首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vacuolar proton pumps acidify several intracellular membrane compartments in the endocytic pathway. We have examined the distribution of the vacuolar H+ ATPase in LLC-PK1 cells and the structure of the biosynthetically labeled enzyme in membrane fractions enriched for endosomes or lysosomes. LLC-PK1 cells were allowed to internalize cytochrome c-coated colloidal gold as a marker for endocytic compartments. Proton pumps were identified in these cells by staining the cells with a monoclonal antibody against the vacuolar pump detected with either immunogold or immunoperoxidase techniques. H+ ATPase labeling was seen on structures resembling endosomes and lysosomes, but not on Golgi or plasma membrane. To examine the structure of the H+ ATPase in these compartments, we labeled LLC-PK1 cells for 24 h with [35S]methionine and used a Percoll gradient to obtain fractions enriched for endosomes or lysosomes. H+ ATPase immunoprecipitated from both fractions with monoclonal anti-H+ ATPase antibodies had labeled polypeptides of 70, 56, and 31 kDa. On two-dimensional gels, a comparison of the H+ ATPase from the endosomal and lysosomal fractions revealed that the 70-, 56-, and 31-kDa subunits were similar in both fractions. The results show that the vacuolar H+ ATPase in these cells is distributed primarily in endosomes and lysosomes and that the structure of the enzyme is similar in both compartments.  相似文献   

2.
Vacuolar H+ ATPases participate in renal hydrogen ion secretion in both the proximal and distal nephron. These plasma membrane forms of the vacuolar H+ ATPase are regulated physiologically to maintain the acid-base balance of the organism. Proton transporting renal cells have requirements for constitutive acidification of intracellular compartments for normal endocytic and secretory functions. Recent experiments have begun to reveal how the kidney regulates these proton pumps independently. Vacuolar H+ ATPases are a family of structurally similar enzyme which differ in the composition of specific subunits. Cytosolic regulatory enzymes are present in renal cells which may affect vacuolar H+ ATPases in certain membrane compartments selectively. The vacuolar H+ ATPase in the plasma membrane of intercalated cells resides in a specialized proton-transporting apparatus that translocates the enzyme between an intracellular membrane pool and the plasma membrane in response to physiologic stimuli.This review will focus on the structure, enzymology, and regulation of the vacuolar H+ ATPase in the mammalian kidney. Because of space limitations, it will cover predominantly work from our laboratory. However, a number of investigators, including Brown (Brownet al., 1987, 1988a,b, 1989), Burckhardt (Sabolicet al., 1985; Turriniet al., 1989; Simon and Burckhardt, 1990), Madsen and Tisher (Madsen and Tisher, 1985; Verlanderet al., 1987, 1989). Steinmetz (Steinmetz, 1986; Stetson and Steinmetz, 1986), Schwartz (Scwartzet al., 1985, 1988; Satlin and Schwartz, 1989), Sabatini and Kurtzman (Sabatiniet al., 1990a,b), DuBose (Diaz-Diazet al., 1986; Gurich and DuBose, 1989), Al-Awqati (Van Adelsberg and Al-Awqati, 1986), and their coworkers, and many other investigators have made important contributions to this field.  相似文献   

3.
H+ transport driven by V H+-ATPase was found in membrane fractions enriched with ER/PM and Golgi/Golgi-like membranes of Saccharomyces cerevisiae efficiently purified in sucrose density gradient from the vacuolar membranes according to the determination of the respective markers including vacuolar Ca2+-ATPase, Pmc1::HA. Purification of ER from PM by a removal of PM modified with concanavalin A reduced H+ transport activity of P H+-ATPase by more than 75% while that of V H+-ATPase remained unchanged. ER H+ ATPase exhibits higher resistance to bafilomycin (I50 = 38.4 nM) than Golgi and vacuole pumps (I50 = 0.18 nM). The ratio between a coupling efficiency of the pumps in ER, membranes heavier than ER, vacuoles and Golgi is 1.0, 2.1, 8.5 and 14 with the highest coupling in the Golgi. The comparative analysis of the initial velocities of H+ transport mediated by V H+-ATPases in the ER, Golgi and vacuole membrane vesicles, and immunoreactivity of the catalytic subunit A and regulatory subunit B further supported the conclusion that V H+-ATPase is the intrinsic enzyme of the yeast ER and Golgi and likely presented by distinct forms and/or selectively regulated.  相似文献   

