首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations that affect the morphogenetic behaviour and differentiation of neural crest-derived cells in mouse embryos have been shown to alter genes that code for growth factors or growth factor receptors. Identification of these and other gene products provide opportunities to understand when and how developmentally distinct embryonic cell populations arise, and how interactions between localized developmental cues and responsive cell subpopulations can be modulated during development.  相似文献   

2.
The main olfactory and the vomeronasal systems are the two systems by which most vertebrates detect chemosensory cues that mediate social behavior. Much research has focused on how one system or the other is critical for particular behaviors. This has lead to a vision of two distinct and complexly autonomous olfactory systems. A closer look at research over the past 30 years reveals a different picture however. These two seemingly distinct systems are much more integrated than previously thought. One novel set of chemosensory cues in particular (MHC Class I peptide ligands) can show us how both systems are capable of detecting the same chemosensory cues, through different mechanisms yet provide the same general information (genetic individuality). Future research will need to now focus on how two seemingly distinct chemosensory systems together detect pheromones and mediate social behaviors. Do these systems work independently, synergistically or competitively in communicating between individuals of the same species?  相似文献   

3.
Osterfield M  Kirschner MW  Flanagan JG 《Cell》2003,113(4):425-428
Recent evidence indicates that gradients of the same extracellular molecules can act as both morphogens, specifying cell differentiation, and guidance cues, directing axon movement. We discuss how cells may use common mechanisms to convert graded information into discrete responses; and how extracellular signals provide coordinate systems that can be linked to highly diverse cellular outputs.  相似文献   

4.
5.
Peripheral nervous system (PNS) injuries are an ongoing health care concern. While autografts and allografts are regarded as the current clinical standard for traumatic injury, there are inherent limitations that suggest alternative remedies should be considered for therapeutic purposes. In recent years, nerve guidance conduits (NGCs) have become increasingly popular as surgical repair devices, with a multitude of various natural and synthetic biomaterials offering potential to enhance the design of conduits or supplant existing technologies entirely. From a cellular perspective, it has become increasingly evident that Schwann cells (SCs), the primary glia of the PNS, are a predominant factor mediating nerve regeneration. Thus, the development of severe nerve trauma therapies requires a deep understanding of how SCs interact with their environment, and how SC microenvironmental cues may be engineered to enhance regeneration. Here we review the most recent advancements in biomaterials development and cell stimulation strategies, with a specific focus on how the microenvironment influences the behavior of SCs and can potentially lead to functional repair. We focus on microenvironmental cues that modulate SC morphology, proliferation, migration, and differentiation to alternative phenotypes. Promotion of regenerative phenotypic responses in SCs and other non-neuronal cells that can augment the regenerative capacity of multiple biomaterials is considered along with innovations and technologies for traumatic injury.  相似文献   

6.
Kerschensteiner D  Wong RO 《Neuron》2008,58(6):851-858
Patterns of coordinated spontaneous activity have been proposed to guide circuit refinement in many parts of the developing nervous system. It is unclear, however, how such patterns, which are thought to indiscriminately synchronize nearby cells, could provide the cues necessary to segregate functionally distinct circuits within overlapping cell populations. Here, we report that glutamatergic retinal waves possess a substructure in the bursting of neighboring retinal ganglion cells with opposite light responses (ON or OFF). Within a wave, cells fire repetitive nonoverlapping bursts in a fixed order: ON before OFF. This pattern is absent from cholinergic waves, which precede glutamate-dependent activity, providing a developmental sequence of distinct activity-encoded cues. Asynchronous bursting of ON and OFF retinal ganglion cells depends on inhibition between these parallel pathways. Similar asynchronous activity patterns could arise throughout the nervous system, as inhibition matures and might help to separate connections of functionally distinct subnetworks.  相似文献   

