首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Inactivation of the retinoblastoma gene appears to have a fundamental role in the genesis of retinoblastoma, osteosarcoma, and other malignant tumors. The gene is generally inactivated because of loss-of-function mutations, although epigenetic phenomena, such as hypermethylation of the promoter region, could possibly have the same effect. We investigated the methylation pattern at the 5' end of the retinoblastoma gene, including its promoter region and exon 1, in DNA purified from 56 primary retinoblastomas. We found five tumors with evidence for hypermethylation, all from unilateral, simplex patients. No methylation abnormalities were detected in DNA purified from the leukocytes from these patients. It is interesting that in one of these tumors the hypermethylation was confined to one allele. There were no mutations in a 1,306-bp sequence including the hypermethylated region that might account for the allele-specific hypermethylation. We believe that the hypermethylation of the retinoblastoma gene that we found in these tumors corresponds to the allelic inactivation of the gene, and we speculate that erroneous hypermethylation without alteration of nucleotide sequence occasionally plays a role in the genesis of this cancer. If this is true, then retinoblastomas with hypermethylation might be treatable with chemotherapeutic agents that interfere with methylation of DNA.  相似文献   

2.
Studies on the human retinoblastoma susceptibility gene   总被引:5,自引:0,他引:5  
The retinoblastoma susceptibility (RB) gene is unique among other cloned cancer genes because its causal role in a human cancer, retinoblastoma, was established by classical genetic methods before its isolation. Earlier hypotheses and experimental data suggested that inactivation of a gene in chromosome band 13q14 resulted in retinoblastoma formation. A gene in this region was identified as the RB gene on the basis of mutations found specifically in retinoblastoma tumors; however, its proposed biological activity in suppressing neoplasia has yet to be demonstrated. The RB gene product was identified as a nuclear phosphoprotein of 110 kD associated with DNA binding activity, suggesting that the RB protein may regulate other genes. Probes for the RB gene and gene product will be useful for genetic diagnosis of retinoblastoma susceptibility in affected families; for direct detection of mutant RB alleles; and, potentially, for genetic diagnosis of susceptibility to osteosarcoma and other tumors tentatively linked to RB-gene dysfunction. Continued study of the RB gene should yield further insight into mechanisms of oncogenesis, development, and gene regulation.  相似文献   

3.
4.
TWIST and adenomatosis polyposis coli (APC) are critical signaling factors in normal bone development. In previous studies examining a homogeneously treated cohort of pediatric osteosarcoma patients, we reported the frequent and concurrent loss of both TWIST and APC genes. On these bases, we created a related animal model to further explore the oncogenic cooperation between these two genes. We performed intercrosses between twist-null/+ and Apc1638N/+ mice and studied their progeny. The Apc1638N/+;twistnull/+ mice developed bone abnormalities observed by macroscopic skeletal analyses and in vivo imaging. Complementary histologic, cellular, and molecular analyses were used to characterize the identified bone tumors, including cell culture and immunofluorescence of bone differentiation markers. Spontaneous localized malignant bone tumors were frequently identified in Apc1638N/+;twist-null/+ mice by in vivo imaging evaluation and histologic analyses. These tumors possessed several features similar to those observed in human localized osteosarcomas. In particular, the murine tumors presented with fibroblastic, chondroblastic, and osteoblastic osteosarcoma histologies, as well as mixtures of these subtypes. In addition, cellular analyses and bone differentiation markers detected by immunofluorescence on tumor sections reproduced most murine and human osteosarcoma characteristics. For example, the early bone differentiation marker Runx2, interacting physically with hypophosphorylated pRb, was undetectable in these murine osteosarcomas, whereas phosphorylated retinoblastoma was abundant in the osteoblastic and chondroblastic tumor subtypes. These characteristics, similar to those observed in human osteosarcomas, indicated that our animal model may be a powerful tool to further understand the development of localized osteosarcoma.  相似文献   

