquitination activity that does not require betaTRCP but associates with IkappaB(alpha) and will ubiquitinate IkappaB(alpha) S32E,S36E (IkappaB(alpha)(ee)) specifically at lysine 21 or 22. Ro106-9920 was identified in a cell-free system as a time-dependent inhibitor of IkappaB(alpha)(ee) ubiquitination with an IC(50) value of 2.3 +/- 0.09 microm. The ubiquitin E3 ligase activity is inhibited by cysteine-alkylating reagents, supported by E2UBCH7, and requires cIAP2 or a cIAP2-associated protein for activity. These activities are inconsistent with what has been reported for SCF(betaTRCP), the putative E3 for IkappaB(alpha) ubiquitination. Ro106-9920 was observed to be selective for IkappaB(alpha)(ee) ubiquitination over the ubiquitin-activating enzyme (E1), E2UBCH7, nonspecific ubiquitination of cellular proteins, and 97 other molecular targets. We propose that Ro106-9920 selectively inhibits an uncharacterized but essential ubiquitination activity associated with LPS- and TNFalpha-induced IkappaB(alpha) degradation and NF-kappaB activation.  相似文献   

16.
Plasma membrane proteins play critical roles in cell-to-cell recognition, signal transduction and material transport. Because of their accessibility, membrane proteins constitute the major targets for protein-based drugs. Here, we described an approach, which included stable isotope labeling by amino acids in cell culture (SILAC), cell surface biotinylation, affinity peptide purification and LC-MS/MS for the identification and quantification of cell surface membrane proteins. We applied the strategy for the quantitative analysis of membrane proteins expressed by a pair of human melanoma cell lines, WM-115 and WM-266-4, which were derived initially from the primary and metastatic tumor sites of the same individual. We were able to identify more than 100 membrane and membrane-associated proteins from these two cell lines, including cell surface histones. We further confirmed the surface localization of histone H2B and three other proteins by immunocytochemical analysis with confocal microscopy. The contamination from cytoplasmic and other nonmembrane-related sources is greatly reduced by using cell surface biotinylation and affinity purification of biotinylated peptides. We also quantified the relative expression of 62 identified proteins in the two types of melanoma cells. The application to quantitative analysis of membrane proteins of primary and metastatic melanoma cells revealed great potential of the method in the comprehensive identification of tumor progression markers as well as in the discovery of new protein-based therapeutic targets.  相似文献   

17.
Post-translational modifications of proteins play key roles in eukaryotic growth, differentiation and environmental adaptation. In model systems the ubiquitination of specific proteins contributes to the control of cell cycle progression, stress adaptation and metabolic reprogramming. We have combined molecular, cellular and proteomic approaches to examine the roles of ubiquitination in Candida albicans, because little is known about ubiquitination in this major fungal pathogen of humans. Independent null (ubi4/ubi4) and conditional (MET3p-UBI4/ubi4) mutations were constructed at the C. albicans polyubiquitin-encoding locus. These mutants displayed morphological and cell cycle defects, as well as sensitivity to thermal, oxidative and cell wall stresses. Furthermore, ubi4/ubi4 cells rapidly lost viability under starvation conditions. Consistent with these phenotypes, proteins with roles in stress responses (Gnd1, Pst2, Ssb1), metabolism (Acs2, Eno1, Fba1, Gpd2, Pdx3, Pgk1, Tkl1) and ubiquitination (Ubi4, Ubi3, Pre1, Pre3, Rpt5) were among the ubiquitination targets we identified, further indicating that ubiquitination plays key roles in growth, stress responses and metabolic adaptation in C. albicans. Clearly ubiquitination plays key roles in the regulation of fundamental cellular processes that underpin the pathogenicity of this medically important fungus. This was confirmed by the observation that the virulence of C. albicans ubi4/ubi4 cells is significantly attenuated.  相似文献   

