首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PurposeTo commission and assess the performance of AlignRT InBore™, a Halcyon™ and Ethos™-dedicated Surface Guided Radiation Therapy (SGRT) platform which combines ceiling-mounted cameras for patient setup and bore-mounted cameras for in-bore tracking.MethodsTo check the potential impact of InBore™ cameras on dose delivery, 16 SRS, H&N, breast and pelvis patients’ quality assurance (QA) treatment plans were measured with/without AlignRT InBore™ and using ArcCHECK® and SRS MapCHECK®. Impact on image quality was determined using Catphan® 540 phantom and considering all available MV and CBCT protocols (head, breast, chest and pelvis). The stability, accuracy and overall performance of AlignRT InBore™ was assessed using an MV Cube and anthropomorphic phantoms.ResultsComparison of 2D dose distributions with/without AlignRT InBore™ showed no impact on treatment delivery for all 16 QA checks (p-value > 0.25). 2D and CBCT images showed no artefacts or change in the contrast-to-noise ratio, resolution and noise values measured with Catphan® 540. Anti-collision sensors were unaffected by the bore-mounted cameras. Additionally, AlignRT InBore™ cameras allowed for motion detection with sub-0.5 mm accuracy and sub-0.4 mm stability with surface coverage of >50 × 60 × 35 cc. Accurate transition (sub-0.3 mm) from virtual to treatment isocentres was achieved. Finally, Halcyon™ rotations during CBCT and beam delivery resulted in limited camera vibrations with translation uncertainty <0.5 mm in left-right and anterior-posterior directions and <0.1 mm in head-feet direction.ConclusionAlignRT InBore™ provides SGRT setup and intrafraction monitoring capabilities with a performance comparable to standard SGRT solutions while having no adverse effect on Halcyon™.  相似文献   

2.
PurposeTo assess the effectiveness of SGRT in clinical applications through statistical process control (SPC).MethodsTaking the patients’ positioning through optical surface imaging (OSI) as a process, the average level of process execution was defined as the process mean. Setup errors detected by cone-beam computed tomography (CBCT) and OSI were extracted for head-and-neck cancer (HNC) and breast cancer patients. These data were used to construct individual and exponentially weighted moving average (EWMA) control charts to analyze outlier fractions and small process shifts from the process mean. Using the control charts and process capability indices derived from this process, the patient positioning-related OSI performance and setup error were analyzed for each patient.ResultsOutlier fractions and small shifts from the process mean that are indicative of setup errors were found to be widely prevalent, with the outliers randomly distributed between fractions. A systematic error of up to 1.6 mm between the OSI and CBCT results was observed in all directions, indicating a significantly degraded OSI performance. Adjusting this systematic error for each patient using setup errors of the first five fractions could effectively mitigate these effects. Process capability analysis following adjustment for systematic error indicated that OSI performance was acceptable (process capability index Cpk = 1.0) for HNC patients but unacceptable (Cpk < 0.75) for breast cancer patients.ConclusionSPC is a powerful tool for detecting the outlier fractions and process changes. Our application of SPC to patient-specific evaluations validated the suitability of OSI in clinical applications involving patient positioning.  相似文献   

3.

Introduction

Apparent diffusion coefficient (ADC) values are increasingly reported in breast MRI. As there is no standardized method for ADC measurements, we evaluated the effect of the size of region of interest (ROI) to diagnostic utility and correlation to prognostic markers of breast cancer.

Methods

This prospective study was approved by the Institutional Ethics Board; the need for written informed consent for the retrospective analyses of the breast MRIs was waived by the Chair of the Hospital District. We compared diagnostic accuracy of ADC measurements from whole-lesion ROIs (WL-ROIs) to small subregions (S-ROIs) showing the most restricted diffusion and evaluated correlations with prognostic factors in 112 consecutive patients (mean age 56.2±11.6 years, 137 lesions) who underwent 3.0-T breast MRI.

Results

Intra- and interobserver reproducibility were substantial (κ = 0.616–0.784; Intra-Class Correlation 0.589–0.831). In receiver operating characteristics analysis, differentiation between malignant and benign lesions was excellent (area under curve 0.957–0.962, cut-off ADC values for WL-ROIs: 0.87×10−3 mm2s-1; S-ROIs: 0.69×10−3 mm2s-1, P<0.001). WL-ROIs/S-ROIs achieved sensitivities of 95.7%/91.3%, specificities of 89.5%/94.7%, and overall accuracies of 89.8%/94.2%. In S-ROIs, lower ADC values correlated with presence of axillary metastases (P = 0.03), high histological grade (P = 0.006), and worsened Nottingham Prognostic Index Score (P<0.05). In both ROIs, ADC values correlated with progesterone receptors and advanced stage (P<0.01), but not with HER2, estrogen receptors, or Ki-67.

