首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fructose corn syrup (HFCS) equivalent for 1-16 wk were compared with mice fed standard chow or mice with trans fats or HFCS omitted. Cage racks were removed from western diet mice to promote sedentary behavior. By 16 wk, trans fat-fed mice became obese and developed severe hepatic steatosis with associated necroinflammatory changes. Plasma alanine aminotransferase levels increased, as did liver TNF-alpha and procollagen mRNA, indicating an inflammatory and profibrogenic response to injury. Glucose intolerance and impaired fasting glucose developed within 2 and 4 wk, respectively. Plasma insulin, resistin, and leptin levels increased in a profile similar to that seen in patients with NASH. The individual components of this diet contributed to the phenotype independently; isocaloric replacement of trans fats with lard established that trans fats played a major role in promoting hepatic steatosis and injury, whereas inclusion of HFCS promoted food consumption, obesity, and impaired insulin sensitivity. Combining risk factors for the metabolic syndrome by feeding mice trans fats and HFCS induced histological features of NASH in the context of a metabolic profile similar to patients with this disease. Because dietary trans fats promoted liver steatosis and injury, their role in the epidemic of NASH needs further evaluation.  相似文献   

3.
Excessive lipid accumulation within hepatocytes, or hepatic steatosis, is the pathognominic feature of nonalcoholic fatty liver disease (NAFLD), a disease associated with insulin resistance and obesity. Low-carbohydrate diets (LCD) improve these conditions and were implemented in this study to potentially attenuate hepatic steatosis in hypercholesterolemic guinea pigs. Male guinea pigs (n = 10 per group) were randomly assigned to consume high cholesterol (0.25 g/100 g) in either a LCD or a high-carbohydrate diet (HCD) for 12 wk. As compared with HCD, plasma LDL cholesterol was lower and plasma triglycerides were higher in animals fed the LCD diet, with no differences in plasma free fatty acids or glucose. The most prominent finding was a 40% increase in liver weight in guinea pigs fed the LCD diet despite no differences in hepatic cholesterol or triglycerides between the LCD and the HCD groups. Regardless of diet, all livers had severe hepatic steatosis on histologic examination. Regression analysis suggested that liver weight was independent of body weight and liver mass was independent of hepatic lipid content. LCD livers had more proliferating hepatocytes than did HCD livers, suggesting that in the context of cholesterol-induced hepatic steatosis, dietary carbohydrate restriction enhances liver cell proliferation.  相似文献   

4.
Certain dietary components when combined with alcohol exacerbate alcohol-induced liver injury (ALI). Here, we tested whether fructose, a major ingredient of the western diet, enhances the severity of ALI. We fed mice ethanol for 8 weeks in the following Lieber-DeCarli diets: (a) Regular (contains olive oil); (b) corn oil (contains corn oil); (c) fructose (contains fructose and olive oil) and (d) corn + fructose (contains fructose and corn oil). We compared indices of metabolic function and liver pathology among the different groups. Mice fed fructose-free and fructose-containing ethanol diets exhibited similar levels of blood alcohol, blood glucose and signs of disrupted hepatic insulin signaling. However, only mice given fructose–ethanol diets showed lower insulin levels than their respective controls. Compared with their respective pair-fed controls, all ethanol-fed mice exhibited elevated levels of serum ALT; the inflammatory cytokines TNF-α, MCP-1 and MIP-2; hepatic lipid peroxides and triglycerides. All the latter parameters were significantly higher in mice given fructose-ethanol diets than those fed fructose-free ethanol diets. Mice given fructose-free or fructose-containing ethanol diets each had higher levels of hepatic lipogenic enzymes than controls. However, the level of the lipogenic enzyme fatty acid synthase (FAS) was significantly higher in livers of mice given fructose control and fructose–ethanol diets than in all other groups. Our findings indicate that dietary fructose exacerbates ethanol-induced steatosis, oxidant stress, inflammation and liver injury, irrespective of the dietary fat source, to suggest that inclusion of fructose in or along with alcoholic beverages increases the risk of more severe ALI in heavy drinkers.  相似文献   

