首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The primary structure of a 4Fe-4S ferredoxin from Bacillus stearothermophilus was determined and shown to consist of a single polypeptide chain of 81 amino acid residues. The molecular weight of the holoprotein is about 9120. 2. There are only four cysteine residues in the molecule; three of these are located near the N-terminus as a Cys-X-X-Cys-X-X-Cys segment, and the fourth cysteine residue is followed by a proline and located in the C-terminal half. 3. The Fe-S chromophore in B. stearothermophilus ferredoxin was previously well characterized and was shown to consist of a single 4Fe-4S cluster. This ferredoxin sequence establishes for the first time the relative location of the four cysteine residues necessary to bind the 4Fe-4S cluster of a 4Fe ferredoxin, and is in agreement with the criteria for the relative positions of the cysteines proposed from X-ray-crystallographic studies on an 8Fe (two 4Fe-4S clusters) ferredoxin. 4. The sequence of B. stearothermophilus ferredoxin is homologous in many segments to that of other bacterial ferredoxins, the degree of homology being greater towards ferredoxins from Desulfovibrio gigas and photosynthetic bacteria than to Clostridial ferredoxins. 5. The presence of a relatively higher number of glutamic acid and lower number of cysteine residues in the molecule may explain the greater thermal stability and oxygen-insenstivity of this ferredoxin.  相似文献   

2.
Desulfovibrio africanus ferredoxin III is a protein (Mr 6585) containing one [3Fe-4S]1+,0 and one [4Fe-4S]2+,1+ core cluster when aerobically isolated. The amino acid sequence contains only seven cysteine residues, the minimum required to ligand these two clusters. Cyclic voltammery by means of direct electrochemistry at a pyrolytic-graphite-'edge' electrode promoted by neomycin shows that, when reduced, the [3Fe-4S]0 centre reacts rapidly with Fe(II) ion to form a [4Fe-4S]2+ cluster. The latter, which can be reduced at a redox potential similar to that of the other [4Fe-4S] cluster, must include non-thiolate ligation. We propose that the carboxylate side chain of aspartic acid-14 is the most likely candidate, since this amino acid occupies the position of a cysteine residue in the sequence typical of an 8Fe ferredoxin. The magnetic properties at liquid-He temperature of this novel cluster, studied by low-temperature magnetic-c.d. and e.p.r. spectroscopy, are diamagnetic in the oxidized state and S = 3/2 in the one-electron-reduced state. This cluster provides a plausible model for the ligation states of the [4Fe-4S]1+ core in the S = 3/2 cluster of the iron protein of nitrogenase and in Bacillus subtilis glutamine:phosphoribosyl pyrophosphate amidotransferase.  相似文献   

3.
Pyrococcus furiosus ferredoxin is the only known example of a ferredoxin containing a single [4Fe-4S] cluster that has non-cysteinyl ligation of one iron atom, as evidenced by the replacement of a ligating cysteine residue by an aspartic acid residue in the amino acid sequence. The properties of the iron-sulfur cluster in both the aerobically and anaerobically isolated ferredoxin have been characterized by EPR, magnetic circular dichroism, and resonance Raman spectroscopies. The anaerobically isolated ferrodoxin contains a [4Fe-4S]+,2+ cluster with anomalous properties in both the oxidized and reduced states which are attributed to aspartate and/or hydroxide coordination of a specific iron atom. In the reduced form, the cluster exists with a spin mixture of S = 1/2 (20%) and S = 3/2 (80%) ground states. The dominant S = 3/2 form has a unique EPR spectrum that can be rationalized by an S = 3/2 spin Hamiltonian with E/D = 0.22 and D = +3.3 +/- 0.2 cm-1. The oxidized cluster has an S = 0 ground state, and the resonance Raman spectrum is characteristic of a [4Fe-4S]2+ cluster except for the unusually high frequency for the totally symmetric breathing mode of the [4Fe-4S] core, 342 cm-1. Comparison with Raman spectra of other [4Fe-4S]2+ centers suggests that this behavior is diagnostic of anomalous coordination of a specific iron atom. The iron-sulfur cluster is shown to undergo facile and quantitative [4Fe-4S] in equilibrium [3Fe-4S] interconversion, and the oxidized and reduced forms of the [3Fe-4S] cluster have S = 1/2 and S = 2 ground states, respectively. In both redox states the [3Fe-4S]0,+ cluster exhibits spectroscopic properties analogous to those of similar clusters in other bacterial ferredoxins, suggesting non-cysteinyl coordination for the iron atom that is removed by ferricyanide oxidation. Aerobic isolation induces partial degradation of the [4Fe-4S] cluster to yield [3Fe-4S] and possibly [2Fe-2S] centers. Evidence is presented to show that only the [4Fe-4S] form of this ferredoxin exists in vivo.  相似文献   