Conclusions

ADC values assist in breast tumor characterization. Small ROIs were more accurate than whole-lesion ROIs and more frequently associated with prognostic factors. Cut-off values differed significantly depending on measurement procedure, which should be recognized when comparing results from the literature. Instead of using a whole lesion covering ROI, a small ROI could be advocated in diffusion-weighted imaging.  相似文献   

4.

Objective

To investigate the usefulness of the 3DVH software with an ArcCHECK 3D diode array detector in newly designed plans with various target sizes.

Methods

The isocenter dose was measured with an ion-chamber and was compared with the planned and 3DVH predicted doses. The 2D gamma passing rates were evaluated at the diode level by using the ArcCHECK detector. The 3D gamma passing rates for specific regions of interest (ROIs) were also evaluated by using the 3DVH software. Several dose-volume histograms (DVH)-based predicted metrics for all structures were also obtained by using the 3DVH software.

Results

The isocenter dose deviation was <1% in all plans except in the case of a 1 cm target. Besides the gamma passing rate at the diode level, the 3D gamma passing rate for specific ROIs tended to decrease with increasing target size; this was more noticeable when a more stringent gamma criterion was applied. No correlation was found with the gamma passing rates and the DVH-based metrics especially in the ROI with high-dose gradients.

Conclusions

Delivery quality assurance by using 3DVH and ArcCHECK can provide substantial information through a simple and easy approach, although the accuracy of this system should be judged cautiously.  相似文献   

5.
PurposeIn the present study, clinical stereotactic radiosurgery (SRS) setup uncertainties from image-guidance data are analyzed, and the corresponding setup margin is estimated for treatment planning purposes.MethodsPatients undergoing single-fraction SRS at our institution were localized using invasive head ring or non-invasive thermoplastic masks. Setup discrepancies were obtained from an in-room x-ray patient position monitoring system. Post treatment re-planning using the measured setup errors was performed in order to estimate the individual target margins sufficient to compensate for the actual setup errors. The formula of setup margin for a general SRS patient population was derived by proposing a correlation between the three-dimensional setup error and the required minimal margin.ResultsSetup errors of 104 brain lesions were analyzed, in which 81 lesions were treated using an invasive head ring, and 23 were treated using non-invasive masks. In the mask cases with image guidance, the translational setup uncertainties achieved the same level as those in the head ring cases. Re-planning results showed that the margins for individual patients could be smaller than the clinical three-dimensional setup errors. The derivation of setup margin adequate to address the patient setup errors was demonstrated by using the arbitrary planning goal of treating 95% of the lesions with sufficient doses.ConclusionsWith image guidance, the patient setup accuracy of mask cases can be comparable to that of invasive head rings. The SRS setup margin can be derived for a patient population with the proposed margin formula to compensate for the institution-specific setup errors.  相似文献   

6.
PurposeTo empirically corroborate vendor-provided gradient nonlinearity (GNL) characteristics and demonstrate efficient GNL bias correction for human brain apparent diffusion coefficient (ADC) across 3T MR systems and spatial locations.MethodsSpatial distortion vector fields (DVF) were mapped in 3D using a surface fiducial array phantom for individual gradient channels on three 3T MR platforms from different vendors. Measured DVF were converted into empirical 3D GNL tensors and compared with their theoretical counterparts derived from vendor-provided spherical harmonic (SPH) coefficients. To illustrate spatial impact of GNL on ADC, diffusion weighted imaging using three orthogonal gradient directions was performed on a volunteer brain positioned at isocenter (as a reference) and offset superiorly by 10–17 cm (>10% predicted GNL bias). The SPH tensor-based GNL correction was applied to individual DWI gradient directions, and derived ADC was compared with low-bias reference for human brain white matter (WM) ROIs.ResultsEmpiric and predicted GNL errors were comparable for all three studied 3T MR systems, with <1.0% differences in the median and width of spatial histograms for individual GNL tensor elements. Median (±width) of ADC (10−3mm2/s) histograms measured at isocenter in WM reference ROIs from three MR systems were: 0.73 ± 0.11, 0.71 ± 0.14, 0.74 ± 0.17, and at off-isocenters (before versus after GNL correction) were respectively 0.63 ± 0.14 versus 0.72 ± 0.11, 0.53 ± 0.16 versus 0.74 ± 0.18, and 0.65 ± 0.16 versus 0.76 ± 0.18.ConclusionThe phantom-based spatial distortion measurements validated vendor-provided gradient fields, and accurate WM ADC was recovered regardless of spatial locations and clinical MR platforms using system-specific tensor-based GNL correction for routine DWI.  相似文献   