5.
Nonalcoholic fatty liver disease begins with a relatively benign hepatic steatosis, often associated with increased adiposity, but may progress to a more severe nonalcoholic steatohepatitis with inflammation. A subset of these patients develops progressive fibrosis and ultimately cirrhosis. Various dietary components have been shown to contribute to the development of liver disease, including fat, sugars, and neonatal treatment with high doses of monosodium glutamate (MSG). However, rodent models of progressive disease have been disappointing, and alternative animal models of diet-induced liver disease would be desirable, particularly if they contribute to our knowledge of changes in gene expression as a result of dietary manipulation. The domestic cat has previously been shown to be an appropriate model for examining metabolic changes–associated human diseases such as diabetes. Our aim was therefore to compare changes in hepatic gene expression induced by dietary MSG, with that of a diet containing Trans-fat and high fructose corn syrup (HFCS), using a feline model. MSG treatment increased adiposity and promoted hepatic steatosis compared to control (P < 0.05). Exposure to Trans-fat and HFCS promoted hepatic fibrosis and markers of liver dysfunction. Affymetrix microarray analysis of hepatic gene expression showed that dietary MSG promoted the expression of genes involved in cholesterol and steroid metabolism. Conversely, Trans-fat and HFCS feeding promoted the expression of genes involved in lipolysis, glycolysis, liver damage/regeneration, and fibrosis. Our feline model examining gene–diet interactions (nutrigenomics) demonstrates how dietary MSG, Trans-fat, and HFCS may contribute to the development of hepatic steatosis.  相似文献   

6.
When overfed at their maximum (intensive overfeeding) or at only 80% (moderate overfeeding) of food intake capacity, Mule ducks developed strong liver steatosis, whereas Pekin ducks showed very marked extrahepatic fattening. During overfeeding, evolution of plasma glucose and triacylglycerol concentrations suggested a very strong increase in the hepatic lipogenesis as well as genotype- and diet-independent lipoprotein secretion. In contrast, lipoprotein-lipase activity was dependent on alimentary status (the intensive overfeeding induces the highest activities), and Pekin ducks showed higher lipoprotein-lipase activity than Mule ducks, which could favor extrahepatic fattening to the detriment of hepatic steatosis. In Pekin ducks, plasma pancreatic hormone concentrations are related to diet levels and blood sugar. With similar food intake, Mule ducks (moderately overfed) showed global blood insulin lower than that of Pekin ducks (intensively overfed) despite similar blood sugar levels, suggesting a trend towards reduced pancreas response to glucose in Mule ducks. This may result from their lower lipoprotein-lipase activity as previously shown in these two ducks overfed at only 60% of their maximal food intake capacity (unpublished results). These results suggest that high plasma insulin concentrations may be necessary to induce an optimum lipoprotein-lipase activity in overfed ducks.  相似文献   

7.
Nonalcoholic fatty liver disease (NAFLD) is associated with obesity and insulin resistance. It is also a predisposing factor for type 2 diabetes. Dietary factors are believed to contribute to all three diseases. NAFLD is characterized by increased intrahepatic fat and mitochondrial dysfunction, and its etiology may be attributed to excessive fructose intake. Consumption of high fructose corn syrup‐55 (HFCS‐55) stands at up to 15% of the average total daily energy intake in the United States, and is linked to weight gain and obesity. The aim of this study was to establish whether HFCS‐55 could contribute to the pathogenesis of NAFLD, by examining the effects of HFCS‐55 on hepatocyte lipogenesis, insulin signaling, and cellular function, in vitro and in vivo. Exposure of hepatocytes to HFCS‐55 caused a significant increase in hepatocellular triglyceride (TG) and lipogenic proteins. Basal production of reactive oxygen metabolite (ROM) was increased, together with a decreased capacity to respond to an oxidative challenge. HFCS‐55 induced a downregulation of the insulin signaling pathway, as indicated by attenuated ser473phosphorylation of AKT1. The c‐Jun amino‐terminal kinase (JNK), which is intimately linked to insulin resistance, was also activated; and this was accompanied by an increase in endoplasmic reticulum (ER) stress and intracellular free calcium perturbation. Hepatocytes exposed to HFCS‐55 exhibited mitochondrial dysfunction and released cytochrome C (CytC) into the cytosol. Hepatic steatosis and mitochondrial disruption was induced in vivo by a diet enriched with 20% HFCS 55; accompanied by hypoadiponectinemia and elevated fasting serum insulin and retinol‐binding protein‐4 (RBP4) levels. Taken together our findings indicate a potential mechanism by which HFCS‐55 may contribute to the pathogenesis of NAFLD.  相似文献   

