首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Wood  J Luirink    D Tollervey 《Nucleic acids research》1992,20(22):5919-5925
E.coli 4.5S RNA is homologous to domain IV of eukaryotic SPR7S RNA, the RNA component of the signal recognition particle. The 4.5S RNA is associated in vivo with a 48kD protein (P48), which is homologous to a protein component of the signal recognition particle, SRP54. In addition to secondary structural features, a number of nucleotides are conserved between the 4.5S RNA and domain IV of all other characterised SRP-like RNAs from eubacteria, arachaebacteria and eukaryotes. This domain consists of an extended stem-loop structure; conserved nucleotides lie within the terminal loop and within single-stranded regions bulged from the stem immediately preceding the loop. This conserved region is a candidate for the SRP54/P48 binding site. To determine the functional importance of this region within the 4.5S RNA, mutations were introduced into the 4.5S RNA coding sequence. Mutated alleles were tested for their function in vivo and for the ability of the corresponding RNAs to bind P48 in vitro. Single point mutations in conserved nucleotides within the terminal tetranucleotide loop do not affect P48 binding in vitro and produce only slight growth defects. This suggests that the sequence of the loop may be important for the structure of the molecule rather than for specific interactions with P48. On the other hand, nucleotides within the single-stranded regions bulged from the stem were found to be important both for the binding of P48 to the RNA and for optimal function of the RNA in vivo.  相似文献   

2.
The signal recognition particle (SRP) is a ribonucleoprotein complex responsible for targeting proteins to the endoplasmic reticulum in eukarya or to the inner membrane in prokarya. The crystal structure of the universally conserved RNA-protein core of the Escherichia coli SRP, refined here to 1.5 A resolution, revealed minor groove recognition of the 4.5 S RNA component by the M domain of the Ffh protein. Within the RNA, nucleotides comprising two phylogenetically conserved internal loops create a unique surface for protein recognition. To determine the energetic importance of conserved nucleotides for SRP assembly, we measured the affinity of the M domain for a series of RNA mutants. This analysis reveals how conserved nucleotides within the two internal loop motifs establish the architecture of the macromolecular interface and position essential functional groups for direct recognition by the protein.  相似文献   

3.
The signal recognition particle (SRP) initiates the co-translational targeting of proteins to the plasma membrane in bacteria by binding to the N-terminal signal sequence emerging from the translating ribosome. SRP in Escherichia coli is composed of one protein, Ffh, and 4.5S RNA. In the present work, we probe the structure of Ffh alone and in the complex with 4.5S RNA by measuring distances between different positions within Ffh and between Ffh and 4.5S RNA by fluorescence resonance energy transfer (FRET). According to the FRET distances, NG and M domains in free Ffh are in close contact, as in the A/A arrangement in the crystal structure of Ffh from Thermus aquaticus, in agreement with the formation of a crosslink between cysteine residues at two critical positions in the G and M domains. Upon Ffh binding to 4.5S RNA or a 61 nucleotide fragment comprising internal loops A-C, the G and M domains move apart to assume a more open conformation, as indicated by changes of FRET distances. The movement is smaller when Ffh binds to a 49 nucleotide fragment of 4.5S RNA comprising only internal loops A and B, i.e. lacking the binding site of the NG domain. The FRET results suggest that in the SRP complex 4.5S RNA is present in a bent, rather than extended, conformation. The domain rearrangement of Ffh that takes place upon formation of the SRP is probably important for subsequent steps of membrane targeting, including interactions with the translating ribosome and the SRP receptor.  相似文献   