5.
Summary The retinoblastoma (RB1) gene is a ubiquitously expressed gene encoding a cell-cycle control protein. Inactivation of this gene plays a crucial role in the development of retinoblastoma, osteosarcoma, and other tumors. In a search for structurally related gene sequences we identified a 5.5-kb BamHI fragment strongly cross-hybridizing with the 5 end of the RB1 cDNA. Molecular cloning, in situ hybridization, restriction mapping, and sequence analysis identified this DNA segment as the 28S rRNA gene. The absence of other cross-hybridizing sequences suggests that the RB1 gene is not part of a structurally related gene family.  相似文献   

6.
7.
8.
目的:研究骨肿瘤端粒长度变化与端粒结合蛋白即端粒重复结合因子1(TRF1)和端粒保护因子(POT1),端粒酶催化亚单位(hTERT),肿瘤相关基因P53、c-myc表达的关系,以了解骨肿瘤的分子特征。方法:采用免疫组织化学、端粒定量荧光原位杂交(Telo-FISH)和原位杂交检测了20例骨肉瘤、25例软骨肉瘤、14例骨的纤维结构不良中端粒长度、TRF1、POT1、hTERT、P53、c-myc的表达情况,并进行统计分析。结果:20例骨肉瘤平均长度为0.31,25例软骨肉瘤为0.41,14例骨的纤维结构不良为0.52。统计显示三者间端粒长度有显著差异(P<0.05)。骨肉瘤和软骨肉瘤TRF1、POT1阳性率均显著低于骨纤维结构不良(P<0.05)。而骨肉瘤和软骨肉瘤hTERT基因表达显著高于骨纤维结构不良(P<0.05)。骨肉瘤、软骨肉瘤P53、c-myc阳性率高于骨纤维结构不良(P<0.05)。统计分析骨肿瘤端粒长度变化与端粒结合蛋白TRF1、POT1的表达呈负相关性,与端粒酶hTERT基因表达、与P53蛋白核聚积,以及c-myc癌基因表达呈正相关性。结论:骨肿瘤端粒长度与恶性表型有关、端粒短缩与肿瘤基因突变相关。  相似文献   

9.
Carcinoembryonic antigen related cell adhesion molecule 1 (CEACAM1) is a trans-membrane multifunctional cell adhesion molecule associated with tumor cell proliferation, apoptosis, angiogenesis, invasion, and migration during tumor development. In the present study, we evaluated serum CEACAM1 level in osteosarcoma patients to explore its diagnostic and prognostic value for this particular malignancy. Sera from 113 patients with primary osteosarcoma, 98 patients with benign bone tumors and 126 healthy controls were obtained. Serum CEACAM1 level was measured with ELISA and correlation with clinicopathological characteristics was further analyzed. Receiver operating curves (ROC), Kaplan-Meier curves, and log-rank analyses as well as Cox proportional hazard models were used to evaluate diagnostic and prognostic significance. The results revealed that serum CEACAM1 level was significantly higher in osteosarcoma patients compared to benign bone tumors and healthy controls (455.2 ± 179.9 vs 287.4 ± 103.2, 260.8 ± 109.7 pg/ml, respectively). Osteosarcoma patients with larger tumors, later-tumor stages, low tumor grades, and distant metastases had much higher CEACAM1 compared to those with smaller tumors, earlier tumor stages, high tumor grades and non-distant metastases (P < 0.05 for all). Multivariate logistic regression analysis confirmed that high serum CEACAM1 level was an independent risk factor for distant metastases (OR = 3.02, 95%CI 1.65–4.17). To distinguish osteosarcoma patients from those with benign bone tumor and healthy controls, ROC/AUC analysis indicated an AUC of 0.81 (sensitivity 0.61; specificity 0.89) and an AUC of 0.77 (sensitivity 0.57; specificity 0.92), respectively. Osteosarcoma patients with higher CEACAM1 had relatively lower survival compared to those with low CEACAM1 (P < 0.01), and multivariate analyses for overall survival revealed that high serum CEACAM1 level was an independent prognostic factor for osteosarcoma (HR = 1.56, 95%CI 1.23–3.28). The present study suggested that elevated serum CEACAM1 level might be a novel diagnostic and prognostic biomarker for osteosarcoma patients.  相似文献   