4.
Carroll KS  Gao H  Chen H  Leary JA  Bertozzi CR 《Biochemistry》2005,44(44):14647-14657
The sulfur assimilation pathway is a key metabolic system in prokaryotes that is required for production of cysteine and cofactors such as coenzyme A. In the first step of the pathway, APS reductase catalyzes the reduction of adenosine 5'-phosphosulfate (APS) to adenosine 5'-phosphate (AMP) and sulfite with reducing equivalents from the protein cofactor, thioredoxin. The primary sequence of APS reductase is distinguished by a conserved iron-sulfur cluster motif, -CC-X( approximately )(80)-CXXC-. Of the sequence motifs that are associated with 4Fe-4S centers, the cysteine dyad is atypical and has generated discussion with respect to coordination as well as the cluster's larger functional significance. Herein, we have used biochemical, spectroscopic, and mass spectrometry analysis to investigate the iron-sulfur cluster and its role in the mechanism of Mycobacterium tuberculosis APS reductase. Site-directed mutagenesis of any cysteine residue within the conserved motif led to a loss of cluster with a concomitant loss in catalytic activity, while secondary structure was preserved. Studies of 4Fe-4S cluster stability and cysteine reactivity in the presence and absence of substrates, and in the free enzyme versus the covalent enzyme-intermediate (E-Cys-S-SO(3)(-)), suggest a structural rearrangement that occurs during the catalytic cycle. Taken together, these results demonstrate that the active site functionally communicates with the iron-sulfur cluster and also suggest a functional significance for the cysteine dyad in promoting site differentiation within the 4Fe-4S cluster.  相似文献   

5.
B W Beck  Q Xie    T Ichiye 《Biophysical journal》2001,81(2):601-613
A sequence determinant of reduction potentials is reported for bacterial [4Fe-4S]-type ferredoxins. The residue that is four residues C-terminal to the fourth ligand of either cluster is generally an alanine or a cysteine. In five experimental ferredoxin structures, the cysteine has the same structural orientation relative to the nearest cluster, which is stabilized by the SH...S bond. Although such bonds are generally considered weak, indications that Fe-S redox site sulfurs are better hydrogen-bond acceptors than most sulfurs include the numerous amide NH...S bonds noted by Adman and our quantum mechanical calculations. Furthermore, electrostatic potential calculations of 11 experimental ferredoxin structures indicate that the extra cysteine decreases the reduction potential relative to an alanine by approximately 60 mV, in agreement with experimental mutational studies. Moreover, the decrease in potential is due to a shift in the polar backbone stabilized by the SH...S bond rather than to the slightly polar cysteinyl side chain. Thus, these cysteines can "tune" the reduction potential, which could optimize electron flow in an electron transport chain. More generally, hydrogen bonds involving sulfur can be important in protein structure/function, and mutations causing polar backbone shifts can alter electrostatics and thus affect redox properties or even enzymatic activity of a protein.  相似文献   