4.
Structure of the phylogenetically most conserved domain of SRP RNA   总被引:2,自引:2,他引:0       下载免费PDF全文
The signal recognition particle (SRP) is a phylogenetically conserved ribonucleoprotein required for cotranslational targeting of proteins to the membrane of the endoplasmic reticulum of the bacterial plasma membrane. Domain IV of SRP RNA consists of a short stem-loop structure with two internal loops that contain the most conserved nucleotides of the molecule. All known essential interactions of SRP occur in that moiety containing domain IV. The solution structure of a 43-nt RNA comprising the complete Escherichia coli domain IV was determined by multidimensional NMR and restrained molecular dynamics refinement. Our data confirm the previously determined rigid structure of a smaller subfragment containing the most conserved, symmetric internal loop A (Schmitz et al., Nat Struct Biol, 1999, 6:634-638), where all conserved nucleotides are involved in nucleotide-specific structural interactions. Asymmetric internal loop B provides a hinge in the RNA molecule; it is partially flexible, yet also uniquely structured. The longer strand of internal loop B extends the major groove by creating a ledge-like arrangement; for loop B however, there is no obvious structural role for the conserved nucleotides. The structure of domain IV suggests that loop A is the initial site for the RNA/protein interaction creating specificity, whereas loop B provides a secondary interaction site.  相似文献   

5.
Signal recognition particle (SRP) is a ribonucleoprotein composed of six polypeptides and a single RNA molecule. SRP RNA can be divided into four structural domains, the last of which is the most highly conserved and, in Schizosaccharomyces pombe, is the primary location to which deleterious mutations map. The ability of mammalian SRP54 protein (SRP54p) to bind Escherichia coli 4.5S RNA, a homolog of SRP RNA which contains only domain IV, suggested that SRP54p might interact directly with this region. To determine whether domain IV is critical for SRP54p binding in fission yeast cells, we used a native immunoprecipitation-RNA sequencing assay to test 13 mutant SRP RNAs for the ability to associate with the protein in vivo. The G156A mutation, which alters the 5' residue of the noncanonical first base pair of the domain IV terminal helix and confers a mild conditional growth defect, reduces assembly of the RNA with SRP54p. Mutating either of the two evolutionarily invariant residues in the bulged region 5' to G156 is more deleterious to growth and virtually abolishes SRP54p binding. We conclude that the conservation of nucleotides 154 to 156 is likely to be a consequence of their role as a sequence-specific recognition element for the SRP54 protein. We also tested a series of mutants with nucleotide substitutions in the conserved tetranucleotide loop and adjoining stem of domain IV. Although tetraloop mutations are deleterious to growth, they have little effect on SRP54p binding. Mutations which disrupt the base pair flanking the tetraloop result in conditional growth defects and significantly reduce association with SRP54p. Disruption of the other two base pairs in the short stem adjacent to the tetranucleotide loop has similar but less dramatic effects on SRP54p binding. These data provide the first evidence that both sequence-specific contacts and the structural integrity of domain IV of SRP RNA are important for assembly with SRP54p.  相似文献   

6.
E. coli 4.5S RNA and P48 have been shown to be homologous to SRP7S RNA and SRP54, respectively. Here we report that expression of human SRP7S in E. coli can suppress the lethality caused by depletion of 4.5S RNA. In E. coli, both RNAs are associated with P48. In vitro, both E. coli P48 and SRP54 specifically bind to 4.5S RNA. Strains depleted of 4.5S RNA strongly accumulate pre-beta-lactamase and fail to accumulate maltose binding protein. These effects commence well before any growth defect is observed and are suppressed by expression of human SRP7S. Strains overproducing P48 also accumulate pre-beta-lactamase. 4.5S RNA and P48 are components of a ribonucleoprotein particle that we propose to be required for the secretion of some proteins.  相似文献   