10.
Osteosarcoma is the most common form of primary bone cancer. In this study, we established a human osteosarcoma cell line (OS 99-1) from a highly aggressive primary tumor. G-banding karyotype analysis demonstrated a large number of clonal abnormalities, as well as extensive intercellular heterogeneity. Through the use of immunologic, molecular, and biochemical analyses, we characterized protein and gene expression profiles confirming the osteogenic nature of the cells. Further evaluation indicated that OS 99-1 cells maintain the capacity to differentiate in an in vitro mineralization assay as well as form tumors in the in vivo chicken embryo model. This cell line provides a useful tool to investigate the molecular mechanisms contributing to osteosarcoma and may have the potential to serve as a culture system for studies involving bone physiology.  相似文献   

11.
Almost all tumors are characterized by both architectural and cellular abnormalities in differentiation. Osteoblast development is relatively well understood, making osteosarcoma a good model for understanding how tumorigenesis perturbs normal differentiation. We argue that there are two key transition points in normal cellular differentiation that are the focus of oncogenic events, in both of which epigenetic processes are critical. The first is the transition from an uncommitted pluripotent precursor (mesenchymal stem cell) to the 'transit-amplifying compartment' of the osteoblast lineage. This transition, normally exquisitely regulated in space and time, is abnormal in cancer. The second involves termination of lineage expansion, equally tightly regulated under normal circumstances. In cancer, the mechanisms that mandate eventual cessation of cell division are almost universally disrupted. This model predicts that key differentiation genes in bone, such as RUNX2, act in an oncogenic fashion to initiate entry into a proliferative phase of cell differentiation, and anti-oncogenically into the post-mitotic state, resulting in ambivalent roles in tumorigenesis. Polycomb genes exemplify epigenetic processes in the stem cell compartment and tumorigenesis, and are implicated in skeletal development in vivo. The epigenetic functions of the retinoblastoma protein, which plays a key role in tumorigenesis in bone, is discussed in the context of terminal cell cycle exit.  相似文献   

12.
A heritable mutation predisposes an individual to certain childhood malignancies, such as retinoblastoma and Wilms' tumor. The chromosomal locations of the genes responsible for the predisposition are known by linkage with chromosomal deletions and enzyme markers. A study of these tumors in comparison to the normal constitutional cells of the patients, using enzyme and DNA markers near the predisposing genes, has shown that these genes are recessive to normal wild-type alleles at the cellular level. Expression of the recessive phenotype (malignancy) involves the same genetic events that were observed in Chinese hamster cell hybrids carrying recessive drug resistance genes. In both the experimental and clinical situations, the wild-type allele is most commonly eliminated by chromosome loss with duplication of the mutant chromosome. Simple chromosome loss and mitotic recombination have been documented in both systems. In the remaining 30% of cases, inactivation or microdeletion of the wild-type allele are assumed to be responsible for expression of the recessive phenotype. Osteosarcoma is a common second tumor in patients who have had retinoblastoma. Studies with markers in osteosarcoma show that these tumors also result from unmasking of the recessive phenotype by loss of the normal allele at the retinoblastoma locus, whether or not the patient had retinoblastoma. Subsequent chromosomal rearrangements and amplification of oncogenes that occur in these homozygous tumors provide progressive growth advantage. In other malignancies, in which studies have so far focused on oncogene amplification and chromosomal rearrangements, unmasking of recessive mutations may also be the critical initiating events.  相似文献   