6.
Sirohaem is a cofactor of nitrite and sulfite reductases, essential for assimilation of nitrogen and sulfur. Sirohaem is synthesized from the central tetrapyrrole intermediate uroporphyrinogen III by methylation, oxidation and ferrochelation reactions. In Arabidopsis thaliana, the ferrochelation step is catalysed by sirohydrochlorin ferrochelatase (SirB), which, unlike its counterparts in bacteria, contains an [Fe-S] cluster. We determined the cluster to be a [4Fe-4S] type, which quickly oxidizes to a [2Fe-2S] form in the presence of oxygen. We also identified the cluster ligands as four conserved cysteine residues located at the C-terminus. A fifth conserved cysteine residue, Cys(135), is not involved in ligating the cluster directly, but influences the oxygen-sensitivity of the [4Fe-4S] form, and possibly the affinity for the substrate metal. Substitution mutants of the enzyme lacking the Fe-S cluster or Cys(135) retain the same specific activity in vitro and dimeric quaternary structure as the wild-type enzyme. The mutant variants also rescue a defined Escherichia coli sirohaem-deficient mutant. However, the mutant enzymes cannot complement Arabidopsis plants with a null AtSirB mutation, which exhibits post-germination arrest. These observations suggest an important physiological role for the Fe-S cluster in Planta, highlighting the close association of iron, sulfur and tetrapyrrole metabolism.  相似文献   

7.
The structure of the nitrogenase iron protein from Azotobacter vinelandii in the all-ferrous [4Fe-4S](0) form has been determined to 2.25 A resolution by using the multiwavelength anomalous diffraction (MAD) phasing technique. The structure demonstrates that major conformational changes are not necessary either in the iron protein or in the cluster to accommodate cluster reduction to the [4Fe-4S](0) oxidation state. A survey of [4Fe-4S] clusters coordinated by four cysteine ligands in proteins of known structure reveals that the [4Fe-4S] cluster of the iron protein has the largest accessible surface area, suggesting that solvent exposure may be relevant to the ability of the iron protein to exist in three oxidation states.  相似文献   

8.
Dicluster ferredoxins (Fds) from Sulfolobus acidocaldarius and Desulfovibrio africanus (FdIII) have been studied using 1H NMR. Both wild-type proteins contain a [3Fe-4S]+/0 and a [4Fe-4S]2+/+ cluster as isolated. The [4Fe-4S]2+/+ cluster (cluster II) is bound by cysteine residues arranged in a classic ferredoxin motif: CysI-(Xaa)2-CysII-(Xaa)2-CysIII-(Xaa)n-CysIV-Pro , whilst the binding motif of the [3Fe-4S]+/0 cluster (cluster I) has a non-ligating aspartic acid (Asp14) at position II, i.e. CysI-(Xaa)2-Asp-(Xaa)2-CysIII. D. africanus FdIII undergoes facile cluster transformation from the 7Fe form to the 8Fe form, but S. acidocaldarius Fd does not. Many factors determine the propensity of a cluster to undergo interconversion, including the presence, and correct orientation, of a suitable ligand. We have investigated this using 1H NMR by introducing a potential fourth ligand into the binding motif of cluster I of D. africanus FdIII. Asp14 has been mutated to cysteine (D14C), glutamic acid (D14E) and histidine (D14H). Cluster incorporation was performed in vitro. The cluster types present were identified from the chemical shift patterns and temperature-dependent behaviour of the hyperfine-shifted resonances. Factors influencing cluster ligation and cluster interconversion, in vitro, are discussed. Furthermore, the data have established that the residue at position II in the cluster binding motif of cluster I is influential in determining the chemical shift pattern observed for a [3Fe-4S]+ cluster when a short/symmetric binding motif is present. Based on this, a series of rules for characterising the 1H NMR chemical shifts of mono- and di-cluster [3Fe-4S]+ cluster-containing ferredoxins is given.  相似文献   