7.
Background and PurposeWith the increasingly prominent role of stereotactic radiosurgery in radiation therapy, there is a clinical need for robust, efficient, and accurate solutions for targeting multiple sites with one patient setup. The end-to-end accuracy of high definition dynamic radiosurgery with Elekta treatment planning and delivery systems was investigated in this study.Materials and MethodsA patient-derived CT scan was used to create a radiosurgery plan to seven targets in the brain. Monaco was used for treatment planning using 5 VMAT non-coplanar arcs. Prior to delivery, 3D-printed phantoms from RTsafe were ordered including a gel phantom for 3D dosimetry, phantom with 2D film insert, and an ion chamber phantom for point dose measurement. Delivery was performed using the Elekta VersaHD, XVI cone-beam CT, and HexaPOD six degree of freedom tabletop.ResultsAbsolute dose accuracy was verified within 2%. 3D global gamma analysis in the film measurement revealed 3%/2 mm passing rates >95%. Gel dosimetry 3D global gamma analysis (3%/2 mm) were above 90% for all targets with the exception of one. Results were indicative of typical end-to-end accuracies (<1 mm spatial uncertainty, 2% dose accuracy) within 4 cm of isocenter. Beyond 4 cm, 2 mm accuracy was found.ConclusionsHigh definition dynamic radiosurgery expands clinically acceptable stereotactic accuracy to a sphere around isocenter allowing for radiosurgery of several targets with one setup with a high degree of dosimetric precision. Gel dosimetry proved to be an essential tool for the validation of the 3D dose distributions in this technique.  相似文献   

8.
PurposeTo evaluate the dosimetric impact of uncorrected rotations on the planning target volume (PTV) coverage for early stage non-small cell lung cancer patients treated with stereotactic body radiotherapy using Brainlab ExacTrac image guidance.MethodsTwenty-two patients were retrospectively selected. Two scenarios of uncorrected rotations were simulated with magnitude of 1°, 2°, 3° and 5°: (1) rotation around the treatment isocenter; and (2) roll and yaw rotations around a setup isocenter. The D95 of PTV from recalculated dose on the rotated CT was compared to that from the clinical plan. A logistic regression model was used to predict the probability of dose differences between recalculated and original plans that are less than 2% based on the rotation angle, PTV volume, and distance between the treatment and setup isocenter.ResultsLogistic regression model showed the uncorrected isocentric rotations of up to 2.5° in all directions have negligible dosimetric impact. For non-isocentric rotations, a rotational error of 2° may cause significant under-dose of the PTV. Statistically significant (p < 0.05) parameters in the logistic regression model were angle for isocentric rotations, angle and distance for non-isocentric roll rotations, and angle, distance and the PTV volume for non-isocentric yaw rotations.ConclusionsThe severity of the dose deviations due to uncorrected rotations depends on the type and magnitude of the rotation, the volume of the PTV, and the distance between the treatment and setup isocenter, which should be taken into consideration when making clinical judgment of whether the rotational error could be ignored.  相似文献   

9.
PurposeThe aim of this study was to develop an end-to-end postal audit test to examine the coincidence between the imaging isocenter and treatment beam isocenter of the image guided radiotherapy (IGRT) linac system for Japan Clinical Oncology Group (JCOG) trials, as a part of IGRT credentialing of institutions participating in JCOG trials.MethodsWe developed an end-to-end postal audit test to verify radiation positional errors associated with IGRT techniques. This test is intended for simulating a clinical IGRT flow and uses a static cubic phantom measuring 15 × 15 × 15 cm3 and weighing approximately 3.4 kg. The phantom has four gold fiducial markers and a spherical dummy target for setup, with known shift values from the phantom center. Two pairs of Gafchromic RTQA2 films were inserted 5 mm from the phantom’s anterior-posterior and right-left surfaces. Radiation positional errors at the isocenter were determined by analyzing the center of the radiation field on the films and the known shift values of the dummy target. The test was performed on 47 IGRT devices at 35 institutions.ResultsRadiation positional errors were within acceptance levels (1 mm/1°) for 42 IGRT devices (89.4%) in the first check. Median time to complete IGRT credentialing was 11.5 days. This audit method was applicable for any radiotherapy machine with an IGRT device.ConclusionsA postal audit test to verify radiation positional errors for JCOG trials was successfully developed. In the postal audit, all but one institution passed this credentialing item within two trials.  相似文献   

10.