13.
Mutation of the retinoblastoma (RB) tumor suppressor gene is strongly linked to osteosarcoma formation. This observation and the documented interaction between the retinoblastoma protein (pRb) and Runx2 suggests that pRb is important in bone development. To assess this hypothesis, we used a conditional knockout strategy to generate pRb-deficient embryos that survive to birth. Analysis of these embryos shows that Rb inactivation causes the abnormal development and impaired ossification of several bones, correlating with an impairment in osteoblast differentiation. We further show that Rb inactivation acts to promote osteoblast differentiation in vitro and, through conditional analysis, establish that this occurs in a cell-intrinsic manner. Although these in vivo and in vitro differentiation phenotypes seem paradoxical, we find that Rb-deficient osteoblasts have an impaired ability to exit the cell cycle both in vivo and in vitro that can explain the observed differentiation defects. Consistent with this observation, we show that the cell cycle and the bone defects in Rb-deficient embryos can be suppressed by deletion of E2f1, a known proliferation inducer that acts downstream of Rb. Thus, we conclude that pRb plays a key role in regulating osteoblast differentiation by mediating the inhibition of E2F and consequently promoting cell cycle exit.  相似文献   

14.
15.
The retinoblastoma gene, RB1, is frequently inactivated in a subset of tumors, including retinoblastoma and osteosarcoma (OS). One characteristic of OS, as well as other tumors in which RB1 is frequently inactivated, is the lack of N-cadherin-mediated cell-cell adhesions. The frequent inactivation of RB1 and parallel loss of N-cadherin expression in OS prompted us to ask whether these observations are directly related to each other. In this study, we observed reduced N-cadherin expression in RB1(-/-) calvarial osteoblasts. In addition, RB1(-/-) cell lines had increased migration potential compared to their RB1(+/+) counterparts. These properties of RB1(-/-) cell lines correlated with an adipogenic potential lacking in RB1(+/+) cell lines, suggesting that each property is present in an immature progenitor cell. The isolation of a cell population with low surface expression of N-cadherin and enhanced adipogenic ability supports this view. Interestingly, the acute loss of pRb does not affect N-cadherin expression or migration or confer adipogenic potential to immortalized RB1(+/+) calvarial cells, suggesting that these traits are not a direct consequence of pRb loss; rather, pRb loss leads to the expansion and immortalization of an immature progenitor pool characterized by these properties.  相似文献   

16.
Osteosarcoma is a high-grade malignant bone tumor that manifests ingravescent clinical behavior. The intrinsic events that confer malignant properties on osteosarcoma cells have remained unclear, however. We previously established two lines of mouse osteosarcoma cells: AX cells, which are able to form tumors in syngeneic mice, and AXT cells, which were derived from such tumors and acquired an increased tumorigenic capacity during tumor development. We have now identified Igf2 mRNA-binding protein3 (Imp3) as a key molecule responsible for this increased tumorigenicity of AXT cells in vivo. Imp3 is consistently up-regulated in tumors formed by AX cells, and its expression in these cells was found to confer malignant properties such as anchorage-independent growth, loss of contact inhibition, and escape from anoikis in vitro. The expression level of Imp3 also appeared directly related to tumorigenic ability in vivo which is the critical determination for tumor-initiating cells. The effect of Imp3 on tumorigenicity of osteosarcoma cells did not appear to be mediated through Igf2-dependent mechanism. Our results implicate Imp3 as a key regulator of stem-like tumorigenic characteristics in osteosarcoma cells and as a potential therapeutic target for this malignancy.  相似文献   