7.
Signal recognition particle (SRP) guides secretory proteins to biological membranes in all organisms. Assembly of the large domain of mammalian SRP requires binding of SRP19 prior to the binding of protein SRP54 to SRP RNA. The crystal structure of the ternary complex reveals the parallel arrangement of RNA helices 6 and 8, a bridging of the helices via a hydrogen bonded A149-A201 pair and protein SRP19, and two A minor motifs between the asymmetric loop of helix 8 (A213 and A214) and helix 6. We investigated which residues in helix 8 are responsible for the SRP19-dependent binding of SRP54 by taking advantage of the finding that binding of human SRP54 to Methanococcus jannaschii SRP RNA is independent of SRP19. Chimeric human/M. jannaschii SRP RNA molecules were synthesized containing predominantly human SRP RNA but possessing M. jannaschii SRP RNA-derived substitutions. Activities of the chimeric RNAs were measured with respect to protein SRP19 and the methionine-rich RNA-binding domain of protein SRP54 (SRP54M). Changing A213 and A214 to a uridine has no effect on the SRP19-dependent binding of SRP54M. Instead, the two base pairs C189-G210 and C190-G209, positioned between the conserved binding site of SRP54 and the asymmetric loop, are critical for conveying SRP19 dependency. Furthermore, the nucleotide composition of five base pairs surrounding the asymmetric loop affects binding of SRP54M significantly. These results demonstrate that subtle, and not easily perceived, structural differences are of crucial importance in the assembly of mammalian SRP.  相似文献   

8.
The signal recognition particle (SRP) mediates membrane targeting of translating ribosomes displaying a signal-anchor sequence. In Escherichia coli, SRP consists of 4.5S RNA and a protein, Ffh, that recognizes the signal peptide emerging from the ribosome and the SRP receptor at the membrane, FtsY. In the present work, we studied the interactions between the NG and M domains in Ffh and their rearrangements upon complex formation with 4.5S RNA and/or FtsY. In free Ffh, the NG and M domains are facing one another in an orientation that allows cross-linking between positions 231 in the G domain and 377 in the M domain. There are binding interactions between the two domains, as the isolated domains form a strong complex. The interdomain contacts are disrupted upon binding of Ffh to 4.5S RNA, consuming a part of the total binding energy of 4.5S RNA-Ffh association that is roughly equivalent to the free energy of domain binding to each other. In the SRP particle, the NG domain binds to 4.5S RNA in a region adjacent to the binding site of the M domain. Ffh binding to FtsY also requires a reorientation of NG and M domains. These results suggest that in free Ffh, the binding sites for 4.5S RNA and FtsY are occluded by strong domain-domain interactions which must be disrupted for the formation of SRP or the Ffh-FtsY complex.  相似文献   

9.
Binding of Escherichia coli signal recognition particle (SRP) to its receptor, FtsY, requires the presence of 4.5S RNA, although FtsY alone does not interact with 4.5S RNA. In this study, we report that the exchange of the GGAA tetraloop sequence in domain IV of 4.5S RNA for UUCG abolishes SRP-FtsY interaction, as determined by gel retardation and membrane targeting experiments, whereas replacements with other GNRA-type tetraloops have no effect. A number of other base exchanges in the tetraloop sequence have minor or intermediate inhibitory effects. Base pair disruptions in the stem adjacent to the tetraloop or replacement of the closing C-G base pair with G-C partially restored function of the otherwise inactive UUCG mutant. Chemical probing by hydroxyl radical cleavage of 4.5S RNA variants show that replacing GGAA with UUCG in the tetraloop sequence leads to structural changes both within the tetraloop and in the adjacent stem; the latter change is reversed upon reverting the C-G closing base pair to G-C. These results show that the SRP-FtsY interaction is strongly influenced by the structure of the tetraloop region of SRP RNA, in particular the tetraloop stem, and suggest that both SRP RNA and Ffh undergo mutual structural adaptation to form SRP that is functional in the interaction with the receptor, FtsY.  相似文献   