7.
《Hormones and behavior》2008,53(5):561-570
The main olfactory and the vomeronasal systems are the two systems by which most vertebrates detect chemosensory cues that mediate social behavior. Much research has focused on how one system or the other is critical for particular behaviors. This has lead to a vision of two distinct and complexly autonomous olfactory systems. A closer look at research over the past 30 years reveals a different picture however. These two seemingly distinct systems are much more integrated than previously thought. One novel set of chemosensory cues in particular (MHC Class I peptide ligands) can show us how both systems are capable of detecting the same chemosensory cues, through different mechanisms yet provide the same general information (genetic individuality). Future research will need to now focus on how two seemingly distinct chemosensory systems together detect pheromones and mediate social behaviors. Do these systems work independently, synergistically or competitively in communicating between individuals of the same species?  相似文献   

8.
Aspirin-like drugs (ALD) enhance T cell proliferation by suppressing PG production in monocytes. Normal human T cells do not produce any eicosanoids. Therefore we studied whether ALD would affect purified T cells directly. We found that ALD enhanced the proliferation and IL-2 production of T cells in the absence of monocytes. This effect did not depend on arachidonic acid metabolism as no lipoxygenase products and only nonsuppressive levels of cyclooxygenase products were detected in T cell cultures. Several possible mechanisms of the ALD effect were ruled out including 1) enhanced mitogen binding, 2) induction of activation markers (IL-2R, transferrin receptor, HLA-DR) on the cell surface, 3) down-regulation of suppressor cells. ALD caused a rise in [Ca2+]i which appeared to reflect an influx of Ca2+ from the extracellular milieu and was more pronounced in CD4+ cells. The rise in intracellular levels of Ca2+, that is considered a necessary second messenger for T cell activation, may prime these cells for an enhanced response to mitogens. In addition, ALD increased T cell membrane fluidity but only at higher concentrations than those found to enhance proliferation. The pharmacologic effect of ALD on T cells presents a possible new immunoenhancing potential of these drugs and may have therapeutic use in immunosuppressed individuals.  相似文献   

9.
Organogenesis is regulated by a complex network of intrinsic cues, diffusible signals and cell/cell or cell/matrix interactions that drive the cells of a prospective organ to differentiate and collectively organize in three dimensions. Generating organs in vitro from embryonic stem (ES) cells may provide a simplified system to decipher how these processes are orchestrated in time and space within particular and between neighboring tissues. Recently, this field of stem cell research has also gained considerable interest for its potential applications in regenerative medicine. Among human pathologies for which stem cell-based therapy is foreseen as a promising therapeutic strategy are many retinal degenerative diseases, like retinitis pigmentosa and age-related macular degeneration. Over the last decade, progress has been made in producing ES-derived retinal cells in vitro, but engineering entire synthetic retinas was considered beyond reach. Recently however, major breakthroughs have been achieved with pioneer works describing the extraordinary self-organization of murine and human ES cells into a three dimensional structure highly resembling a retina. ES-derived retinal cells indeed assemble to form a cohesive neuroepithelial sheet that is endowed with the intrinsic capacity to recapitulate, outside an embryonic environment, the main steps of retinal morphogenesis as observed in vivo. This represents a tremendous advance that should help resolving fundamental questions related to retinogenesis. Here, we will discuss these studies, and the potential applications of such stem cell-based systems for regenerative medicine.  相似文献   

10.
11.
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway controls several important biological functions, such as cell growth regulation, apoptosis, and migration. However, the way in which PI3K/Akt controls androgen receptor (AR)-mediated prostate cancer cell growth remains unclear and controversial. Here, we demonstrate that the PI3K/Akt pathway regulates AR activity in a cell passage number-dependent manner. Specifically, PI3K/Akt pathway can suppress AR activity in androgen-dependent LNCaP cells with low passage numbers. In contrast, it can also enhance AR activity in LNCaP cells with high passage numbers. Furthermore, we also demonstrate that insulin-like growth factor-1 can activate the PI3K/Akt pathway that results in the phosphorylation of AR at Ser210 and Ser790. The consequence of these events may then change the stability of AR protein. Together, our results demonstrate that the PI3K/Akt pathway may have distinct mechanisms to modulate AR functions in various stages of prostate cancer cells and that a combined therapy of antiandrogens and anti-PI3K/Akt inhibitors may be worth considering as a future therapeutic approach to battle prostate cancer.  相似文献   