9.
10.
The 2.3 A resolution crystal structure of a [2Fe-2S] cluster containing ferredoxin from Aquifex aeolicus reveals a thioredoxin-like fold that is novel among iron-sulfur proteins. The [2Fe-2S] cluster is located near the surface of the protein, at a site corresponding to that of the active-site disulfide bridge in thioredoxin. The four cysteine ligands are located near the ends of two surface loops. Two of these ligands can be substituted by non-native cysteine residues introduced throughout a stretch of the polypeptide chain that forms a protruding loop extending away from the cluster. The presence of homologs of this ferredoxin as components of more complex anaerobic and aerobic electron transfer systems indicates that this is a versatile fold for biological redox processes.  相似文献   

11.
Biotin synthase is an adenosylmethionine-dependent radical enzyme that catalyzes the substitution of sulfur for hydrogen at the saturated C6 and C9 positions in dethiobiotin. The structure of the biotin synthase monomer is an (alpha/beta)(8) barrel that contains one [4Fe-4S](2+) cluster and one [2Fe-2S](2+) cluster that encapsulate the substrates AdoMet and dethiobiotin. The air-sensitive [4Fe-4S](2+) cluster and the reductant-sensitive [2Fe-2S](2+) cluster have unique coordination environments that include close proximity to AdoMet and DTB, respectively. The relative positioning of these components, as well as several conserved protein residues, suggests at least two potential catalytic mechanisms that incorporate sulfur from either the [2Fe-2S](2+) cluster or a cysteine persulfide into the biotin thiophane ring. This review summarizes an accumulating consensus regarding the physical and spectroscopic properties of each FeS cluster, and discusses possible roles for the [4Fe-4S](2+) cluster in radical generation and the [2Fe-2S](2+) cluster in sulfur incorporation.  相似文献   

12.
Crystallographic analysis of a fully functional, truncated bovine adrenodoxin, Adx(4-108), has revealed the structure of a vertebrate-type [2Fe-2S] ferredoxin at high resolution. Adrenodoxin is involved in steroid hormone biosythesis in adrenal gland mitochondria by transferring electrons from adrenodoxin reductase to different cytochromes P450. Plant-type [2Fe-2S] ferredoxins interact with photosystem I and a diverse set of reductases.A systematic structural comparison of Adx(4-108) with plant-type ferredoxins which share about 20 % sequence identity yields these results. (1) The ferredoxins of both types are partitioned into a large, strictly conserved core domain bearing the [2Fe-2S] cluster and a smaller interaction domain which is structurally different for both subfamilies. (2) In both types, residues involved in interactions with reductase are located at similar positions on the molecular surface and coupled to the [2Fe-2S] cluster via structurally equivalent hydrogen bonds. (3) The accessibility of the [2Fe-2S] cluster differs between Adx(4-108) and the plant-type ferredoxins where a solvent funnel leads from the surface to the cluster. (4) All ferredoxins are negative monopoles with a clear charge separation into two compartments, and all resulting dipoles but one point into a narrow cone located in between the interaction domain and the [2Fe-2S] cluster, possibly controlling predocking movements during interactions with redox partners. (5) Model calculations suggest that FE1 is the origin of electron transfer pathways to the surface in all analyzed [2Fe-2S] ferredoxins and that additional transfer probability for electrons tunneling from the more buried FE2 to the cysteine residue in position 92 of Adx is present in some.  相似文献   

13.
Diphthamide, the target of diphtheria toxin, is a unique posttranslational modification on eukaryotic and archaeal translation elongation factor 2 (EF2). The proposed biosynthesis of diphthamide involves three steps and we have recently found that in Pyrococcus horikoshii (P. horikoshii), the first step uses an S-adenosyl-L-methionine (SAM)-dependent [4Fe-4S] enzyme, PhDph2, to catalyze the formation of a C-C bond. Crystal structure shows that PhDph2 is a homodimer and each monomer contains three conserved cysteine residues that can bind a [4Fe-4S] cluster. In the reduced state, the [4Fe-4S] cluster can provide one electron to reductively cleave the bound SAM molecule. However, different from classical radical SAM family of enzymes, biochemical evidence suggest that a 3-amino-3-carboxypropyl radical is generated in PhDph2. Here we present evidence supporting that the 3-amino-3-carboxypropyl radical does not undergo hydrogen abstraction reaction, which is observed for the deoxyadenosyl radical in classical radical SAM enzymes. Instead, the 3-amino-3-carboxypropyl radical is added to the imidazole ring in the pathway towards the formation of the product. Furthermore, our data suggest that the chemistry requires only one [4Fe-4S] cluster to be present in the PhDph2 dimer.  相似文献   