10.
One of the pathways for protein targeting to the plasma membrane in bacteria utilizes the co-translationally acting signal recognition particle (SRP), a universally conserved ribonucleoprotein complex consisting of a 54 kDa protein and a functional RNA. An interesting exception is the higher plant chloroplast SRP, which lacks the otherwise essential RNA component. Furthermore, green plant chloroplasts have an additional post-translational SRP-dependent transport system in which the chloroplast-specific cpSRP43 protein binds to imported substrate proteins and to the conserved 54 kDa SRP subunit (cpSRP54). While homologs to the bacterial SRP protein and RNA component previously have been identified in genome sequences of red algae and diatoms, a recent study investigated the evolution of the green plant SRP system.1 Analysis of hundreds of plastid and nuclear genomes showed a surprising pattern of multiple losses of the plastid SRP RNA during evolution and a widespread presence in all non-spermatophyte plants and green algae. Contrary to expectations, all green organisms that have an identified cpSRP RNA also contain a cpSRP43. Notably, the structure of the plastid SRP RNAs is much more diverse than that of bacterial SRP RNAs. The apical GNRA tetraloop is only conserved in organisms of the red lineage and basal organisms of the green lineage, whereas further chloroplast SRP RNAs are characterized by atypical, mostly enlarged apical loops.  相似文献   

11.
BACKGROUND: Bacterial signal recognition particle (SRP), consisting of 4.5S RNA and Ffh protein, plays an essential role in targeting signal-peptide-containing proteins to the secretory apparatus in the cell membrane. The 4.5S RNA increases the affinity of Ffh for signal peptides and is essential for the interaction between SRP and its receptor, protein FtsY. The 4.5S RNA also interacts with elongation factor G (EF-G) in the ribosome and this interaction is required for efficient translation. RESULTS: We have determined by multiple anomalous dispersion (MAD) with Lu(3+) the 2.7 A crystal structure of a 4.5S RNA fragment containing binding sites for both Ffh and EF-G. This fragment consists of three helices connected by a symmetric and an asymmetric internal loop. In contrast to NMR-derived structures reported previously, the symmetric loop is entirely constituted by non-canonical base pairs. These pairs continuously stack and project unusual sets of hydrogen-bond donors and acceptors into the shallow minor groove. The structure can therefore be regarded as two double helical rods hinged by the asymmetric loop that protrudes from one strand. CONCLUSIONS: Based on our crystal structure and results of chemical protection experiments reported previously, we predicted that Ffh binds to the minor groove of the symmetric loop. An identical decanucleotide sequence is found in the EF-G binding sites of both 4.5S RNA and 23S rRNA. The decanucleotide structure in the 4.5S RNA and the ribosomal protein L11-RNA complex crystals suggests how 4.5S RNA and 23S rRNA might interact with EF-G and function in translating ribosomes.  相似文献   

12.
13.
《The Journal of cell biology》1990,111(5):1793-1802
Signal recognition particle (SRP) plays the key role in targeting secretory proteins to the membrane of the endoplasmic reticulum (Walter, P., and V. R. Lingappa. 1986. Annu. Rev. Cell Biol. 2:499- 516). It consists of SRP7S RNA and six proteins. The 54-kD protein of SRP (SRP54) recognizes the signal sequence of nascent polypeptides. The 19-kD protein of SRP (SRP19) binds to SRP7S RNA directly and is required for the binding of SRP54 to the particle. We used deletion mutants of SRP19 and SRP54 and an in vitro assembly assay in the presence of SRP7S RNA to define the regions in both proteins which are required to form a ribonucleoprotein particle. Deletion of the 21 COOH- terminal amino acids of SRP19 does not interfere with its binding to SRP7S RNA. Further deletions abolish SRP19 binding to SRP7S RNA. The COOH-terminal 207 amino acids of SRP54 (M domain) were found to be necessary and sufficient for binding to the SRP19/7S RNA complex in vitro. Limited protease digestion of purified SRP confirmed our results for SRP54 from the in vitro binding assay. The SRP54M domain could also bind to Escherichia coli 4.5S RNA that is homologous to part of SRP7S RNA. We suggest that the methionine-rich COOH terminus of SRP54 is a RNA binding domain and that SRP19 serves to establish a binding site for SRP54 on the SRP7S RNA.  相似文献   