4.
The vacuolar membrane of plant cells is characterized by two proton pumps: the vacuolar H+-ATPase (V-ATPase; EC 3.6.1.3) and the vacuolar H+-PPase (V-PPase; EC 3.6.1.1). Recently, Du Pont and Morrissey reported that Ca2+ stimulates hydrolytic activity of purified V-ATPase (Arch. Biochim. Biophys., 1992. 294: 341–346). Since this effect may be due to degradation during purification further investigation of Ca2+ regulation of native V-ATPase was done. However, native tonoplast membranes contain a Ca2+/H+ antiport activity, which interferes with effects of calcium ions on proton transport activity of vacuolar ATPase. Therefore, the effects of anti-calmodulin drugs (W-7, W-5, calmidazolium), and calcium channel antagonists (Verapamil, Diltiazem) on proton transport activities of the vacuolar-type H+-ATPase and H+-PPase in tonoplast enriched membrane vesicle preparations from roots of Zea mays L. were studied. The concentrations for half maximal inhibition of vacuolar H+-ATPase (H+-PPase) were: 71 (191) μM W-7, 470 (> 800) μM W-5, 26 (24) μM calmidazolium (= compound R 24571). 398 (700) μM Verapamil, and 500 (1 330) μM Diltiazem. Estimation of Hill coefficients (nH) for the inhibition by Verapamil showed a further difference between the two vacuolar proton pumps (H+-ATPase, nH= 2.02; H+-PPase, nn= 0.96). The data indicate that the vacuolar H+-ATPase itself is affected by these chemicals. It is suggested that some biological activities of W-7, W-5, Verapamil, and Diltiazem are due to their effects on proton translocation by the vacuolar-type H+-ATPase.  相似文献   

5.
Comparative analysis of the transport activity of proton pumps (plasmalemma H+-ATPase, vacuolar H+-ATPase, and vacuolar H+-pyrophosphatase) in the membrane preparations obtained from coleoptile cells of etiolated maize seedlings (Zea mays L.) was carried out. The highest level of vacuolar pyrophosphatase activity was observed during the early development of coleoptile cells under growth intensification through the elongation. The role of ATPase pumps of tonoplast and plasmalemma in the transport of hydrogen ions increases during further development. The plasmalemma activity in this process is higher. When the growth stops, the activity of proton pumps becomes significantly lower. Nevertheless, their substrate specificity and sensitivity to proton pump inhibitors do not change, which can be an evidence of physiological significance of pumps in the maintenance of cell homeostasis.  相似文献   

6.
Proton-translocating ATPases of the vacuolar class (V-ATPases) are found in a variety of animal cell compartments that participate in vesicular membrane transport, including clathrin-coated vesicles, endosomes, the Golgi apparatus, and lysosomes. The exact structural relationship that exists among the V-ATPases of these intracellular compartments is not currently known. In the present study, we have localized the V-ATPase by light and electron microscopy, using monoclonal antibodies that recognize the V-ATPase present in clathrin-coated vesicles. Localization using light microscopy and fluorescently labeled antibodies reveals that the V-ATPase is concentrated in the juxtanuclear region, where extensive colocalization with the Golgi marker wheat germ agglutinin is observed. The V-ATPase is also present in approximately 60% of endosomes and lysosomes fluorescently labeled using alpha 2-macroglobulin as a marker for the receptor-mediated endocytic pathway. Localization using transmission electron microscopy and colloidal gold-labeled antibodies reveals that the V-ATPase is present at and near the plasma membrane, alone or in association with clathrin. These results provide evidence that the V-ATPases of plasma membrane, endosomes, lysosomes, and the Golgi apparatus are immunologically related to the V-ATPase of clathrin-coated vesicles.  相似文献   