14.
Amino acid sequence of [2Fe-2S] ferredoxin from Clostridium pasteurianum   总被引:4,自引:0,他引:4  
The complete amino acid sequence of the [2Fe-2S] ferredoxin from the saccharolytic anaerobe Clostridium pasteurianum has been determined by automated Edman degradation of the whole protein and of peptides obtained by tryptic and by staphylococcal protease digestion. The polypeptide chain consists of 102 amino acids, including 5 cysteine residues in positions 11, 14, 24, 56, and 60. The sequence has been analyzed for hydrophilicity and for secondary structure predictions. In its native state the protein is a dimer, each subunit containing one [2Fe-2S] cluster, and it has a molecular weight of 23,174, including the four iron and inorganic sulfur atoms. The extinction coefficient of the native protein is 19,400 M-1 cm-1 at 463 nm. The positions of the cysteine residues, four of which are most probably the ligands of the [2Fe-2S] cluster, on the polypeptide chain of this protein are very different from those found in other [2Fe-2S] proteins, and in other ferredoxins in general. In addition, whole sequence comparisons of the [2Fe-2S] ferredoxin from C. pasteurianum with a number of other ferredoxins did not reveal any significant homologies. The likely occurrence of several phylogenetically unrelated ferredoxin families is discussed in the light of these observations.  相似文献   

15.
Danyal K  Dean DR  Hoffman BM  Seefeldt LC 《Biochemistry》2011,50(43):9255-9263
The reduction of substrates catalyzed by nitrogenase utilizes an electron transfer (ET) chain comprised of three metalloclusters distributed between the two component proteins, designated as the Fe protein and the MoFe protein. The flow of electrons through these three metalloclusters involves ET from the [4Fe-4S] cluster located within the Fe protein to an [8Fe-7S] cluster, called the P cluster, located within the MoFe protein and ET from the P cluster to the active site [7Fe-9S-X-Mo-homocitrate] cluster called FeMo-cofactor, also located within the MoFe protein. The order of these two electron transfer events, the relevant oxidation states of the P-cluster, and the role(s) of ATP, which is obligatory for ET, remain unknown. In the present work, the electron transfer process was examined by stopped-flow spectrophotometry using the wild-type MoFe protein and two variant MoFe proteins, one having the β-188(Ser) residue substituted by cysteine and the other having the β-153(Cys) residue deleted. The data support a "deficit-spending" model of electron transfer where the first event (rate constant 168 s(-1)) is ET from the P cluster to FeMo-cofactor and the second, "backfill", event is fast ET (rate constant >1700 s(-1)) from the Fe protein [4Fe-4S] cluster to the oxidized P cluster. Changes in osmotic pressure reveal that the first electron transfer is conformationally gated, whereas the second is not. The data for the β-153(Cys) deletion MoFe protein variant provide an argument against an alternative two-step "hopping" ET model that reverses the two ET steps, with the Fe protein first transferring an electron to the P cluster, which in turn transfers an electron to FeMo-cofactor. The roles for ATP binding and hydrolysis in controlling the ET reactions were examined using βγ-methylene-ATP as a prehydrolysis ATP analogue and ADP + AlF(4)(-) as a posthydrolysis analogue (a mimic of ADP + P(i)).  相似文献   