14.
The contribution made by the RNA component of signal recognition particle (SRP) to its function in protein targeting is poorly understood. We have generated a complete secondary structure for Saccharomyces cerevisiae SRP RNA, scR1. The structure conforms to that of other eukaryotic SRP RNAs. It is rod-shaped with, at opposite ends, binding sites for proteins required for the SRP functions of signal sequence recognition (S-domain) and translational elongation arrest (Alu-domain). Micrococcal nuclease digestion of purified S. cerevisiae SRP separated the S-domain of the RNA from the Alu-domain as a discrete fragment. The Alu-domain resolved into several stable fragments indicating a compact structure. Comparison of scR1 with SRP RNAs of five yeast species related to S. cerevisiae revealed the S-domain to be the most conserved region of the RNA. Extending data from nuclease digestion with phylogenetic comparison, we built the secondary structure model for scR1. The Alu-domain contains large extensions, including a sequence with hallmarks of an expansion segment. Evolutionarily conserved bases are placed in the Alu- and S-domains as in other SRP RNAs, the exception being an unusual GU(4)A loop closing the helix onto which the signal sequence binding Srp54p assembles (domain IV). Surprisingly, several mutations within the predicted Srp54p binding site failed to disrupt SRP function in vivo. However, the strength of the Srp54p-scR1 and, to a lesser extent, Sec65p-scR1 interaction was decreased in these mutant particles. The availability of a secondary structure for scR1 will facilitate interpretation of data from genetic analysis of the RNA.  相似文献   

15.
The eukaryotic signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein particle that targets secretory and membrane proteins to the endoplasmic reticulum. The binding of SRP54 to the S domain of 7SL RNA is highly dependent on SRP19. Here we present the crystal structure of a human SRP ternary complex consisting of SRP19, the M domain of SRP54 and the S domain of 7SL RNA. Upon binding of the M domain of SRP54 to the 7SL RNA-SRP19 complex, the asymmetric loop of helix 8 in 7SL RNA collapses. The bases of the four nucleotides in the long strand of the asymmetric loop continuously stack and interact with the M domain, whereas the two adenines in the short strand flip out and form two A-minor motifs with helix 6. This stabilizing interaction is only possible when helix 6 has been positioned parallel to helix 8 by the prior binding of SRP19 to the tetraloops of helices 6 and 8. Hence, the crystal structure of the ternary complex suggests why SRP19 is necessary for the stable binding of SRP54 to the S domain RNA.  相似文献   

16.
Proper folding of the RNA is an essential step in the assembly of functional ribonucleoprotein complexes. We examined the role of conserved base pairs formed between two distant loops in the Alu portion of the mammalian signal recognition particle RNA (SRP RNA) in SRP assembly and functions. Mutations disrupting base pairing interfere with folding of the Alu portion of the SRP RNA as monitored by probing the RNA structure and the binding of the protein SRP9/14. Complementary mutations rescue the defect establishing a role of the tertiary loop–loop interaction in RNA folding. The same mutations in the Alu domain have no major effect on binding of proteins to the S domain suggesting that the S domain can fold independently. Once assembled into a complete SRP, even particles that contain mutant RNA are active in arresting nascent chain elongation and translocation into microsomes, and, therefore, tertiary base pairing does not appear to be essential for these activities. Our results suggest a model in which the loop–loop interaction and binding of the protein SRP9/14 play an important role in the early steps of SRP RNA folding and assembly.  相似文献   