8.
Sucrose- and fructose-enriched diets produce hepatic insulin resistance in rats independently of obesity. In humans, fructose infusion results in impaired insulin regulation of glucose production. The aim of the present study was to identify intrahepatic mediators of sucrose- and fructose-induced hepatic insulin resistance. In study 1, male rats were fed a control diet (STD, 68% of energy from corn starch, 12% from corn oil) or a sucrose-enriched diet (HSD, 68% sucrose, 12% corn oil) for 1, 2, or 5 wk. HSD produced hepatic insulin resistance at all time points. Hepatic protein tyrosine phosphatase 1B protein levels and activity were increased at 5 wk only, whereas c-jun NH(2)-terminal kinase (JNK) activity was increased at all time points. Normalization of JNK activity in hepatocytes isolated from HSD rats improved insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS) proteins and insulin suppression of glucose release. In study 2, male rats were provided STD for 1 wk and then were either fasted or fasted and refed either STD or HSD for 3 or 6 h. Rats refed HSD were characterized by increased hepatic JNK activity and phosphorylation of IRS1 on Ser(307) after 6 h only. In study 3, hyperglycemic, hyperinsulinemic pancreatic clamps were performed for 3 or 6 h in the presence or absence of low or high intraportal fructose infusions. High intraportal fructose infusions, which increased portal vein fructose concentration to approximately 1 mM, increased hepatic JNK activity and phosphorylation of IRS1 on Ser(307) at 6 h only. These data suggest that sucrose- and fructose-induced hepatic insulin resistance are mediated, in part, via activation of JNK activity. Thus high rates of fructose metabolism in the liver appear to acutely activate stress pathways.  相似文献   

9.
To determine the influence of dietary fructose and glucose on circulating leptin levels in lean and obese rats, plasma leptin concentrations were measured in ventromedial hypothalamic (VMH)-lesioned obese and sham-operated lean rats fed either normal chow or fructose- or glucose-enriched diets (60% by calories) for 2 wk. Insulin resistance was evaluated by the steady-state plasma glucose method and intravenous glucose tolerance test. In lean rats, glucose-enriched diet significantly increased plasma leptin with enlarged parametrial fat pad, whereas neither leptin nor fat-pad weight was altered by fructose. Two weeks after the lesions, the rats fed normal chow had marked greater body weight gain, enlarged fat pads, and higher insulin and leptin compared with sham-operated rats. Despite a marked adiposity and hyperinsulinemia, insulin resistance was not increased in VMH-lesioned rats. Fructose brought about substantial insulin resistance and hyperinsulinemia in both lean and obese rats, whereas glucose led to rather enhanced insulin sensitivity. Leptin, body weight, and fat pad were not significantly altered by either fructose or glucose in the obese rats. These results suggest that dietary glucose stimulates leptin production by increasing adipose tissue or stimulating glucose metabolism in lean rats. Hyperleptinemia in VMH-lesioned rats is associated with both increased adiposity and hyperinsulinemia but not with insulin resistance. Dietary fructose does not alter leptin levels, although this sugar brings about hyperinsulinemia and insulin resistance, suggesting that hyperinsulinemia compensated for insulin resistance does not stimulate leptin production.  相似文献   

