首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In presence of aortic stenosis, a jet is produced downstream of the aortic valve annulus during systole. The vena contracta corresponds to the location where the cross-sectional area of the flow jet is minimal. The maximal transvalvular pressure gradient (TPGmax) is the difference between the static pressure in the left ventricle and that in the vena contracta. TPGmax is highly time-dependent over systole and is known to depend upon the transvalvular flow rate, the effective orifice area (EOA) of the aortic valve and the cross-sectional area of the left ventricular outflow tract. However, it is still unclear how these parameters modify the TPGmax waveform. We thus derived an explicit analytical model to describe the instantaneous TPGmax across the aortic valve during systole. This theoretical model was validated with in vivo experiments obtained in 19 pigs with supravalvular aortic stenosis. Instantaneous TPGmax was measured by catheter and its waveform was compared with the one determined from the derived equation. Our results showed a very good concordance between the measured and predicted instantaneous TPGmax. Total relative error and mean absolute error were on average 9.4±4.9% and 2.1±1.1 mmHg, respectively. The analytical model proposed and validated in this study provides new insight into the behaviour of the TPGmax and thus of the aortic pressure at the level of vena contracta. Because the static pressure at the coronary inlet is similar to that at the vena contracta, the proposed equation will permit to further examine the impact of aortic stenosis on coronary blood flow.  相似文献   

2.
Early detection and accurate estimation of COA severity are the most important predictors of successful long-term outcome. However, current clinical parameters used for the evaluation of the severity of COA have several limitations and are flow dependent. The objectives of this study are to evaluate the limitations of current existing parameters for the evaluation of the severity of coarctation of the aorta (COA) and suggest two new parameters: COA Doppler velocity index and COA effective orifice area. Three different severities of COAs were tested in a mock flow circulation model under various flow conditions and in the presence of normal and stenotic aortic valves. Catheter trans-COA pressure gradients and Doppler echocardiographic trans-COA pressure gradients were evaluated. COA Doppler velocity index was defined as the ratio of pre-COA to post-COA peak velocities measured by Doppler echocardiography. COA Doppler effective orifice area was determined using continuity equation. The results show that peak-to-peak trans-COA pressure gradient significantly increased with flow rate (from 83% to 85%). Peak Doppler pressure gradient also significantly increased with flow rate (80-85%). A stenotic or bicuspid aortic valve increased peak Doppler pressure gradient by 20-50% for a COA severity of 75%. Both COA Doppler velocity index and COA effective orifice area did not demonstrate significant flow dependence or dependence upon aortic valve condition. As a conclusion, COA Doppler velocity index and COA effective orifice area are flow independent and do not depend on aortic valve conditions. They can, then, more accurately predict the severity of COA.  相似文献   

3.
The Gorlin equation for the hemodynamic assessment of valve area is commonly used in cardiac catheterization laboratories. A study was performed to test the prediction capabilities of the Gorlin formula as well as the Aaslid and Gabbay formula for the effective orifice area of prosthetic heart valves. Pressure gradient, flow, and valve opening area measurements were performed on four 27 mm valve prostheses (two mechanical bileaflet designs, St. Jude and Edwards-Duromedics, an Edwards pericardial tissue valve, and a trileaflet polyurethane valve) each mounted in the aortic position of an in vitro pulse duplicator. With the known valve orifice area, a different discharge coefficient was computed for each of the four valves and three orifice area formulas. After some theoretical considerations, it was proposed that the discharge coefficient would be a function of the flow rate through the valve. All discharge coefficients were observed to increase with increasing systolic flow rate. An empirical relationship of discharge coefficient as a linear function of systolic flow rate was determined through a regression analysis, with a different relationship for each valve and each orifice area formula. Using this relationship in the orifice area formulas improved the accuracy of the prediction of the effective orifice area with all three formulas performing equally well.  相似文献   