7.
Tonoplast enriched membrane vesicle fractions were isolated from unadapted and NaCl (428 millimolar) adapted tobacco cells (Nicotiana tabacum L. var Wisconsin 38). Polypeptides from the tonoplast enriched vesicle fractions were separated by SDS-PAGE and analyzed by Western blots using polyclonal antibodies to the 70 kilodalton subunit of the red beet tonoplast H+-ATPase. These antibodies cross-reacted exclusively to a tobacco polypeptide of an apparent molecular weight of 69 kilodaltons. The antibodies inhibited ATP-dependent, NO3 sensitive H+ transport into vesicles in tonoplast enriched membrane fractions from both unadapted and NaCl adapted cells. The relative H+ transport capacity per unit of 69 kilodalton subunit of the tonoplast ATPase of vesicles from NaCl adapted cells was fourfold greater than that observed for vesicles from unadapted cells. The increase in specific H+ transport capacity after adaptation was also observed for ATP hydrolysis.  相似文献   

8.
Salicylic acid (SA) is a plant hormone involved in a number of physiological responses including both local and systemic resistance of plants to pathogens. In Arabidopsis, SA is glucosylated to form either SA 2‐O‐β‐d ‐glucose (SAG) or SA glucose ester (SGE). In this study, we show that SAG accumulates in the vacuole of Arabidopsis, while the majority of SGE was located outside the vacuole. The uptake of SAG by vacuolar membrane‐enriched vesicles isolated from Arabidopsis was stimulated by the addition of MgATP and was inhibited by both vanadate (ABC transporter inhibitor) and bafilomycin A1 (vacuolar H+‐ATPase inhibitor), suggesting that SAG uptake involves both an ABC transporter and H+‐antiporter. Despite its absence in the vacuole, we observed the MgATP‐dependent uptake of SGE by Arabidopsis vacuolar membrane‐enriched vesicles. SGE uptake was not inhibited by vanadate but was inhibited by bafilomycin A1 and gramicidin D providing evidence that uptake was dependent on an H+‐antiporter. The uptake of both SAG and SGE was also inhibited by quercetin and verapamil (two known inhibitors of multidrug efflux pumps) and salicin and arbutin. MgATP‐dependent SAG and SGE uptake exhibited Michaelis–Menten‐type saturation kinetics. The vacuolar enriched‐membrane vesicles had a 46‐fold greater affinity and a 10‐fold greater transport activity with SGE than with SAG. We propose that in Arabidopsis, SAG is transported into the vacuole to serve as a long‐term storage form of SA while SGE, although also transported into the vacuole, is easily hydrolyzed to release the active hormone which can then be remobilized to other cellular locations.  相似文献   

9.
Conditions for the dissociation and reassembly of the multi-subunit vacuolar proton-translocating ATPase (H+-ATPase) from oat roots (Avena sativa var Lang) were investigated. The peripheral sector of the vacuolar H+-ATPase is dissociated from the membrane integral sector by chaotropic anions. Membranes treated with 0.5 molar KI lost 90% of membrane-bound ATP hydrolytic activity; however, in the presence of Mg2+ and ATP, only 0.1 molar KI was required for complete inactivation of ATPase and H+-pumping activities. A high-affinity binding site for MgATP (dissociation constant = 34 micromolar) was involved in this destabilization. The relative loss of ATPase activity induced by KI, KNO3, or KCl was accompanied by a corresponding increase in the peripheral subunits in the supernatant, including the nucleotide-binding polypeptides of 70 and 60 kilodaltons. The order of effectiveness of the various ions in reducing ATPase activity was: KSCN > KI > KNO3 > KBr > K-acetate > K2SO4 > KCl. The specificity of nucleotides (ATP > GTP > ITP) in dissociating the ATPase is consistent with the participation of a catalytic site in destabilizing the enzyme complex. Following KI-induced dissociation of the H+-ATPase, the removal of KI and MgATP by dialysis resulted in restoration of activity. During dialysis for 24 hours, ATP hydrolysis activity increased to about 50% of the control. Hydrolysis of ATP was coupled to H+ pumping as seen from the recovery of H+ transport following 6 hours of dialysis. Loss of the 70 and 60 kilodalton subunits from the supernatant as probed by monoclonal antibodies further confirmed that the H+-ATPase complex had reassembled during dialysis. These data demonstrate that removal of KI and MgATP resulted in reassociation of the peripheral sector with the membrane integral sector of the vacuolar H+-ATPase to form a functional H+ pump. The ability to dissociate and reassociate in vitro may have implications for the regulation, biosynthesis, and assembly of the vacuolar H+-ATPase in vivo.  相似文献   