10.
Many studies have investigated the effect of crude tomato peel in vivo, but no studies have determined the dose-effect of dry tomato peel (DTP) on glucose intolerance, insulin resistance, and atherogenic dyslipidemia induced by a high-saturated-fat (HSF) diet in vivo. The aim of this study was to investigate the effects of different doses of DTP on the levels of oxidative stress in mice fed an HSF and cholesterol-rich diet for 12 weeks. The main outcomes are glucose and insulin tolerance, plasma lipids, and hepatic steatosis and inflammation. BALB/c male mice (n=40) (8 weeks old, weighing 22.2±1.0 g) were divided into four treatment groups (10 mice/group): (a) high-fat control diet (HF Ctrl), which contains sunflower oil as a sole source of fat; (b) HSF/high-cholesterol (HC) diet; (c) HSF/HC diet supplemented with 9% DTP and (d) HSF/HC diet supplemented with 17% DTP. The HSF/HC diet significantly increased body weight gain, adipose tissue weight, fasting plasma glucose, fasting plasma insulin and lipid peroxidation and caused the development of liver steatosis and inflammation. Supplementation with DTP increased plasma lycopene concentration and reduced the development of indicators of metabolic syndrome, with no consistent effect of the DTP dose. Hepatic steatosis and inflammation were not reversed with DTP supplementation. Among mice fed the HSF/HC diet, DTP supplementation appears to have a beneficial effect on insulin resistance, which confirms the antiatherogenic effect of DTP.  相似文献   

11.
Background/objectivesLiquid fructose associates with prevalence of type 2 diabetes mellitus and obesity. Intervention studies suggest that metabolically unfit individuals are more responsive than healthy individuals to liquid fructose. We determined whether mice consuming an obesogenic Western diet were more responsive than chow-fed mice to the alterations induced by liquid fructose supplementation (LFS).MethodsC57BL/6N mice were fed chow or Western diet±ad libitum 15% fructose solution for 12 weeks. Food and liquid intake and body weight were monitored. Plasma analytes and liver lipids, histology and the expression of genes related to lipid handling, endoplasmic reticulum stress, inflammation and insulin signaling were analyzed.ResultsWestern diet increased energy intake, visceral adipose tissue (vWAT), body weight, plasma and liver triglycerides and cholesterol, and inflammatory markers in vWAT vs. chow-fed mice. LFS did not change energy intake, vWAT or body weight. LFS significantly increased plasma and liver triglycerides and cholesterol levels only in Western-diet-fed mice. These changes associated with a potentiation of the increased liver expression of PPARγ and CD36 that was observed in Western-fed mice and related to the increased liver mTOR phosphorylation induced by LFS. Furthermore, LFS in Western-diet-fed mice induced the largest reduction in liver IRS2 protein and a significant decrease in whole-body insulin sensitivity.ConclusionsLFS in mice, in a background of an unhealthy diet that already induces fatty liver visceral fat accretion and obesity, increases liver lipid burden, hinders hepatic insulin signaling and diminishes whole-body insulin sensitivity without changing energy intake.  相似文献   

12.
Changes in hematological and serum biochemistry parameters in female zinc (Zn)-dosed farm-raised mallards (Anas platyrhynchos) fed four different diets were examined. Sixty ducks received an average dose of 0.97 g of Zn in the form of eight, 3.30-mm diameter shot pellets containing 98% Zn and 2% tin, and another 60 ducks were sham-dosed as controls. Fifteen ducks from each of the two dosing groups were assigned to one of four dietary treatments: corn only, corn with soil, commercial duck ration only, or commercial duck ration with soil. Shot-pellet dissolution rates ranged from 7 mg/Zn/day to 27 mg/Zn/day. Regardless of diet, the Zn dose resulted in mortality; incoordination; paralysis and anorexia; decreased body, liver, pancreas, gonad, and gizzard weight; increased kidney weight; and macroscopic lesions. Zn-dosed ducks had a lower mean erythrocyte packed cell volume (PCV), higher mean reticulocyte count, and a greater number of individuals with immature and/or abnormal erythrocytes, than did control mallards. Mean total leucocyte counts were higher in Zn-dosed ducks than in controls. Zn-dosed ducks that had soil available had higher leucocyte counts than those without soil. Zn-dosed ducks were characterized by a marked heterophilia and relative lymphopenia. In Zn-dosed ducks, the mean lymphocyte count was highest in those provided a commercial duck ration, and lowest in those fed corn. In control ducks, the mean lymphocyte count was highest in ducks fed corn, and lowest in those provided soil along with a commercial duck ration. Zn-dosed mallards had higher serum aspartate aminotransferase and amylase levels, and lower alkaline phosphatase activities than control ducks. Serum phosphorus and uric acid concentrations were higher, and calcium, glucose, and total protein levels lower, in Zn-dosed ducks than in control ducks. Diet did affect serum calcium, phosphorus, total protein, and uric acid concentrations. Differences in erythrocyte and leucocyte parameters, serum enzyme activities, and metabolite concentrations were associated with dose and diet effects. Diets high in protein and other organic matter and calcium and phosphorus did not prevent or substantially alleviate Zn toxicosis in farm-raised mallard ducks.  相似文献   

