首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To evaluate an endonuclease resistance property of oligodeoxynucleotides (ODNs) containing 5-(N-aminohexyl)carbamoyl-2'-deoxyuridines (Hs) and to elucidate whether a duplex consisting of the ODN analogue and its complementary RNA induces RNase H activity, the ODNs containing the deoxyuridine analogues, Hs, at intervals of one, two, three, four and five natural nucleosides were synthesized. From partial hydrolysis of these ODNs with nuclease S1 (an endonuclease), it was found that the ODNs became more stable towards nucleolytic hydrolysis by the enzyme as the number of H increased. Furthermore, to examine whether the duplexes composed of the ODNs containing Hs and their complementary RNAs are substrates for RNase H or not, the duplexes of these ODNs and their complementary RNA strands were treated with Escherichia coliRNase H. It was found that cleavage of the RNA strands by the enzyme was kinetically affected by the introduction of Hs into the duplexes.  相似文献   

2.
The synthesis of oligonucleotides (ODNs) containing 5-(N-aminohexyl)carbamoyl-2′-O-methyluridine (D) is described, and thermal stability and resistance to enzymatic hydrolysis of the ODNs are compared with ODNs containing 5-(N-aminohexyl)carbamoyl-2′-deoxyuridine (H). The ODNs containing D and the complementary RNA demonstrated a duplex thermal stabilization of 0.4–3.9°C per modification depending on the position and the number, while the ODNs containing H with the RNA showed slightly less effective thermal stabilization. Further more, the ODNs containing D were found to be more resistant to nucleolytic hydrolysis, not only by snake venom phosphodiesterase (SVPD; a 3′-exonuclease) but also by DNase I (an endonuclease). The half-life of the 17mer containing five molecules of D against nucleolytic hydrolysis by SVPD was 240 times greater than the unmodified 17mer ODN, which is 1.8 times greater than the ODN containing 5Hs in the same sequence. Against DNase I, the same ODN containing 5Ds was 24 times greater stable than the unmodified 17mer and 15 times more stable than the ODN containing 5Hs. We also examined whether the duplexes formed by the ODNs containing D and the complementary RNAs could be a substrate of Escherichia coli RNase H. It was revealed that a minimum of five contiguous unmodified 2′-deoxyribonucleosides between Ds was required to constitute a substrate of E.coli RNase H. Thus, the ODN with Ds and at least five contiguous unmodified 2′-deoxyribonucleosides between Ds was found to be a candidate for a novel antisense molecule.  相似文献   

3.
To construct the nuclease-resistant oligodeoxynucleotides (ODNs) with natural phosphodiester linkages, we synthesized ODNs that contain 6'alpha-[N-(aminoalkyl)carbamoyloxy]-carbocyclic-thymidines (4, 5, and 6). The stability of these ODNs to nuclease hydrolysis was examined by using snake venom phosphodiesterase (3'-exonuclease) and nuclease S1 (endonuclease). It was found that the ODNs containing 4, 5, or 6 were more resistant to both the enzymes than the unmodified ODN. These nuclease-resistant properties are noteworthy, since they have natural phosphodiester linkages. Next, the thermal stabilities of duplexes consisting of these ODNs and either the complementary DNA or RNA were studied by thermal denaturation. The ODNs that contain 4 were found to enhance the thermal stability of the duplexes with the complementary DNA, while those containing 5 or 6 decreased the thermal stability of the ODN-DNA duplexes. On the other hand, all ODNs that contained 4, 5, or 6 decreased the thermal stability of the ODN-RNA duplexes.  相似文献   

4.
6-Azathymidine, 6-aza-2'-deoxycytidine, 6-methyl-2'-deoxyuridine, and 5,6-dimethyl-2'-deoxyuridine nucleosides have been converted to phosphoramidite synthons and incorporated into oligodeoxynucleotides (ODNs). ODNs containing from 1 to 5 of these modified pyrimidines were compared with known 2'-deoxyuridine, 5-iodo-2'-deoxyuridine, 5-bromo-2'-deoxyuridine, 5-fluoro-2'-deoxyuridine, 5-bromo-2'-deoxycytidine, and 5-methyl-2'-deoxycytidine nucleoside modifications. Stability in 10% heat inactivated fetal calf serum, binding affinities to RNA and DNA complements, and ability to support RNase H degradation of targeted RNA in DNA-RNA heteroduplexes were measured to determine structure-activity relationships. 6-Azathymidine capped ODNs show an enhanced stability in serum (7- to 12-fold increase over unmodified ODN) while maintaining hybridization properties similar to the unmodified ODNs. A 22-mer ODN having its eight thymine bases replaced by eight 6-azathymines or 5-bromouracils hybridized to a target RNA and did not inhibit RNase H mediated degradation.  相似文献   