10.
We used a combination of subcellular fractionation and lactoperoxidase-mediated iodination to examine the polypeptide compositions of three hepatocyte endocytic compartments: early endosomes, late endosomes, and lysosomes. A chemical conjugate of asialoorosomucoid and lactoperoxidase which binds specifically to asialoglycoprotein receptors was perfused through isolated rat livers at 37 degrees C. Subcellular fractions enriched in various endocytic compartments were then isolated by differential and isopycnic centrifugation, and the lactoperoxidase moiety of the internalized conjugate was used to catalyze the iodination of lumenal-facing proteins. The 125I profiles of early and late endosomes were strikingly similar after gel electrophoresis. Using immunoprecipitation, we directly identified and compared the relative amounts of the Na+,K(+)-ATPase and several different acid hydrolases and membrane receptors in all three fractions. The asialoglycoprotein receptor and the low density lipoprotein related protein were approximately nine times more abundant in early endosomes than late endosomes, suggesting that they recycle from early endosomes. In addition, cathepsin D, but not cathepsin L, beta-glucuronidase, and lgp 120, was detected in early endosomes; however, all of these molecules were detected in lysosomes. Our findings provide strong evidence that early endosomes mature into late endosomes and that there is either selective delivery or selective retention of hydrolases at discrete points in the endocytic pathway.  相似文献   

11.
Clathrin-coated vesicles play an important role in both receptor-mediated endocytosis and intracellular membrane traffic in eukaryotic cells. The coated vesicle (H+)-ATPase functions to provide the acidic environment within endosomes and other intracellular compartments necessary for receptor recycling and intracellular membrane traffic. The coated vesicle (H+)-ATPase is composed of nine different subunits which are divided into two distinct domains. The peripheral V1 domain, which has the structure 733:583:401:341:331, possesses the nucleotide binding sites of the (H+)-ATPase. The integral V0 domain, which has the composition 1001:381:191:176, contains the pathway for proton conduction across the membrane. Topographical analysis indicates a structure for the coated vesicle (H+)-ATPase very similar to that of the F-type ATPases. Reassembly studies have allowed us to probe the function of particular subunits in this complex and the activity properties of the separate domains. These studies have led to insights into possible mechanisms of regulating vacuolar acidification.  相似文献   

12.
Bafilomycin A1, known as an inhibitor of vacuolar type H+-ATPase, was used to study involvement of the vacuolar ATP-dependent H+-pump in the vacuolar pH regulation in a fresh water charophyte, Chara corallina. When bafilomycin A1 (100 nM) was externally given to intact cells, the vacuolar pH (about 5) was not affected. Internodal cells were then pretreated with 100 nM bafilomycin for 1 ? 2 h and the vacuolar sap was replaced with a weakly buffered solution of pH 7.4. The readjustment of the modified vacuolar pH in bafilomycin-treated cells was significantly retarded compared with that in untreated cells. Next, bafilomycin A1 was directly introduced into the vacuole by vacuolar perfusion with the artificial cell sap of pH 7.4. At 100 nM bafilomycin A1, the decrease in the vacuolar pH was significantly inhibited. When cell sap was replaced with the artificial cell sap containing no buffer (pH 5.2 ? 5.5), the vacuolar pH increased in the presence of vacuolar bafilomycin, suggesting that the PP1- dependent H+ pumping alone was not sufficient for the pH regulation of Chara vacuoles. Intracellular bafilomycin A1 had no effect on the plasma membrane potential of tonoplast-free cells, which is evidence that it does not affect the electrogenic H+-pump in the plasma membrane. Bafilomycin A1 inhibited the ATP-dependent H+ transport of tonoplast vesicles but not the PP1-dependent H+ transport. The ATPase activity of tonoplast vesicles was also inhibited by bafilomycin A1.  相似文献   