13.
This study investigated the biological and molecular mechanisms underlying the antiobesity effect of omija fruit ethanol extract (OFE) in mice fed a high-fat diet (HFD). C57BL/6J mice were fed an HFD (20% fat, w/w) with or without OFE (500 mg/kg body weight) for 16 weeks. Dietary OFE significantly increased brown adipose tissue weight and energy expenditure while concomitantly decreasing white adipose tissue (WAT) weight and adipocyte size by up-regulating the expression of brown fat-selective genes in WAT. OFE also improved hepatic steatosis and dyslipidemia by enhancing hepatic fatty acid oxidation-related enzymes activity and fecal lipid excretion. In addition to steatosis, OFE decreased the expression of pro-inflammatory genes in the liver. Moreover, OFE improved glucose tolerance and lowered plasma glucose, insulin and homeostasis model assessment of insulin resistance, which may be linked to decreases in the activity of hepatic gluconeogenic enzymes and the circulating level of gastric inhibitory polypeptide. These findings suggest that OFE may protect against diet-induced adiposity and related metabolic disturbances by controlling brown-like transformation of WAT, fatty acid oxidation, inflammation in the liver and fecal lipid excretion. Improved insulin resistance may be also associated with its antiobesity effects.  相似文献   

14.
Western-type diets can induce obesity and related conditions such as dyslipidemia, insulin resistance and hepatic steatosis. We evaluated the effects of milk sphingomyelin (SM) and egg SM on diet-induced obesity, the development of hepatic steatosis and adipose inflammation in C57BL/6J mice fed a high-fat, cholesterol-enriched diet for 10 weeks. Mice were fed a low-fat diet (10% kcal from fat) (n=10), a high-fat diet (60% kcal from fat) (HFD, n=14) or a high-fat diet modified to contain either 0.1% (w/w) milk SM (n=14) or 0.1% (w/w) egg SM (n=14). After 10 weeks, egg SM ameliorated weight gain, hypercholesterolemia and hyperglycemia induced by HFD. Both egg SM and milk SM attenuated hepatic steatosis development, with significantly lower hepatic triglycerides (TGs) and cholesterol relative to HFD. This reduction in hepatic steatosis was stronger with egg SM supplementation relative to milk SM. Reductions in hepatic TGs observed with dietary SM were associated with lower hepatic mRNA expression of PPARγ-related genes: Scd1 and Pparg2 in both SM groups, and Cd36 and Fabp4 with egg SM. Egg SM and, to a lesser extent, milk SM reduced inflammation and markers of macrophage infiltration in adipose tissue. Egg SM also reduced skeletal muscle TG content compared to HFD. Overall, the current study provides evidence of dietary SM improving metabolic complications associated with diet-induced obesity in mice. Further research is warranted to understand the differences in bioactivity observed between egg and milk SM.  相似文献   

15.
In waterfowl, the response to overfeeding differs from one genotype to the other. Pekin ducks generally store lipids in the peripheral tissues while Muscovy and mule ducks promote hepatic lipid storage. A possible reason for these various susceptibilities to hepatic steatosis could be a difference in insulin sensitivity. We suggest a resistance to insulin in Pekin ducks. In the present work we investigate the action of insulin on glucose and lipid metabolisms for the three overfed genotypes. Regardless of the kind of genotype, all ducks appear to be sensitive to insulin: their glycemia is lower when the animals are treated with insulin. Insulin-treated Muscovy and Pekin ducks present a lower increase in total body weight (? 16.5% for Muscovy; ? 8.3% for Pekin); and a significantly lower liver weight than the controls (? 9.6% and ? 18.3%). The percentage of total lipids in the liver is higher in the controls than in the insulin-treated Pekin and mule ducks (respectively ? 40.4% and ? 34.7%), which means a decreased hepatic lipogenesis. Pekin ducks present a higher pectoral muscle weight when the individuals are insulin-treated (+ 9.7%). Lipoprotein lipase (LPL) activity appears to be significantly higher in insulin-treated Pekin and Muscovy ducks (1.39 and 3.38 times greater than controls). Insulin-treated mule ducks present a decrease of muscle and abdominal lipid storage compared to controls (? 11.6% and ? 13.8%). In this experiment, exogenous insulin has induced an increase of lipid oxidation and has led to a less favorable use and storage of dietary glucose. The hypothesis of insulin-resistance of Pekin ducks is not verified.  相似文献   