12.
As a novel therapeutic application of microfabrication technology, a micromachined membrane-based biocapsule is described for the transplantation of protein-secreting cells without the need for immunosuppression. This new approach to cell encapsulation is based on microfabrication technology whereby immunoisolation membranes are bulk and surface micromachined to present uniform and well-controlled pore sizes as small as 10 nm, tailored surface chemistries, and precise microarchitecture. Through its ability to achieve highly controlled microarchitectures on size scales relevant to living systems (from microm to nm), microfabrication technology offers unique opportunities to more precisely engineer biocapsules that allow free exchange of the nutrients, waste products, and secreted therapeutic proteins between the host (patient) and implanted cells, but exclude lymphocytes and antibodies that may attack foreign cells. Microfabricated inorganic encapsulation devices may provide biocompatibility, in vivo chemical and mechanical stability, tailored pore geometries, and superior immunoisolation for encapsulated cells over conventional encapsulation approaches. By using microfabrication techniques, structures can be fabricated with spatial features from the sub-micron range up to several millimeters. These multi-scale structures correspond well with hierarchical biological structures, from proteins and sub-cellular organelles to the tissue and organ levels.  相似文献   

13.
14.
The hematopoietic system is dynamic during development and in adulthood, undergoing countless spatial and temporal transitions during the course of one's life. Microenvironmental cues in the many unique hematopoietic niches differ, characterized by distinct soluble molecules, membrane-bound factors, and biophysical features that meet the changing needs of the blood system. Research from the last decade has revealed the importance of substrate elasticity and biomechanical force in determination of stem cell fate. Our understanding of the role of these factors in hematopoiesis is still relatively poor; however, the developmental origin of blood cells from the endothelium provides a model for comparison. Many endothelial mechanical sensors and second messenger systems may also determine hematopoietic stem cell fate, self renewal, and homing behaviors. Further, the intimate contact of hematopoietic cells with mechanosensitive cell types, including osteoblasts, endothelial cells, mesenchymal stem cells, and pericytes, places them in close proximity to paracrine signaling downstream of mechanical signals. The objective of this review is to present an overview of the sensors and intracellular signaling pathways activated by mechanical cues and highlight the role of mechanotransductive pathways in hematopoiesis.  相似文献   

15.
Filopodia are an important feature of actively motile cells, probing the pericellular environment for chemotactic factors and other molecular cues that enable and direct the movement of the cell. They also act as points of attachment to the extracellular matrix for the cell, generating tension that may act to pull the cell forward and/or stabilize the cell as it moves. Endothelial cell motility is a critical aspect of angiogenesis, but only a limited number of molecules have been identified as specific regulators of endothelial cell filopodia. Recent reports, however, provide evidence for the involvement of PECAM-1, an endothelial cell adhesion and signaling molecule, in the formation of endothelial cell filopodia. This commentary will focus on these studies and their suggestion that at least two PECAM-1-regulated pathways are involved in the processes that enable filopodial protrusions by endothelial cells. Developing a more complete understanding of the role of PECAM-1 in mediating various endothelial cell activities, such as the extension of filopodia, will be essential for exploiting the therapeutic potential of targeting PECAM-1.  相似文献   

16.
The migration of cells and growth cones is a process that is guided by extracellular cues and requires the controlled remodeling of the extracellular matrix along the migratory path. The ADAM proteins are important regulators of cellular adhesion and recognition because they can combine regulated proteolysis with modulation of cell adhesion. We report that the C. elegans gene unc-71 encodes a unique ADAM with an inactive metalloprotease domain. Loss-of-function mutations in unc-71 cause distinct defects in motor axon guidance and sex myoblast migration. Many unc-71 mutations affect the disintegrin and the cysteine-rich domains, supporting a major function of unc-71 in cell adhesion. UNC-71 appears to be expressed in a selected set of cells. Genetic mosaic analysis and tissue-specific expression studies indicate that unc-71 acts in a cell non-autonomous manner for both motor axon guidance and sex myoblast migration. Finally, double mutant analysis of unc-71 with other axon guidance signaling molecules suggests that UNC-71 probably functions in a combinatorial manner with integrins and UNC-6/netrin to provide distinct axon guidance cues at specific choice points for motoneurons.  相似文献   