16.
BACKGROUND: The periplasmic nitrate reductase (NAP) from the sulphate reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is induced by growth on nitrate and catalyses the reduction of nitrate to nitrite for respiration. NAP is a molybdenum-containing enzyme with one bis-molybdopterin guanine dinucleotide (MGD) cofactor and one [4Fe-4S] cluster in a single polypeptide chain of 723 amino acid residues. To date, there is no crystal structure of a nitrate reductase. RESULTS: The first crystal structure of a dissimilatory (respiratory) nitrate reductase was determined at 1.9 A resolution by multiwavelength anomalous diffraction (MAD) methods. The structure is folded into four domains with an alpha/beta-type topology and all four domains are involved in cofactor binding. The [4Fe-4S] centre is located near the periphery of the molecule, whereas the MGD cofactor extends across the interior of the molecule interacting with residues from all four domains. The molybdenum atom is located at the bottom of a 15 A deep crevice, and is positioned 12 A from the [4Fe-4S] cluster. The structure of NAP reveals the details of the catalytic molybdenum site, which is coordinated to two MGD cofactors, Cys140, and a water/hydroxo ligand. A facile electron-transfer pathway through bonds connects the molybdenum and the [4Fe-4S] cluster. CONCLUSIONS: The polypeptide fold of NAP and the arrangement of the cofactors is related to that of Escherichia coli formate dehydrogenase (FDH) and distantly resembles dimethylsulphoxide reductase. The close structural homology of NAP and FDH shows how small changes in the vicinity of the molybdenum catalytic site are sufficient for the substrate specificity.  相似文献   

17.
The crystal structure of the C24A mutant of Azotobacter vinelandii 7Fe ferredoxin (FdI) has been solved and refined at 2.0-A resolution. The structure is isomorphous to native FdI except at the site of mutation where A24 moves toward the [4Fe-4S] cluster. In spite of this inefficient packing results: three of five van der Waals contacts from the S gamma of C24 in native FdI are lost and the remaining two become longer. Consequently, the [4Fe-4S] cluster is either disordered or has a higher temperature factor (B factor) compared to the rest of the C24A FdI molecule. In addition, the entire C24A FdI structure has a higher overall B factor than native FdI. Therefore, in comparison to native FdI, the C24A mutant is isomorphous but exhibits large differences in B factor, especially at the [4Fe-4S] cluster. In contrast, the C20A FdI structure (Martin, A. G., Burgess, B. K., Stout, C. D., Cash, V. L., Dean, D. R., Jensen, G. M., and Stephens, P. J. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 598-602), which contains large structural rearrangements in the vicinity of the [4Fe-4S] cluster, exhibits essentially no change in B factor. The conformational change observed at residue 24 is similar in both C24A and C20A FdI structures. The solvent accessibility of the Fe atoms in the [3Fe-4S] and [4Fe-4S] clusters is similar in C24A, C20A, and native FdI.  相似文献   

18.
The refined structure of reduced Azotobacter vinelandii 7Fe ferredoxin FdI at 100 K and 1.4 A resolution is reported, permitting comparison of [3Fe-4S]+ and [3Fe-4S]0 clusters in the same protein at near atomic resolution. The reduced state of the [3Fe-4S]0 cluster is established by single-crystal EPR following data collection. Redundant structures are refined to establish the reproducibility and accuracy of the results for both oxidation states. The structure of the [4Fe-4S]2+ cluster in four independently determined FdI structures is the same within the range of derived standard uncertainties, providing an internal control on the experimental methods and the refinement results. The structures of the [3Fe-4S]+ and [3Fe-4S]0 clusters are also the same within experimental error, indicating that the protein may be enforcing an entatic state upon this cluster, facilitating electron-transfer reactions. The structure of the FdI [3Fe-4S]0 cluster allows direct comparison with the structure of a well-characterized [Fe3S4]0 synthetic analogue compound. The [3Fe-4S]0 cluster displays significant distortions with respect to the [Fe3S4]0 analogue, further suggesting that the observed [3Fe-4S]+/0 geometry in FdI may represent an entatic state. Comparison of oxidized and reduced FdI reveals conformational changes at the protein surface in response to reduction of the [3Fe-4S]+/0 cluster. The carboxyl group of Asp15 rotates approximately 90 degrees, Lys84, a residue hydrogen bonded to Asp15, adopts a single conformation, and additional H2O molecules become ordered. These structural changes imply a mechanism for H+ transfer to the [3Fe-4S]0 cluster in agreement with electrochemical and spectroscopic results.  相似文献   