13.
Ward JM  Sze H 《Plant physiology》1992,99(1):170-179
The vacuolar H+-translocating ATPase (H+-ATPase), originally reported to consist of three major subunits, has been further purified from oat roots (Avena sativa var Lang) to determine the complete subunit composition. Triton-solubilized ATPase activity was purified by gel filtration on Sephacryl S400 and ion-exchange chromatography (Q-Sepharose). ATP hydrolysis activity of purified preparations was inhibited by 100 nanomolar bafilomycin A1, a specific vacuolar-type ATPase inhibitor. The purified oat H+-ATPase (relative molecular weight = 650,000) was composed of polypeptides of 70, 60, 44, 42, 36, 32, 29, 16, 13, and 12 kilodaltons. To analyze the organization of the H+-ATPase subunits, native vacuolar membranes were treated with KI and MgATP to dissociate peripheral proteins. Release of 70, 60, 44, 42, 36, and 29 kilodalton polypeptides from the membrane was accompanied by a loss of ATP hydrolysis and ATP-dependent H+-pumping activities. Five of the peripheral subunits were released from the membrane as a large complex of 540 kilodaltons. Vesicles that had lost the peripheral sector of the ATPase could hold a pH gradient generated by the proton-translocating pyrophosphatase, suggesting that the integral sector of the ATPase did not form a H+-conducting pathway. Negative staining of native vesicles revealed knob-like structures of 10 to 12 nanometers in dense patches on the surface of vacuolar membranes. These structures were removed by MgATP and KI, which suggested that they were the peripheral sectors of the H+-ATPase. These results demonstrate that the vacuolar H+-ATPase from oat roots has 10 different subunits. The oat vacuolar ATPase is organized as a large peripheral sector and an integral sector with a subunit composition similar, although not identical to, other eukaryotic vacuolar ATPases. Variations in subunit composition observed among several ATPases support the idea that distinct types of vacuolar H+-ATPases exist in plants.  相似文献   

14.
Macrophages represent viral reservoirs in HIV-1-infected patients and accumulate viral particles within an endosomal compartment where they remain infectious for long periods of time. To determine how HIV-1 survives in endocytic compartments that become highly acidic and proteolytic and to study the nature of these virus-containing compartments, we carried out an ultrastructural study on HIV-1-infected primary macrophages. The endosomal compartments contain newly formed virions rather than internalized ones. In contrast to endocytic compartments free of viral proteins within the same infected cells, the virus containing compartments do not acidify. The lack of acidification is associated with an inability to recruit the proton pump vacuolar ATPase into the viral assembly compartment. This may prevent its fusion with lysosomes, since acidification is required for the maturation of endosomes. Thus, HIV-1 has developed a strategy for survival within infected macrophages involving prevention of acidification within a devoted endocytic virus assembly compartment.  相似文献   

15.
The water permeability of the kidney collecting duct epithelium is regulated by vasopressin (VP)-induced recycling of water channels between an intracellular vesicular compartment and the plasma membrane of principal cells. To test whether the water channels pass through an acidic endosomal compartment during the endocytic portion of this pathway, we measured ATP-dependent acidification of FITC-dextran-labeled endosomes in isolated microsomal fractions from different regions of Brattleboro rat kidneys. Both VP-deficient controls and rat treated with exogenous VP were examined. ATP-dependent acidification was not detectable in endosomes containing water channels from distal papilla (osmotic water permeability Pf = 0.038 +/- 0.004 cm/s). In contrast, the addition of ATP resulted in a strong acidification of renal cortical endosomes (pHmin = 5.8, initial rate = 0.18-0.25 pH U/s). Acidification of cortical endosomes was reversed with nigericin and strongly inhibited by N-ethyl-maleimide. Passive proton permeability was similar and low in both cortical and papillary endosomes from rats treated or not treated with VP. The fraction of labeled endosomes present in microsomal preparations was determined by fluorescence imaging microscopy of microsomes nonspecifically bound to poly-l-lysine-coated coverslips and was 25% in cortical preparations compared to 14% (+VP) and 9% (-VP) in papillary preparations. The fraction of cortical endosomes was enriched 1.5-fold by immunoabsorption to coverslips coated with mAbs against the bovine vacuolar proton pump. In contrast, the fraction of papillary endosomes was depleted more than twofold by immunoabsorption to identical coverslips. Finally, sections of distal papilla stained with antibodies against the lysosomal glycoprotein LGP120 showed that most of the entrapped FITC-dextran did not colocalize with this lysosomal protein. These results demonstrate that vesicles which internalize water channels in kidney collecting duct principal cells lack functional proton pumps, and do not deliver the bulk of their FITC-dextran content to lysosomes. The data suggest that the principal cell contains a specialized nonacidic apical endocytic compartment which functions primarily to recycle membrane components, including water channels, to the plasma membrane.  相似文献   