4.
5.
A computational fluid dynamics study of intraventricular flow during early diastole was carried out using a 3D model of the human left ventricle (LV). It was found that a vortical flow formed under the aortic orifice and then grew in size and extended laterally along the ventricular wall towards the posterior side. With further expansion of the LV, it developed into an annular vortex asymmetrically enlarged on the side of the aortic orifice, narrowing the passage of blood inflow and thus causing a shift of the high-velocity portion of inflow towards the apex. This appeared as an elongation of the aliasing area when the velocity of the inflow was expressed as a spatiotemporal map in the same manner as a color M-mode Doppler (CMD) echocardiogram. Based on these findings, it was concluded that the shape of the aliasing area in a CMD echocardiogram shows the change in the velocity of blood inflow affected by the development of an annular vortex formed in the LV.  相似文献   

6.
In this paper, a numerical simulation of steady laminar and turbulent flow in a two-dimensional model for the total artificial heart is presented. A trileaflet polyurethane valve was simulated at the outflow orifice while the inflow orifice had a trileaflet or a flap valve. The finite analytic numerical method was employed to obtain solutions to the governing equations in the Cartesian coordinates. The closure for turbulence model was achieved by employing the k-epsilon-E model. The SIMPLER algorithm was used to solve the problem in primitive variables. The numerical solutions of the simulated model show that regions of relative stasis and trapped vortices were smaller within the ventricular chamber with the flap valve at the inflow orifice than that with the trileaflet valve. The predicted Reynolds stresses distal to the inflow valve within the ventricular chamber were also found to be smaller with the flap valve than with the trileaflet valve. These results also suggest a correlation between high turbulent stresses and the presence of thrombus in the vicinity of the valves in the total artificial hearts. The computed velocity vectors and turbulent stresses were comparable with previously reported in vitro measurements in artificial heart chambers. Analysis of the numerical solutions suggests that geometries similar to the flap valve (or a tilting disk valve) results in a better flow dynamics within the total artificial heart chamber compared to a trileaflet valve.  相似文献   

7.
Dennis J. Vince 《CMAJ》1970,102(9):946-948
In eight adult dogs the main pulmonary artery was constricted to elevate the right ventricular peak systolic pressure to 50% of the peak aortic pressure at rest. The response of the right ventricle was assessed immediately, at 30 minutes and at six months. The right ventricle responded to acute systolic loading by complete compensation. After 30 minutes there was a reduction in the right ventricular outflow tract resistance. The cardiac output, heart rate and aortic pressure were maintained. The right ventricular systolic ejection period, end-diastolic pressure, peak pressure time, mean systolic pressure, right ventricular—main pulmonary artery mean systolic gradient, right ventricular work index, systolic work and outflow tract resistance were all increased.The right ventricle in the dog was shown to have an immediate capacity to compensate for systolic loading and retains this capacity for long periods of time. The ability to increase work is accomplished by adaptations in right ventricular physiology which increase right ventricular mean systolic pressures and prolong the right ventricular ejection period.  相似文献   

8.
To study systolic pressure gradients developed between the left ventricular wall, its chamber, and the aortic root, in one group of dogs left ventricle ventral wall intramyocardial pressure, left ventricular outflow tract pressure, and aorta pressure were compared with aortic flow as well as left ventricular dimension changes during control conditions as well as during positive intropic states induced by isoproterenol, stellate ganglion stimulation, and noradrenaline. In another group of dogs systolic pressures in the ventral wall of the left ventricle, the main portion of the left ventricular chamber, and the aorta were compared with aortic flow during similar interventions, before and after the administration of phentolamine. Pressure gradients between the wall of the left ventricle and the outflow tract of the left ventricle were minimal during control states, but during the three positive inotropic states were increased significantly. In contrast, pressure gradients between the outflow tract of the left ventricle and the aortic root were insignificant during positive inotropic states; those between the wall and main portion of the chamber were only significantly different during left stellate ganglion stimulation. The data derived from these experiments indicate that useful peak power output of the left ventricle (systolic aortic pressure X flow) is unchanged following isoproterenol infusion, but is increased by stellate ganglion stimulation and noradrenaline. The useful peak power output index (an index of left ventricular efficiency derived by dividing useful peak power output by peak intramyocardial pressure) was reduced more by isoproterenol than the other two interventions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.