17.
The formation of blood vessels within the vascular system entails a variety of cellular processes, including proliferation, migration and differentiation. In many cases, these diverse processes need to be finely coordinated among neighbouring endothelial cells in order to establish a functional vascular network. For instance, during angiogenic sprouting specialized endothelial tip cells follow guidance cues and migrate extensively into avascular tissues while trailing stalk cells must stay connected to the patent blood vessel. The vascular endothelial growth factor (VEGF) and Notch signalling pathways have emerged as the major players in governing these different cellular behaviours. In particular, recent work indicates an important role for Notch signalling in determining how an endothelial cell responds to VEGF. In this review, we provide an overview of these biochemically distinct pathways and discuss how they may interact during endothelial cell differentiation and angiogenesis.  相似文献   

18.
Recent gene expression profiling analyses and gain- and loss-of-function studies performed with distinct prostate cancer (PC) cell models indicated that the alterations in specific gene products and molecular pathways often occur in PC stem/progenitor cells and their progenies during prostate carcinogenesis and metastases at distant sites, including bones. Particularly, the sustained activation of epidermal growth factor receptor (EGFR), hedgehog, Wnt/β-catenin, Notch, hyaluronan (HA)/CD44 and stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) during the epithelial-mesenchymal transition (EMT) process may provide critical functions for PC progression to locally invasive, metastatic and androgen-independent disease states and treatment resistance. Moreover, an enhanced glycolytic metabolism in PC stem/progenitor cells and their progenies concomitant with the changes in their local microenvironment, including the induction of tumor hypoxia and release of diverse soluble factors by tumor myofibroblasts, also may promote the tumor growth, angiogenesis and metastases. More particularly, these molecular transforming events may cooperate to upregulate Akt, nuclear factor (NF)-κB, hypoxia-inducible factors (HIFs) and stemness gene products such as Oct3/4, Sox2, Nanog and Bmi-1 in PC cells that contribute to their acquisition of high self-renewal, tumorigenic and invasive capacities and survival advantages during PC progression. Consequently, the molecular targeting of these deregulated gene products in the PC- and metastasis-initiating cells and their progenies represent new promising therapeutic strategies of great clinical interest for eradicating the total PC cell mass and improving current antihormonal treatments and docetaxel-based chemotherapies, thereby preventing disease relapse and the death of PC patients.  相似文献   

19.
Mesenchymal stem/stromal cells (MSCs) have various properties that make them promising candidates for stem cell-based therapies in clinical settings. These include self-renewal, multilineage differentiation, and immunoregulation. However, recent studies have confirmed that aging is a vital factor that limits their function and therapeutic properties as standardized clinical products. Understanding the features of senescence and exploration of cell rejuvenation methods are necessary to develop effective strategies that can overcome the shortage and instability of MSCs. This review will summarize the current knowledge on characteristics and functional changes of aged MSCs. Additionally, it will highlight cell rejuvenation strategies such as molecular regulation, non-coding RNA modifications, and microenvironment controls that may enhance the therapeutic potential of MSCs in clinical settings.  相似文献   

20.
The polarised character of a cell is often obvious from its shape and is largely dependent on the actin cytoskeleton and the membrane-associated cell cortex---a dense network comprising spectrin and other related proteins. Spatially and functionally distinct protein scaffolds, assembled from transmembrane and cytoplasmic proteins, provide the cues for polarisation. Recent data have provided new insights into the molecular nature of these cues and the mechanisms by which they may be translated into a polarised phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号