16.
Bafilomycin A1, a specific inhibitor of the vacuolar-type H+-ATPase, responsible for acidification of intra-cellular compartments, prevents the vacuolization of Hela cells induced by H. pylori, with an inhibitory concentration giving 50% of maximal (ID50) of 4 nM. Bafilomycin A1 is also very efficient in restoring vacuolated cells to a normal appearance. The vacuolating activity of Helicobacter pylori is not inhibited by a series of specific inhibitors of vacuolar H+-ATPases. These findings indicate that a transmembrane pH gradient is needed for the formation and growth of vacuoles caused by the bacterium and that this pH gradient is due to the activity of a vacuolar ATPase proton pump of HeLa cells.  相似文献   

17.
Large-scale preparation of highly purified tonoplast from cucumber (Cucumis sativus L.) roots was obtained after centrifugation of microsome pellet (10,000 – 80,000 g) on discontinuous sucrose density gradient (20, 28, 32 and 42 %). Lack of PEP carboxylase (cytosol marker) and cytochrome c oxidase (mitochondrial marker) together with a slight activity of VO4-ATPase (plasma membrane marker) and NADH-cytochrome c reductase (ER marker) in tonoplast preparation confirmed its high purity. Using latency of nitrate-inhibited ATPase and H+ pumping as criteria it was established that the majority of tonoplast vesicles were sealed and oriented right(cytoplasmic)-side-out. Strong acidification of the interior of vesicles observed at the presence of both, ATP and PPi, confirmed that obtained tonoplast contains two classes of proton pumps: V-ATPase and H+PPiase. To examine and characterise of proton-transport systems in tonoplast, the effect of various inhibitors on H+ pumping and hydrolytic activities of ATPase and PPiase were measured. ATP-dependent activities (H+ flux and ATP hydrolysis) were specifically decreased by nitrate and bafilomycin A1, whereas the PPiase activities were reduced in the presence of fluoride and Na+ ions. Both enzymes showed a similar sensitivity to DCCD and DES. The results of experiments with KCl and NaCl suggested that the vacuolar ATPase was stimulated by Cl, whereas the vacuolar Ppiase requires K+ ions for its activity.  相似文献   

18.
Endocytosed proteins are sorted in early endosomes to be recycled to the plasma membrane or transported further into the degradative pathway. We studied the role of endosomes acidification on the endocytic trafficking of the transferrin receptor (TfR) as a representative for the recycling pathway, the cation-dependent mannose 6-phosphate receptor (MPR) as a prototype for transport to late endosomes, and fluid-phase endocytosed HRP as a marker for transport to lysosomes. Toward this purpose, bafilomycin A1 (Baf), a specific inhibitor of the vacuolar proton pump, was used to inhibit acidification of the vacuolar system. Microspectrofluorometric measurement of the pH of fluorescein-rhodamine-conjugated transferrin (Tf)-containing endocytic compartments in living cells revealed elevated endosomal pH values (pH > 7.0) within 2 min after addition of Baf. Although recycling of endocytosed Tf to the plasma membrane continued in the presence of Baf, recycled Tf did not dissociate from its receptor, indicating failure of Fe3+ release due to a neutral endosomal pH. In the presence of Baf, the rates of internalization and recycling of Tf were reduced by a factor of 1.40 +/- 0.08 and 1.57 +/- 0.25, respectively. Consequently, little if any in TfR expression at the cell surface was measured during Baf treatment. Sorting between endocytosed TfR and MPR was analyzed by the HRP-catalyzed 3,3'- diaminobenzidine cross-linking technique, using transferrin conjugated to HRP to label the endocytic pathway of the TfR. In the absence of Baf, endocytosed surface 125I-labeled MPR was sorted from the TfR pathway starting at 10 min after uptake, reaching a plateau of 40% after 45 min. In the presence of Baf, sorting was initiated after 20 min of uptake, reaching approximately 40% after 60 min. Transport of fluid-phase endocytosed HRP to late endosomes and lysosomes was measured using cell fractionation and immunogold electron microscopy. Baf did not interfere with transport of HRP to MPR-labeled late endosomes, but nearly completely abrogated transport to cathepsin D- labeled lysosomes. From these results, we conclude that trafficking through early and late endosomes, but not to lysosomes, continued upon inactivation of the vacuolar proton pump.  相似文献   