19.
Sulfur-insertion reactions are essential for the biosynthesis of several cellular metabolites, including enzyme cofactors. In Lactobacillus plantarum, a sulfur-containing nickel-pincer nucleotide (NPN) cofactor is used as a coenzyme of lactic acid racemase, LarA. During NPN biosynthesis in L. plantarum, sulfur is transferred to a nicotinic acid–derived substrate by LarE, which sacrifices the sulfur atom of its single cysteinyl side chain, forming a dehydroalanine residue. Most LarE homologs contain three conserved cysteine residues that are predicted to cluster at the active site; however, the function of this cysteine cluster is unclear. In this study, we characterized LarE from Thermotoga maritima (LarETm) and show that it uses these three conserved cysteine residues to bind a [4Fe-4S] cluster that is required for sulfur transfer. Notably, we found LarETm retains all side chain sulfur atoms, in contrast to LarELp. We also demonstrate that when provided with L-cysteine and cysteine desulfurase from Escherichia coli (IscSEc), LarETm functions catalytically with IscSEc transferring sulfane sulfur atoms to LarETm. Native mass spectrometry results are consistent with a model wherein the enzyme coordinates sulfide at the nonligated iron atom of the [4Fe-4S] cluster, forming a [4Fe-5S] species, and transferring the noncore sulfide to the activated substrate. This proposed mechanism is like that of TtuA that catalyzes sulfur transfer during 2-thiouridine synthesis. In conclusion, we found that LarE sulfur insertases associated with NPN biosynthesis function either by sacrificial sulfur transfer from the protein or by transfer of a noncore sulfide bound to a [4Fe-4S] cluster.  相似文献   

20.
The Escherichia coli DNA repair enzyme MutY plays an important role in the recognition and repair of 7,8-dihydro-8-oxo-2'-deoxyguanosine-2'-deoxyadenosine (OG*A) mismatches in DNA. MutY prevents DNA mutations caused by the misincorporation of A opposite OG by catalyzing the deglycosylation of the aberrant adenine. MutY is representative of a unique subfamily of DNA repair enzymes that also contain a [4Fe-4S]2+ cluster, which has been implicated in substrate recognition. Previously, we have used site-directed mutagenesis to individually replace the cysteine ligands to the [4Fe-4S]2+ cluster of E. coli MutY with serine, histidine, or alanine. These experiments suggested that histidine coordination to the iron-sulfur cluster may be accommodated in MutY at position 199. Purification and enzymatic analysis of C199H and C199S forms indicated that these forms behave nearly identical to the WT enzyme. Furthermore, introduction of the C199H mutation in a truncated form of MutY (C199HT) allowed for crystallization and structural characterization of the modified [4Fe-4S] cluster coordination. The C199HT structure showed that histidine coordinated to the iron cluster although comparison to the structure of the WT truncated enzyme indicated that the occupancy of iron at the modified position had been reduced to 60%. Electron paramagnetic resonance (EPR) spectroscopy on samples of C199HT indicates that a significant percentage (15-30%) of iron clusters were of the [3Fe-4S]1+ form. Oxidation of the C199HT enzyme with ferricyanide increases the amount of the 3Fe cluster by approximately 2-fold. Detailed kinetic analysis on samples containing a mixture of [3Fe-4S]1+ and [4Fe-4S]2+ forms indicated that the reactivity of the [3Fe-4S]1+ C199HT enzyme does not differ significantly from that of the WT truncated enzyme. The relative resistance of the [4Fe-4S]2+ cluster toward oxidation, as well as the retention of activity of the [3Fe-4S]1+ form, may be an important aspect of the role of MutY in repair of DNA damage resulting from oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号