Objective

Apparent diffusion coefficients (ADC) can help differentiate between central nervous system (CNS) lymphoma and Glioblastoma (GBM). However, overlap between ADCs for GBM and lymphoma have been reported because of various region of interest (ROI) methods. Our aim is to explore ROI method to provide the most reproducible results for differentiation.

Materials and Methods

We studied 25 CNS lymphomas and 62 GBMs with three ROI methods: (1) ROI1, whole tumor volume; (2) ROI2, multiple ROIs; and (3) ROI3, a single ROI. Interobserver variability of two readers for each method was analyzed by intraclass correlation(ICC). ADCs were compared between GBM and lymphoma, using two-sample t-test. The discriminative ability was determined by ROC analysis.

Results

ADCs from ROI1 showed most reproducible results (ICC >0.9). For ROI1, ADCmean for lymphoma showed significantly lower values than GBM (p = 0.03). The optimal cut-off value was 0.98×10−3 mm2/s with 85% sensitivity and 90% specificity. For ROI2, ADCmin for lymphoma was significantly lower than GBM (p = 0.02). The cut-off value was 0.69×10−3 mm2/s with 87% sensitivity and 88% specificity.

Conclusion

ADC values were significantly dependent on ROI method. ADCs from the whole tumor volume had the most reproducible results. ADCmean from the whole tumor volume may aid in differentiating between lymphoma and GBM. However, multi-modal imaging approaches are recommended than ADC alone for differentiation.  相似文献   

11.
12.
PurposeTo study the impact of setup errors on the dose to the target volume and critical structures in the treatment of cancer of nasopharynx with intensity modulated radiation therapy (IMRT).Methods and materialsTwelve patients of carcinoma of nasopharynx treated by IMRT with simultaneous integrated boost technique were enrolled. The gross tumor volume, clinical target volume and low-risk nodal region were planned for 70, 59.4 and 54 Gy, respectively, in 33 fractions. Based on the constraints, treatment plans were generated. Keeping it as the base plan, the patient setup error was simulated for 3, 5 and 10 mm by shifting the isocenter in all three directions viz. anterior, posterior, superior, inferior, right and left lateral. The plans were evaluated for mean dose, maximum dose, volume of PTV receiving >110% and <93% of the prescribed dose. For both the parotids, the mean dose and the dose received by >50% of the parotid were evaluated. The maximum dose and dose received by 2 cc of spinal cord were also analyzed.ResultsThe dose to the target volume decreases gradually with increase in setup error. The superior and inferior shifts play major role in tumor under-dosage. A setup error of 3 mm along the posterior and lateral directions significantly affects the dose to the spinal cord. Similarly, setup error along lateral and anterior directions affects the dose to both parotids.ConclusionsThe isocenter position should be verified regularly to ensure that the goal of IMRT is achieved.  相似文献   

13.
PurposeDosiomics allows to parameterize regions of interest (ROIs) and to produce quantitative dose features encoding the spatial and statistical distribution of radiotherapy dose. The stability of dosiomics features extraction on dose cube pixel spacing variation has been investigated in this study.Material and MethodsBased on 17 clinical delivered dose distributions (Pn), dataset has been generated considering all the possible combinations of four dose grid resolutions and two calculation algorithms. Each dose voxel cube has been post-processed considering 4 different dose cube pixel spacing values: 1x1x1, 2x2x2, 3x3x3 mm3 and the one equal to the planning CT. Dosiomics features extraction has been performed from four different ROIs. The stability of each extracted dosiomic feature has been analyzed in terms of coefficient of variation (CV) intraclass correlation coefficient (ICC).ResultsThe highest CV mean values were observed for PTV ROI and for the grey level size zone matrix features family. On the other hand, the lowest CV mean values have been found for RING ROI for the grey level co-occurrence matrix features family. P3 showed the highest percentage of CV >1 (1.14%) followed by P15 (0.41%), P1 (0.29%) and P13 (0.19%). ICC analysis leads to identify features with an ICC >0.95 that could be considered stable to use in dosiomic studies when different dose cube pixel spacing are considered, especially the features in common among the seventeen plans.ConclusionConsidering the observed variability, dosiomic studies should always provide a report not only on grid resolution and algorithm dose calculation, but also on dose cube pixel spacing.  相似文献   