19.
Anion-sensitive, h-pumping ATPase in membrane vesicles from oat roots   总被引:20,自引:18,他引:2       下载免费PDF全文
H+-pumping ATPases were detected in microsomal vesicles of oat (Avena sativa L. var Lang) roots using [14C]methylamine distribution or quinacrine fluorescent quenching. Methylamine (MeA) accumulation into vesicles and quinacrine quench were specifically dependent on Mg,ATP. Both activities reflected formation of a proton gradient (ΔpH) (acid inside) as carbonyl cyanide m-chlorophenylhydrazone, nigericin (in the presence of K+), or gramicidin decreased MeA uptake or increased quinacrine fluorescence. The properties of H+ pumping as measured by MeA uptake were characterized. The Kmapp for ATP was about 0.1 millimolar. Mg,GTP and Mg, pyrophosphate were 19% and 30% as effective as Mg,ATP. MeA uptake was inhibited by N,N′-dicyclohexylcarbodiimide and was mostly insensitive to oligomycin, vanadate, or copper. ATP-dependent MeA was stimulated by anions with decreasing order of potency of Cl > Br > NO3 > SO42−, iminodiacetate, benzene sulfonate. Anion stimulation of H+ pumping was caused in part by the ability of permeant anions to dissipate the electrical potential and in part by a specific requirement of Cl by a H+ -pumping ATPase. A pH gradient, probably caused by a Donnan potential, could be dissipated by K+ in the presence or absence of ATP. MeA uptake was enriched in vesicles of relatively low density and showed a parallel distribution with vanadate-insensitive ATPase activity on a continuous dextran gradient. ΔpH as measured by quinacrine quench was partially vanadate-sensitive. These results show that plant membranes have at least two types of H+ -pumping ATPases. One is vanadate-sensitive and probably enriched in the plasma membrane. One is vanadate-resistant, anion-sensitive and has many properties characteristic of a vacuolar ATPase. These results are consistent with the presence of electrogenic H+ pumps at the plasma membrane and tonoplast of higher plant cells.  相似文献   

20.
To determine which endocytic compartments are sensitive to sucrose-induced osmotic swelling, CHO and Vero cells were cultured for 1-3 days in media containing 0.03 to 0.05 M sucrose. (Sucrose is internalized but not digested by these cells.) To immunolocalize late endocytic compartments, cells were fixed with formaldehyde and labeled with antibodies against the 215-kDa mannose 6-phosphate receptor (prelysosomal compartment) and LAMP-1 and -2 (mature lysosomes). Early endosomes were labeled by a 2-min uptake of lucifer yellow, mature lysosomes by greater than or equal to 16-h uptake of lucifer yellow followed by a 2-h chase. The data showed that sucrose induced swelling of mature lysosomes only (mannose 6-phosphate receptor negative, LAMP-1 and LAMP-2 positive); early endosomes and the prelysosomal compartment were not affected by the presence of sucrose, i.e., osmotically swollen. Accumulation of lucifer yellow in the swollen compartment was insensitive to cycloheximide. These results suggest, by inference, that the complement of membrane transport proteins that regulate the osmotic properties of endocytic organelles must be discontinuously distributed along the endocytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号