Background

Transcatheter aortic valve replacement is indicated for severe symptomatic aortic stenosis in patients who have a very high or prohibitive surgical risk as assessed pre-procedurally by the Society of Thoracic Surgery Risk Score, EuroSCORE (II), frailty testing, and other predictors. When combined with another left ventricular outflow tract obstruction, careful consideration must be taken prior to proceeding with transcatheter aortic valve replacement because an additional masked left ventricular outflow tract pathology can lead to challenging hemodynamics in the peri-deployment phase, as reported in this case.

Case presentation

A 56-year-old Caucasian man with multiple comorbidities and severe aortic stenosis underwent transcatheter aortic valve replacement under monitored anesthesia care. During the deployment phase, he developed dyspnea that progressed to pulmonary edema requiring emergent conversion to general anesthesia, orotracheal intubation, acute respiratory distress syndrome-type ventilation, and vasopressor medications. Intraoperative transesophageal echocardiography was performed and hypertrophic obstructive cardiomyopathy with systolic anterior motion of the mitral valve was discovered as an underlying pathology, undetected on preoperative imaging. After treatment with beta blockers, fluid resuscitation, and alpha-1 agonists, he stabilized and was eventually discharged from our hospital without any lasting sequelae.

Conclusions

Patients with aortic stenosis most often develop symmetric hypertrophy; however, a small subset has asymmetric septal hypertrophy leading to left ventricular outflow tract obstruction. In cases of severe aortic stenosis, however, evidence of left ventricular outflow tract obstruction via both symptoms and echocardiographic findings may be minimized due to extremely high afterload on the left ventricle. Diagnosing a left ventricular outflow tract obstruction as the cause of hemodynamic instability during transcatheter aortic valve replacement, in the absence of abnormal findings on echocardiogram preoperatively, requires a high index of clinical suspicion. The management of acute onset left ventricular outflow tract obstruction intraoperatively consists primarily of medical therapy, including rate control, adequate volume resuscitation, and avoidance of inotropes. With persistently elevated gradients, interventional treatments may be considered.
  相似文献   

10.
Previous echocardiographic techniques for quantifying valvular regurgitation (PISA) are limited by factors including uncertainties in orifice location and hemispheric convergence assumption. Using computational fluid dynamics simulations, we developed a new model for the estimation of orifice diameter and regurgitant volume without the aforementioned assumptions of the PISA technique. Using experimental data obtained from the in vitro flow model we successfully validated our new model. The model output (y) and reference (x) values were in close agreement (y = 0.95x + 0.38, r = 0.96, error = 1.68 +/- 7.54% for the orifice diameter and y = 1.18x - 4.72, r = 0.93, error = 6.48 +/- 16.81% for the regurgitant volume).  相似文献   

11.
Left ventricular assist device (LVAD) support disrupts the natural blood flow path through the heart, introducing flow patterns associated with thrombosis, especially in the presence of medical devices. The aim of this study was to quantitatively evaluate the flow patterns in the left ventricle (LV) of the LVAD-assisted heart, with a focus on alterations in vortex development and stasis. Particle image velocimetry of a LVAD-supported LV model was performed in a mock circulatory loop. In the Pre-LVAD flow condition, a vortex ring initiating from the LV base migrated toward the apex during diastole and remained in the LV by the end of ejection. During LVAD support, vortex formation was relatively unchanged although vortex circulation and kinetic energy increased with LVAD speed, particularly in systole. However, as pulsatility decreased and aortic valve opening ceased, a region of fluid stasis formed near the left ventricular outflow tract. These findings suggest that LVAD support does not substantially alter vortex dynamics unless cardiac function is minimal. The altered blood flow introduced by the LVAD results in stasis adjacent to the LV outflow tract, which increases the risk of thrombus formation in the heart.  相似文献   