14.
15.
Body temperature affects outcomes of tissue injury. We hypothesized that online body core temperature recording and selective interventions help to standardize peri-interventional temperature control and the reliability of outcomes in experimental renal ischemia reperfusion injury (IRI). We recorded core temperature in up to seven mice in parallel using a Thermes USB recorder and ret-3-iso rectal probes with three different protocols. Setup A: Heating pad during ischemia time; Setup B: Heating pad from incision to wound closure; Setup C: A ventilated heating chamber before surgery and during ischemia time with surgeries performed on a heating pad. Temperature profile recording displayed significant declines upon installing anesthesia. The profile of the baseline experimental setup A revealed that <1% of the temperature readings were within the target range of 36.5 to 38.5°C. Setup B and C increased the target range readings to 34.6 ± 28.0% and 99.3 ± 1.5%, respectively. Setup C significantly increased S3 tubular necrosis, neutrophil influx, and mRNA expression of kidney injury markers. In addition, using setup C different ischemia times generated a linear correlation with acute tubular necrosis parameters at a low variability, which further correlated with the degree of kidney atrophy 5 weeks after surgery. Changing temperature control setup A to C was equivalent to 10 minutes more ischemia time. We conclude that body temperature drops quickly in mice upon initiating anesthesia. Immediate heat supply, e.g. in a ventilated heating chamber, and online core temperature monitoring can help to standardize and optimize experimental outcomes.  相似文献   

16.
PurposeEvaluation of Raystation ANAtomically CONstrained Deformation Algorithm (ANACONDA) performance to different urinary bladder filling levels in male pelvis anatomic site varying the controlling Regions Of Interest (ROIs).MethodsDifferent image datasets were obtained with ImSimQA (Oncology System Limited, Shrewsbury, UK) to evaluate ANACONDA performances (RaySearch Laboratories, Stockholm, Sweden). Deformation vector fields were applied to a synthetic man pelvis and a real patient computed tomography (CT) dataset (reference CTs) resulting in deformed CTs (target CTs) with various bladder filling levels. Different deformable image registrations (DIRs) were generated between each target CTs and reference CTs varying the controlling ROIs subset. Deformed ROIs were mapped from target CT to reference CT and then compared to reference ROIs. Evaluation was performed by Dice Similarity Coefficient (DSC), Correlation Coefficient (CC), Mean Distance to Agreement (MDA), maximum Distance to Agreement (maxDA) and with the introduction of global DSC (global_DSC) and global CC (global_CC) parameters.ResultsIn both synthetic and real patient CT cases, DSC scored less than 0.75 and MDA greater than 3 mm when no ROIs or only bladder were exploited as controlling ROI. DSC and CC increased by increasing the number of controlling ROIs selected whereas, an opposite behavior was observed for MDA and maxDA.ConclusionsANACONDA performances can be influenced by bladder filling fluctuation if no controlling ROIs are selected. Global_DSC and global_CC are useful parameters to quantitatively compare DIR algorithms. DIR performances improve by increasing the number of controlling ROIs selected, reaching a saturation level after a defined ROIs subset selection.  相似文献   

17.
The resistive work of breathing against an external load during inspiration (WRI) was measured at the mouth, during sub-maximal exercise in healthy participants. This measure (which excludes the elastic work component) allows the relationship between resistive work and power, ventilation and exercise modality to be explored. A total of 45 adult participants with healthy lung function took part in a series of exercise protocols, in which the relationship between WRI, power of breathing, PRI and minute ventilation, were assessed during rest, while treadmill walking or ergometer cycling, over a range of exercise intensities (up to 150 Watts) and ventilation rates (up to 48 L min−1) with applied constant resistive loads of 0.75 and 1.5 kPa.L.sec−1. Resting WRI was 0.12 JL−1 and PRI was 0.9 W. At each resistive load, independent of the breathing pattern or exercise mode, the WRI increased in a linear fashion at 20 mJ per litre of , while PRI increased exponentially. With increasing resistive load the work and power at any given increased exponentially. Calculation of the power to work ratio during loaded breathing suggests that loads above 1.5 kPa.L.sec−1 make the work of resistive breathing become inhibitive at even a moderate (>30 L sec−1). The relationship between work done and power generated while breathing against resistive loads is independent of the exercise mode (cycling or walking) and that ventilation is limited by the work required to breathe, rather than an inability to maintain or generate power.  相似文献   