16.
1. Male rats were fed for 14 days on powdered diets containing (by weight) 53% of starch, or on diets in which 20g of starch per 100g of diet was replaced by lard or corn oil. They were then fed acutely by stomach tube with a single dose of glucose, fructose or ethanol of equivalent energy contents, or with 0.15m-NaCl. The serum concentrations of corticosterone, insulin, glucose, glycerol, triacylglycerol and cholesterol were measured up to 6h after this treatment. 2. Feeding saline (0.9% NaCl) acutely to the rats maintained on the three powdered diets produced a small transient increase in circulating corticosterone that was similar to that in rats maintained on the normal 41B pelleted diet. 3. Feeding glucose acutely to the rats on the powdered diets produced peak concentrations of corticosterone that were 2–3-fold higher than those seen in rats maintained on the 41B diet. The duration of this response increased in the order starch diet<lard diet<corn-oil diet. This abnormal corticosterone response to glucose feeding appeared to be responsible for an increased activity in phosphatidate phosphohydrolase in the livers of rats fed the starch and lard diets of 2.9- and 4.9-fold respectively. The latter increase was similar to that produced by ethanol, whereas glucose did not increase the phosphohydrolase activity in the liver of rats maintained on the 41B diet. 4. Feeding fructose acutely produced even more marked increases than glucose in the concentrations of circulating corticosterone in rats given the powdered diets, but unlike glucose did not increase circulating insulin. The duration of the corticosterone response again increased in the order starch diet<lard diet<corn-oil diet. The concentrations of circulating glucose were increased by fructose feeding in rats maintained on these diets, but they were not altered in the rats maintained on the 41B pellets. A prolonged increase in serum corticosterone concentrations was also observed when fructose was fed to rats maintained on pelleted diets enriched with corn oil or beef tallow rather than with starch or sucrose. However, these effects were less marked than those seen with rats fed on the powdered diets. 5. These results are discussed in relation to the mechanism whereby high dietary fat exaggerates the effects of ethanol, fructose and sorbitol in stimulating triacylglycerol synthesis in the liver.  相似文献   

17.
Hormonal and metabolic responses to overfeeding in three genotypes of ducks   总被引:6,自引:0,他引:6  
Muscovy, Pekin and Mule duck are different in their body weight. To make a valid comparison in the lipid metabolism between these three genotypes, overfeeding was carried out by providing the animals with amounts of food in proportion to their body weight. Under these conditions, Muscovy ducks developed a strong liver steatosis, whereas it was not very pronounced in the Mule ducks and even less in the Pekin ducks. On the contrary, Pekin ducks showed a much marked extrahepatic fattening. At the beginning of overfeeding, there was a similarity in the three genotypes as regards the post-heparin lipoprotein-lipase (LPL) activity and the insulin and glucagon concentrations. After 10 days of overfeeding, the LPL activity dramatically fell in Muscovy and in Mule ducks, whereas it remained steady in Pekin ducks. Compared to values found at the beginning of the overfeeding period, plasma glucagon and insulin shown no evolution, except for the insulin of Pekin ducks which was dramatically higher. Those data suggest that high plasma insulin concentrations measured in Pekin ducks after 10 days of overfeeding can be responsible for the maintenance of the LPL activity, which favors the extrahepatic fattening to the detriment of liver steatosis.  相似文献   