12.
This study focuses on the dynamic flow through the fetal aortic arch driven by the concurrent action of right and left ventricles. We created a parametric pulsatile computational fluid dynamics (CFD) model of the fetal aortic junction with physiologic vessel geometries. To gain a better biophysical understanding, an in vitro experimental fetal flow loop for flow visualization was constructed for identical CFD conditions. CFD and in vitro experimental results were comparable. Swirling flow during the acceleration phase of the cardiac cycle and unidirectional flow following mid-deceleration phase were observed in pulmonary arteries (PA), head-neck vessels, and descending aorta. Right-to-left (oxygenated) blood flowed through the ductus arteriosus (DA) posterior relative to the antegrade left ventricular outflow tract (LVOT) stream and resembled jet flow. LVOT and right ventricular outflow tract flow mixing had not completed until approximately 3.5 descending aorta diameters downstream of the DA insertion into the aortic arch. Normal arch model flow patterns were then compared to flow patterns of four common congenital heart malformations that include aortic arch anomalies. Weak oscillatory reversing flow through the DA junction was observed only for the Tetralogy of Fallot configuration. PA and hypoplastic left heart syndrome configurations demonstrated complex, abnormal flow patterns in the PAs and head-neck vessels. Aortic coarctation resulted in large-scale recirculating flow in the aortic arch proximal to the DA. Intravascular flow patterns spatially correlated with abnormal vascular structures consistent with the paradigm that abnormal intravascular flow patterns associated with congenital heart disease influence vascular growth and function.  相似文献   

13.
14.
Doppler-derived gradients may overestimate total pressure loss in degenerative and prosthetic aortic valve stenosis (AS) due to unaccounted pressure recovery distal to the orifice. However, in congenitally bicuspid valves, jet eccentricity may result in a higher anatomic-to-effective orifice contraction ratio, resulting in an increased pressure loss at the valve and a reduced pressure recovery distal to the orifice leading to greater functional severity. The objective of our study was to determine the impact of local geometry on the total versus Doppler-derived pressure loss and therefore the assessed severity of the stenosis in bicuspid valves. On the basis of clinically obtained measurements, two- and three-dimensional computer simulations were created with various local geometries by altering the diameters of the left ventricular outflow tract (LVOT; 1.8-3.0 cm), orifice diameter (OD; 0.8-1.6 cm), and aortic root diameter (AR; 3.0-5.4 cm). Jet eccentricity was altered in the models from 0 to 25 degrees. Simulations were performed under steady-flow conditions. Axisymmetric simulations indicate that the overall differences in pressure recovery were minor for variations in LVOT diameter (<3%). However, both OD and AR had a significant impact on pressure recovery (6-20%), with greatest recovery being the larger OD and the smaller recovery being the AR. In addition, three-dimensional data illustrate a greater pressure loss for eccentric jets with the same orifice area, thus increasing functional severity. In conclusion, jet eccentricity results in greater pressure loss in bicuspid valve AS due to reduced effective orifice area. Functional severity may also be enhanced by larger aortic roots, commonly occurring in these patients, leading to reduced pressure recovery. Thus, for the same anatomic orifice area, functional severity is greater in bicuspid than in degenerative tricuspid AS.  相似文献   

15.
Edge-to-edge technique is a surgical procedure for the correction of mitral valve leaflets prolapse by suturing the edge of the prolapsed leaflet to the free edge of the opposing one. Suture presence modifies valve mechanical behavior and orifice flow area in the diastolic phase, when the valve opens and blood flows into the ventricle. In the present work, in order to support identification of potentially critical conditions, a computational procedure is described to evaluate the effects of changing suture length and position in combination with valve size and shape. The procedure is based on finite element method analyses applied to a range of different mitral valves, investigating for each configuration the influence of repair on functional parameters, such as mitral valve orifice area and transvalvular pressure gradient, and on structural parameters, such as stress in the leaflets and stitch tension. This kind of prediction would ideally require a coupled fluid-structural analysis, where the interactions between blood flows and mitral apparatus deformation are simultaneously considered. In the present study, however, an alternative approach is proposed, in which results obtained by purely structural finite element analyses are elaborated and interpreted taking into account the Bernoulli type equations available in literature to describe blood flow through mitral orifice. In this way, the effects of each parameter in terms of orifice flow area, suture loads, and leaflets stresses can be expressed as functions of atrioventricular pressure gradient and then correlated to blood flow rate. Results obtained by using this procedure for different configurations are finally discussed.  相似文献   