5.
In order to develop novel antigene molecules forming thermally stable triplexes with target DNAs and having nuclease resistance properties, we synthesized oligodeoxynucleotides (ODNs) with various lengths of aminoalkyl-linkers at the 4'alpha position of thymidine and the aminoethyl-linker at the 4'alpha position of 2'-deoxy-5-methylcytidine. Thermal stability of triplexes between these ODNs and a DNA duplex was studied by thermal denaturation. The ODNs containing the nucleoside 2 with the aminoethyl-linker or the nucleoside 3 with the aminopropyl-linker thermally stabilized the triplexes, whereas the ODNs containing the nucleoside 1 with the aminomethyl-linker or the nucleoside 4 with the 2-[N-(2-aminoethyl)carbamoyl]oxy]ethyl-linker thermally destabilized the triplexes. The ODNs containing 2 were the most efficient at stabilizing the triplexes with the target DNA. The ODNs containing 4'alpha-C-(2-aminoethyl)-2'-deoxy-5-methylcytidine (5) also efficiently stabilized the triplexes with the target DNA. Stability of the ODN containing 5 to nucleolytic hydrolysis by snake venom phosphodiesterase (a 3'-exonuclease) was studied. It was found that the ODN containing 5 was more resistant to nucleolytic digestion by the enzyme than an unmodified ODN. In a previous paper, we reported that the ODNs containing 2 were more resistant to nucleolytic digestion by DNase I (an endonuclease) than the unmodified ODNs. Thus, it was found that the ODNs containing 4'alpha-C-(2-aminoethyl)-2'-deoxynucleosides were good candidates for antigene molecules.  相似文献   

6.
J Woo  R B Meyer  Jr    H B Gamper 《Nucleic acids research》1996,24(13):2470-2475
Modified oligodeoxyribonucleotides (ODNs) that have unique hybridization properties were designed and synthesized for the first time. These ODNs, called selective binding complementary ODNs (SBC ODNs), are unable to form stable hybrids with each other, yet are able to form stable, sequence specific hybrids with complementary unmodified strands of nucleic acid. To make SBC ODNs, deoxyguanosine (dG) and deoxycytidine (dC) were substituted with deoxyinosine (dI) and 3-(2'-deoxy-beta-D-ribofuranosyl)pyrrolo-[2,3-d]-pyrimidine-2-(3H)-one (dP), respectively. The hybridization properties of several otherwise identical complementary ODNs containing one or both of these nucleoside analogs were studied by both UV monitored thermal denaturation and non-denaturing PAGE. The data showed that while dI and dP did form base pairs with dC and dG, respectively, dI did not form a stable base pair with dP. A self-complementary ODN uniformly substituted with dI and dP acquired single-stranded character and was able to strand invade the end of a duplex DNA better than an unsubstituted ODN. This observation implies that SBC ODNs should effectively hybridize to hairpins present in single-stranded DNA or RNA.  相似文献   

7.
Hexofuranosyl nucleosides are considered as conformationally restricted acyclic nucleosides using a furanose ring to link the diol backbone to the nucleobase. The phosphoramidite of 1-(2,3-dideoxy-beta-D-erythro-hexofuranosyl)thymine was synthesized from thymidine with formation of a new stereocentre at C-5' and the nucleoside was used in oligodeoxynucleotide (ODN) synthesis. Binding of mixed sequence ODNs towards complementary DNA and RNA showed decreased affinity compared to the wild-type oligos. Insertion in the middle of poly alphaT sequence led to stabilization of ODN/dA(14) duplexes at low ionic strength, but a decrease was observed in medium and high salt buffers compared to d(alphaT)(14)/dA(14). Both beta and alpha hexofuranosyl thymidines allowed cleavage of complementary mixed-sequence RNA by RNase H to the 3'-site of the modification in ODNs whereas a limited inhibition was detected from the 5'-site.  相似文献   

8.
The synthesis and properties of oligodeoxynucleotides (ODNs) containing 2'- O -(trifluoromethyl)adenosine (2) are described. 2'- O -(Trifluoromethyl)adenosine (2) or N 6-(benzoyl)-2'- O -(trifluoromethyl)adenosine (6) was obtained in 22 or 32% yield by treating 2'- O -[(methylthio)thiocarbonyl]-3',5'- O -(1,1,3, 3-tetraisopropyldisiloxane-1,3-diyl)(TIPDS)adenosine (4) or N 6, N 6-(dibenzoyl)-2'- O -[(methylthio)thiocarbonyl]-3',5'- O -(TIPDS)-adenosine (5), respectively, with pyridinium poly-(hydrogen fluoride) in the presence of 1,3-dibromo-5,5-dimethylhydantoin. Nucleoside 2 was incorporated into DNA hexadecamers. ODNs that contained 2 reduced the thermal stability of duplexes with their complementary DNAs but increased the thermal stability of duplexes with their complementary RNAs. Furthermore, ODNs containing 2 were slightly more resistant to snake venom phosphodiesterase than an unmodified ODN.  相似文献   