17.
Circular RNAs (circRNAs) are recently emerged to be promising therapeutic targets of tumors. Osteosarcoma is the most prevalent primary bone tumor and the third most prevalent cancer in children and adolescents. This study firstly analyzed circRNA microarray of osteosarcoma and selected circ-0001785 as the study object. We aimed to comprehensively investigate the expression pattern and biological function of circ-0001785 in the progression of osteosarcoma. Relative levels of circ-0001785 and miR-1200 in the normal human osteoblast cell line and osteosarcoma cell lines were determined. Bioinformatics analyses predicted the binding relationship between miR-1200 to HOXB2 and circ-0001785, while dual-luciferase reporter gene assay further verified this relationship. Flow cytometry and EdU assay were used for evaluating the regulatory effects of circ-0001785/miR-1200/HOXB2 axis on osteosarcoma cells. Consistent with the microarray analysis, circ-0001785 was highly expressed in osteosarcoma cell lines. Knockdown of circ-0001785 attenuated proliferative ability, but induced the apoptosis of osteosarcoma cells. Furthermore, we confirmed that circ-0001785 competitively bound to miR-1200, thus up-regulating its target gene HOXB2. Western blot analyses revealed that circ-0001785 regulated the PI3K/Akt signaling and Bcl-2 family pathway in osteosarcoma. In conclusion, circ-0001785 regulates the pathogenesis of osteosarcoma by sponging miR-1200 to up-regulate HOXB2 expression.  相似文献   

18.
Summary Epigenetic models for tumor formation assume that oncogenic transformation results from changes in the activity of otherwise normal genes. Since gene activity can be inhibited by DNA methylation, and inactivation of tumor suppressor genes is a fundamental process in oncogenesis, we investigated the methylation status of the retinoblastoma suppressor gene (RB gene) on chromosome 13, in blood and tumor cells from 21 retinoblastoma patients. Using methylation-sensitive restriction enzymes and a cloned DNA probe for the unmethylated CpG island at the 5 end of RB gene, we obtained evidence of hypermethylation of this gene in a sporadic unilateral retinoblastoma tumor. The closely linked esterase D gene and a CpG-rich island on chromosome 15 were not affected. We suggest that changes in the methylation pattern of the RB gene play a role in the development and spontaneous regression of some retinoblastoma tumors.  相似文献   

19.
Osteosarcoma is a rare malignant bone tumor most commonly occurring in children and young adults presenting with painful swelling. Various etiological factors for osteosarcoma are ionizing radiation, family history of bone disorders and cancer, chemicals (fluoride, beryllium, and vinyl chloride), and viruses. Status of fluoride levels in serum of osteosarcoma is still not clear. Recent reports have indicated that there is a link between fluoride exposure and osteosarcoma. Glycoproteins and glycosaminoglycans are an integral part of bone and prolonged exposure to fluoride for long duration has been shown to cause degradation of collagen and ground substance in bones. The present study was planned to analyze serum fluoride, sialic acid, calcium, phosphorus, and alkaline phosphatase levels in 25 patients of osteosarcoma and age- and sex-matched subjects with bone-forming tumours other than osteosarcoma and musculo-skeletal pain (controls, 25 each). Fluoride levels were analyzed by ISE and sialic acid was analyzed by Warren’s method. Mean serum fluoride concentration was found to be significantly higher in patients with osteosarcoma as compared to the other two groups. The mean value of flouride in patients with other bone-forming tumors was approximately 50% of the group of osteosarcoma; however, it was significantly higher when compared with patients of group I. Serum sialic acid concentration was found to be significantly raised in patients with osteosarcoma as well as in the group with other bone-forming tumors as compared to the group of controls. There was, however, no significant difference in the group of patients of osteosarcoma when compared with group of patients with other bone-forming tumors. These results showing higher level of fluoride with osteosarcoma compared to others suggesting a role of fluoride in the disease.  相似文献   

20.
The retinoblastoma susceptibility gene (RB) product, the retinoblastoma protein (pRb), functions as a regulator of cell proliferation. Introduction of the RB gene into SAOS-2 osteosarcoma cells, which lack functional pRb, prevents cell cycle progression. Such growth-suppressive functions can be modulated by phosphorylation of pRb, which occurs via cell cycle-regulated kinases. We show that constitutively expressed cyclins A and E can overcome pRb-mediated suppression of proliferation. pRb becomes hyperphosphorylated in cells overexpressing these cyclins, and this phosphorylation is essential for cyclin A- and cyclin E-mediated rescue of pRb-blocked cells. This suggests that G1 and S phase cyclins can act as regulators of pRb function in the cell cycle by promoting pRb phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号