18.
The formation of reactive oxygen species (ROS) within cells causes damage to biomolecules, including membrane lipids, DNA, proteins and sugars. An important type of oxidative damage is DNA base hydroxylation which leads to the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 5-hydroxymethyluracil (5-HMUra). Measurement of these biomarkers in urine is challenging, due to the low levels of the analytes and the matrix complexity. In order to simultaneously quantify 8-oxodG and 5-HMUra in human urine, a new, reliable and powerful strategy was optimised and validated. It is based on a semi-automatic microextraction by packed sorbent (MEPS) technique, using a new digitally controlled syringe (eVol®), to enhance the extraction efficiency of the target metabolites, followed by a fast and sensitive ultrahigh pressure liquid chromatography (UHPLC). The optimal methodological conditions involve loading of 250 µL urine sample (1∶10 dilution) through a C8 sorbent in a MEPS syringe placed in the semi-automatic eVol® syringe followed by elution using 90 µL of 20% methanol in 0.01% formic acid solution. The obtained extract is directly analysed in the UHPLC system using a binary mobile phase composed of aqueous 0.1% formic acid and methanol in the isocratic elution mode (3.5 min total analysis time). The method was validated in terms of selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), extraction yield, accuracy, precision and matrix effect. Satisfactory results were obtained in terms of linearity (r2 > 0.991) within the established concentration range. The LOD varied from 0.00005 to 0.04 µg mL−1 and the LOQ from 0.00023 to 0.13 µg mL−1. The extraction yields were between 80.1 and 82.2 %, while inter-day precision (n = 3 days) varied between 4.9 and 7.7 % and intra-day precision between 1.0 and 8.3 %. This approach presents as main advantages the ability to easily collect and store urine samples for further processing and the high sensitivity, reproducibility, and robustness of eVol®MEPS combined with UHPLC analysis, thus retrieving a fast and reliable assessment of oxidatively damaged DNA.  相似文献   

19.
PurposeThe purpose of this work was to investigate the impact of quantization preprocessing parameter selection on variability and repeatability of texture features derived from low field strength magnetic resonance (MR) images.MethodsTexture features were extracted from low field strength images of a daily image QA phantom with four texture inserts. Feature variability over time was quantified using all combinations of three quantization algorithms and four different numbers of gray level intensities. In addition, texture features were extracted using the same combinations from the low field strength MR images of the gross tumor volume (GTV) and left kidney of patients with repeated set up scans. The impact of region of interest (ROI) preprocessing on repeatability was investigated with a test-retest study design.ResultsThe phantom ROIs quantized to 64 Gy level intensities using the histogram equalization method resulted in the greatest number of features with the least variability. There was no clear method that resulted in the highest repeatability in the GTV or left kidney. However, eight texture features extracted from the GTV were repeatable regardless of ROI processing combination.ConclusionLow field strength MR images can provide a stable basis for texture analysis with ROIs quantized to 64 Gy levels using histogram equalization, but there is no clear optimal combination for repeatability.  相似文献   

20.
PurposeThis study compared the positioning accuracy between cone-beam CT (CBCT) and ExacTrac (ETX) for a single-isocenter multiple target stereotactic radiosurgery (SRS) on two TrueBeam STx systems.MethodsA single-isocenter treatment plan was simulated on an anthropomorphic head phantom with six spherical steel ball bearings (BBs). One of the BBs was chosen to be the isocenter. The five off-isocenter targets were located at various distances from the isocenter. MV portal images were generated to evaluate the deviations between the expected and the real center of the targets after CBCT and ETX positioning, respectively.ResultsThe evaluation of the positioning accuracy for the isocenter target showed that CBCT and ETX positioning provided comparable, sub-millimetric results. Deviations in positioning accuracy were also calculated for all other targets, also showing comparable results for CBCT and ETX. Moreover, our study showed that the deviation between CBCT and ETX positioning were in better agreement for TBSTx1 and deviated slightly higher on TBSTx2 (maximum: 1.23 mm at S/I direction), due to a less perfect alignment between the CBCT coordinate system and the ETX coordinate system on TBSTx2 compared to TBSTx1. This study also showed a correlation between the target positioning accuracy and the distance to the isocenter.ConclusionThe positioning accuracy of ETX and CBCT for targets located at isocenter and off-isocenter locations was compared on two treatment machines and found comparable. Our study highlights the importance of a proper calibration procedure, to ensure correct alignment between the CBCT, ETX and machine coordinate systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号