18.
This study addressed the effect of indole-3-carbinol (I3C) supplementation on hepatic steatosis in mice fed a high-fat diet (HFD) and clarified the underlying mechanism. Male C57BL/6N mice were divided into three groups: those who received a normal diet, those fed with HFD and those fed with 0.1% I3C-supplemented diet (I3CD). In the present study, an HFD supplemented with 0.1% I3C significantly decreased body and liver weight as well as plasma and hepatic lipid levels. The activation of the silent mating type information regulation 2 homolog 1 (SIRT1)–AMP-activated protein kinase (AMPK) signaling system by I3C correlated with decreased mRNA levels of sterol regulatory element-binding protein-1c-regulated lipogenic enzymes. In addition, I3C significantly reversed HFD-induced up-regulation of ER stress-mediated signaling molecules in the liver, which may have contributed to the protective effects of I3C against hepatic steatosis. Furthermore, HFD-induced up-regulations of inflammatory genes such as tumor necrosis factor α and interleukin 6 were significantly reversed by dietary I3C supplementation. Our study suggests that the protective action of I3C against hepatic steatosis is mediated, at least in part, through the up-regulation of a SIRT1–AMPK signaling system in the livers of HFD-fed mice. Further investigations revealed that alleviation of the ER stress response represented a critical mechanism underlying the beneficial effects of I3C on hepatic steatosis.  相似文献   

19.
Tumor necrosis factor α (TNFα) is known to be involved in dysregulation of hepatic lipid metabolism and insulin signaling. However, whether TNFα also plays a casual role in the onset of fructose-induced nonalcoholic fatty liver disease (NAFLD) has not yet been determined. Therefore, wild-type and TNFα receptor 1 (TNFR1)−/− mice were fed with either 30% fructose solution or plain tap water. Hepatic triglycerides, markers of inflammation and ATP concentration as well as plasma ALT levels were determined. Hepatic PAI-1, SREBP-1, FAS mRNA expression was assessed by real-time RT-PCR. Furthermore, lipid peroxidation and indices of insulin resistance were determined in liver tissue and plasma. In comparison to water controls, chronic intake of 30% fructose solution caused a significant ∼5-fold increase in triglyceride accumulation and neutrophil infiltration in livers of wild-type mice and a ∼8-fold increase in plasma ALT levels. In TNFR1−/− mice, hepatic steatosis was attenuated and neutrophil infiltration in the liver as well as plasma ALT levels was similar to water controls. The protective effect of the TNFR1 deletion against the onset of fructose-induced steatosis was associated with increased phospho AMPK and Akt levels, decreased SREBP-1 and FAS expression in the liver and decreased RBP4 plasma levels, whereas hepatic lipid peroxidation, iNOS protein and ATP levels were similar between wild-type and TNFR1−/− mice fed fructose. Taken together, these data suggest that TNFα plays a casual role in the onset of fructose-induced liver damage as well as insulin resistance in mice through signaling cascades downstream of TNFR1.  相似文献   

20.
Despite a century of research on obesity, metabolic disorders and their complications, including dyslipidemia, insulin resistance, and fatty liver disease remain a serious global health problem. Lycopus lucidus Turcz (LT) is a traditional medicine used for its anti-inflammatory properties that has not been evaluated for its efficacy in improving obesity. In this study, mice were fed a normal diet (n = 10) or obesity was induced with a high-fat diet (HFD, n = 20, 60% kcal from fat) for 4 weeks. The HFD mice were then divided into two groups, one of which received LT supplementation with water extract for 13 weeks [HFD (n = 10) or HFD with LT water extract (n = 10, 1.5%)]. LT reduced body and adipose tissue weight by elevating energy expenditure by increasing fatty oxidation in epididymal white adipose tissue (eWAT) and muscle. LT ameliorated dyslipidemia and hepatic steatosis by restricting lipogenesis. Additionally, LT normalized the impaired glucose homeostasis by diet-induced obesity to improve pancreatic islet dysfunction with increasing hepatic major urinary protein expression. Moreover, LT attenuated the inflammation and collagen accumulation in the liver and eWAT. In conclusion, these results suggest that LT can treat obesity-related metabolic disorders such as adiposity, dyslipidemia, hepatic steatosis, insulin resistance, and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号