18.
We have previously identified the E3 ubiquitin ligase-inducible degrader of the low density lipoprotein receptor (LDLR) (Idol) as a post-translational modulator of LDLR levels. Idol is a direct target for regulation by liver X receptors (LXRs), and its expression is responsive to cellular sterol status independent of the sterol-response element-binding proteins. Here we demonstrate that Idol also targets two closely related LDLR family members, VLDLR and ApoE receptor 2 (ApoER2), proteins implicated in both neuronal development and lipid metabolism. Idol triggers ubiquitination of the VLDLR and ApoER2 on their cytoplasmic tails, leading to their degradation. We further show that the level of endogenous VLDLR is sensitive to cellular sterol content, Idol expression, and activation of the LXR pathway. Pharmacological activation of the LXR pathway in mice leads to increased Idol expression and to decreased Vldlr levels in vivo. Finally, we establish an unexpected functional link between LXR and Reelin signaling. We demonstrate that LXR activation results in decreased Reelin binding to VLDLR and reduced Dab1 phosphorylation. The identification of VLDLR and ApoER2 as Idol targets suggests potential roles for this LXR-inducible E3 ligase in the central nervous system in addition to lipid metabolism.  相似文献   

19.
MicroRNAs play critical roles in the regulation of biological processes such as growth, apoptosis, productivity and secretion thus representing a potential route toward enhancing desirable characteristics of mammalian cells for biopharmaceutical production. We have previously found that miR-7 over-expression significantly inhibits the growth of CHO-SEAP cells without impacting cellular viability, with an associated increase in normalised productivity. Understanding the biological basis of this effect might open the way to new strategies for bioprocess-relevant growth regulation. In this study we have carried out a quantitative label-free LC-MS profiling study of proteins exhibiting altered levels following over-expression of miR-7 to gain insights into potential mechanisms involved in the observed phenotype. From the analysis we found 93 proteins showing decreased levels and 74 proteins with increased levels following over-expression of miR-7. Pathway analysis suggests that proteins involved in protein translation (e.g. ribosomal proteins), RNA and DNA processing (including histones) are enriched in the list of proteins showing decreased expression. Proteins involved in protein folding and secretion were found to be up-regulated following miR-7 over-expression. In silico bioinformatic analysis using miRWalk, which combined the output from 6 selected miRNA target prediction algorithms, was used to evaluate if any of the down-regulated proteins were potential direct targets of miR-7. Two genes, stathmin and catalase, which both have known roles in the regulation of cellular growth, were found to overlap a number of the predictive target database searches in both mouse and rat, and are likely to be possible direct targets of miR-7 in CHO cells. This is the first report investigating the impact of a miRNA on the proteome of CHO cells.  相似文献   

20.
肿瘤的侵袭和转移是加剧肿瘤恶化的主要原因,也是导致患者预后不良的根本原因。近年来大量研究发现,大部分肿瘤的转移都依赖于上皮间质转化(epithelial-mesenchymal transition, EMT)的发生,此外EMT也与肿瘤干性和肿瘤耐药等诸多肿瘤恶性行为密切相关,因此有效的抑制EMT的发生将可能极大的有利于肿瘤的治疗。去泛素化酶(deubiquitinating enzymes, DUBs)的主要功能之一就是通过移除底物蛋白质上泛素链,避免其通过泛素蛋白酶体途径降解,来维持细胞内蛋白质水平的动态平衡。去泛素化酶作为调节蛋白质泛素化修饰的一类重要酶类,其异常表达或酶活性的改变通常都会导致疾病的发生。众多研究发现,部分去泛素化酶在肿瘤侵袭和转移过程中表达失衡,在肿瘤转移的过程中扮演着重要的角色。EMT是指由上皮型细胞转变为间质型细胞的动态细胞生物学过程,在该过程中涉及到例如Snial1、Slug、ZEB1等EMT相关转录因子和细胞表面的例如E-钙黏着蛋白、N-钙黏着蛋白等分子标志物表达水平的变化。这些蛋白质通常具有不稳定性,易被降解等特征。EMT过程的发生,涉及到许多蛋白质稳定性的调节,而去泛素化酶作为一类维持蛋白质稳定的重要酶类,在调节这些蛋白质的稳定性方面发挥着重要的作用。EMT的发生也与TGF-β通路、Wnt通路等细胞内众多信号通路的异常活化密不可分,去泛素化酶通过介导这些信号通路的活化,从而间接的调节EMT发生发展。去泛素化酶通过调节EMT相关分子或EMT相关信号通路等多种方式直接或间接影响EMT进展,因此,通过靶向于去泛素化酶抑制肿瘤的侵袭和转移,将为肿瘤治疗提供新的治疗手段和方案,从而有效的推动肿瘤的治疗。本文主要就去泛素化酶在调节EMT相关分子以及信号通路等方面,阐述去泛素化酶在EMT过程中所发挥的重要作用及其作为肿瘤治疗靶点的可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号