17.
4.5S RNA is essential for viability of Escherichia coli, and forms a key component of the signal recognition particle (SRP), a ubiquitous ribonucleoprotein complex responsible for cotranslational targeting of secretory proteins. 4.5S RNA also binds independently to elongation factor G (EF-G), a five-domain GTPase that catalyzes the translocation step during protein biosynthesis on the ribosome. Point mutations in EF-G suppress deleterious effects of 4.5S RNA depletion, as do mutations in the EF-G binding site within ribosomal RNA, suggesting that 4.5S RNA might play a critical role in ribosome function in addition to its role in SRP. Here we show that 4.5S RNA and EF-G form a phylogenetically conserved, low-affinity but highly specific complex involving sequence elements required for 4.5S binding to its cognate SRP protein, Ffh. Mutational analysis indicates that the same molecular structure of 4.5S RNA is recognized in each case. Surprisingly, however, the suppressor mutant forms of EF-G bind very weakly or undetectably to 4.5S RNA, implying that cells can survive 4.5S RNA depletion by decreasing the affinity between 4.5S RNA and the translational machinery. These data suggest that SRP function is the essential role of 4.5S RNA in bacteria.  相似文献   

18.
Mammalian signal recognition particle (SRP), a complex of six polypeptides and one 7SL RNA molecule, is required for targeting nascent presecretory proteins to the endoplasmic reticulum (ER). Earlier work identified a Schizosaccharomyces pombe homolog of human SRP RNA and showed that it is a component of a particle similar in size and biochemical properties to mammalian SRP. The recent cloning of the gene encoding a fission yeast protein homologous to Srp54p has made possible further characterization of the subunit structure, subcellular distribution, and assembly of fission yeast SRP. S. pombe SRP RNA and Srp54p co-sediment on a sucrose velocity gradient and coimmunoprecipitate, indicating that they reside in the same complex. In vitro assays demonstrate that fission yeast Srp54p binds under stringent conditions to E. coli SRP RNA, which consists essentially of domain IV, but not to the full-length cognate RNA nor to an RNA in which domain III has been deleted in an effort to mirror the structure of bacterial homologs. Moreover, the association of S. pombe Srp54p with SRP RNA in vivo is disrupted by conditional mutations not only in domain IV, which contains its binding site, but in domains I and III, suggesting that the particle may assemble cooperatively. The growth defects conferred by mutations throughout SRP RNA can be suppressed by overexpression of Srp54p, and the degree to which growth is restored correlates inversely with the severity of the reduction in protein binding. Conditional mutations in SRP RNA also reduce its sedimentation with the ribosome/membrane pellet during cell fractionation. Finally, immunoprecipitation under native conditions of an SRP-enriched fraction from [35S]-labeled fission yeast cells suggests that five additional polypeptides are complexed with Srp54p; each of these proteins is similar in size to a constituent of mammalian SRP, implying that the subunit structure of this ribonucleoprotein is conserved over vast evolutionary distances.  相似文献   

19.
20.
Huang Q  Abdulrahman S  Yin J  Zwieb C 《Biochemistry》2002,41(38):11362-11371
The amino acid residues of human protein SRP54 which are required for binding to SRP RNA were identified by generating 40 nonoverlapping tri-alanine alterations within its methionine-rich M-domain (SRP54M). The mutant polypeptides were expressed in Escherichia coli, and their ability to bind to human and Methanococcus jannaschii SRP RNA were determined in vitro. Residues at positions 379-387, 394-396, 400-405, and 409-411 of human SRP54 were within the predicted RNA binding site, and their alteration abolished the binding activities of the mutant polypeptides as expected. Changes at positions 418-423 had intermediate effects. Polypeptides containing mutations of 328-TLR-330 were inactive although these residues were far away from the presumed RNA binding site in the crystal structure of the free protein. Using the structures of the E. coli Ffh/4.5S core and of the human SRP54m dimer as templates, a molecular model of the complex between human SRP RNA helix 8 and a single SRP54M molecule was constructed in which Leucine 329 was positioned in closer proximity to the RNA binding domain. This representation was supported by studies of the SRP54m monomer/dimer ratio using gel filtration. The results were consistent with a change in the shape of the signal peptide binding groove upon binding of SRP54 to SRP RNA. We propose that the SRP RNA and a small region centered at a bulky nonpolar amino acid residue at position 329 of protein SRP54 play a critical role in the SRP-dependent binding and release of signal peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号