16.
We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation.  相似文献   

17.
21毫米人造心脏瓣膜泵的设计及研制   总被引:1,自引:0,他引:1  
为了研究能够长期置入主动脉瓣环的左心室辅助装置,研制出直径21毫米重27克可植入的主动脉瓣膜泵.装置包括一个转子和一个定子.转子由驱动磁钢和叶轮组成;定子装有带铁心的电机线圈和出口导叶.装置被置於主动脉瓣位置,所以不占用额外的解剖空间.血泵能像自然心脏一样直接将血液由心室输送到主动脉,不需要连接管道和旁路,因此对自然生理循环的干扰可以减到最低.血泵流量由最大到零周期变化.血液动力学测试表明,当血泵转速为17500转/分钟时,可以产生流量5升/分钟、压力增益50毫米汞柱的血流;同一转速下,当流量为零时,血泵能保持主动脉舒张压为80毫米汞柱.  相似文献   

18.
Thirty-one hearts with aortic arch obstruction and patent ductus arteriosus were examined with special reference to associated cardiac anomalies. Six presented with complete interruption of the aortic arch, four with atretic isthmus, twelve with coarctation, and three with tubular hypoplasia. Associated cardiac anomalies were divided into two main groups: (1) septal defect with left-to-right shunt, and (2) left ventricular inflow and/or outflow obstruction. A high incidence (9/19=47.4%) of ventriculo-infundibular malalignment type of ventricular septal defect with subaortic stenosis was observed. Associated cardiac lesions that reduce blood flow in the aortic arch during fetal life may be responsible for poor development of this structure.  相似文献   

19.
This work addresses the use of 3D point data to measure rigid motions, in the presence of occlusion and without reference to a prior model of relative point locations. This is a problem where cluster-based measurement techniques are used (e.g. for measuring limb movements) and no static calibration trial is available. The same problem arises when performing the task known as roving capture, in which a mobile 3D movement analysis system is moved through a volume with static markers in unknown locations and the ego-motion of the system is required in order to understand biomechanical activity in the environment. To provide a solution for both of these applications, the new concept of a visibility graph is introduced, and is combined with a generalised procrustes method adapted from ones used by the biological shape statistics and computer graphics communities. Recent results on shape space manifolds are applied to show sufficient conditions for convergence to unique solution. Algorithm source code is available and referenced here. Processing speed and rate of convergence are demonstrated using simulated data. Positional and angular accuracy are shown to be equivalent to approaches which require full calibration, to within a small fraction of input resolution. Typical processing times for sub-micron convergence are found to be fractions of a second, so the method is suitable for workflows where there may be time pressure such as in sports science and clinical analysis.  相似文献   

20.
Mechanisms of blood flow during cardiopulmonary resuscitation (CPR) were studied in a canine model with implanted mitral and aortic flow probes and by use of cineangiography. Intrathoracic pressure (ITP) fluctuations were induced by a circumferential pneumatic vest, with and without simultaneous ventilation, and by use of positive-pressure ventilation alone. Vascular volume and compression rate were altered with each CPR mode. Antegrade mitral flow was interpreted as left ventricular (LV) inflow, and antegrade aortic flow was interpreted as LV outflow. The pneumatic vest was expected to elevate ITP uniformly and thus produce simultaneous LV inflow and LV outflow throughout compression. This pattern, the passive conduit of "thoracic pump" physiology, was unequivocally demonstrated only during ITP elevation with positive-pressure ventilation alone at slow rates. During vest CPR, LV outflow started promptly with the onset of compression, whereas LV inflow was delayed. At compression rates of 50 times/min and normal vascular filling pressures, the delay was sufficiently long that all LV filling occurred with release of compression. This is the pattern that would be expected with direct LV compression or "cardiac pump" physiology. During the early part of the compression phase, catheter tip transducer LV and left atrial pressure measurements demonstrated gradients necessitating mitral valve closure, while cineangiography showed dye droplets moving from the large pulmonary veins retrograde to the small pulmonary veins. When the compression rate was reduced and/or when intravascular pressures were raised with volume infusion, LV inflow was observed at some point during the compressive phase. Thus, under these conditions, features of both thoracic pump and cardiac pump physiology occurred within the same compression. Our findings are not explained by the conventional conceptions of either thoracic pump or cardiac compression CPR mechanisms alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号