9.
Both siRNA and antisense oligodeoxynucleotides (ODNs) inhibit the expression of a complementary gene. In this study, fundamental differences in the considerations for RNA interference and antisense ODNs are reported. In siRNA and antisense ODN databases, positive correlations are observed between the cost to open the mRNA target self-structure and the stability of the duplex to be formed, meaning the sites along the mRNA target with highest potential to form strong duplexes with antisense strands also have the greatest tendency to be involved in pre-existing structure. Efficient siRNA have less stable siRNA–target duplex stability than inefficient siRNA, but the opposite is true for antisense ODNs. It is, therefore, more difficult to avoid target self-structure in antisense ODN design. Self-structure stabilities of oligonucleotide and target correlate to the silencing efficacy of siRNA. Oligonucleotide self-structure correlations to efficacy of antisense ODNs, conversely, are insignificant. Furthermore, self-structure in the target appears to correlate with antisense ODN efficacy, but such that more effective antisense ODNs appear to target mRNA regions with greater self-structure. Therefore, different criteria are suggested for the design of efficient siRNA and antisense ODNs and the design of antisense ODNs is more challenging.  相似文献   

10.
An in-depth study into the incorporation of multiple 3′-S-phosphorothiolate modifications into oligodeoxynucleotides (ODNs) and their subsequent effect on ODN/DNA and ODN/RNA duplex stability. 3′-S-Phosphorothiolate linkages increase the stability of ODN/RNA duplexes and decrease the stability of ODN/DNA duplexes.  相似文献   

11.
An in-depth study into the incorporation of multiple 3-S-phosphorothiolate modifications into oligodeoxynucleotides (ODNs) and their subsequent effect on ODN/DNA and ODN/RNA duplex stability. 3-S-Phosphorothiolate linkages increase the stability of ODN/RNA duplexes and decrease the stability of ODN/DNA duplexes.  相似文献   

12.
Antisense oligodeoxynucleotides (ODNs) have biological activity in treating various forms of cancer. The antisense effects of two types of 20mer ODNs, phosphorothioate-modified ODNs (S-ODNs) and S-ODNs with 12 2′-O-methyl groups (Me-S-ODNs), targeted to sites 109 and 277 of bcl-2 mRNA, were compared. Both types were at least as effective as G3139 (Genta, Inc.) in reducing the level of Bcl-2 protein in T24 cells following a 4 h transfection at a dose of 0.1 µM. Circular dichroism spectra showed that both types formed A-form duplexes with the complementary RNA, and the melting temperatures were in the order of Me-S-ODN·RNA > normal DNA·RNA > S-ODN·RNA. In comparison with the S-ODN, the Me-S-ODN had reduced toxic growth inhibitory effects, was less prone to bind the DNA-binding domain A of human replication protein A, and was as resistant to serum nucleases. Neither type of oligomer induced apoptosis, according to a PARP-cleavage assay. Hybrids formed with Me-S-ODN sequences were less sensitive to RNase H degradation than those formed with S-ODN sequences. Despite this latter disadvantage, the addition of 2′-O-methyl groups to a phosphorothioate-modified ODN is advantageous because of increased stability of binding and reduced non-specific effects.  相似文献   

13.
14.
2'-Deoxy-2'-S-hexyluridine derivative was synthesized from 2,2'-anhydrouridine and 1-hexanethiol and incorporated into an oligodeoxyribonucleotide. The thermal stability of the duplexes formed by the 2'-S-hexyl modified ODN with either the complementary DNA or RNA strand was decreased compared to the unmodified counterparts.  相似文献   

15.
The synthesis of 3'-3'-linked oligodeoxynucleotides (ODNs) with the anthraquinonyl group at the junction point is described. The ODNs were synthesized on a DNA synthesizer using a controlled pore glass (CPG) carrying pentaerythritol that has an intercalator at one of the four hydroxymethyl groups. Stability of the triplexes with the target duplexes was studied by thermal denaturation. The 3'-3'-linked ODNs with the anthraquinonyl group enhanced the thermal stability of the triplexes when compared with those without the intercalator and the unmodified nonamer 10. It was found that the ODNs 12 and 13 carrying the anthraquinonyl groups can form thermally stable triplexes by skipping two or three extra base pairs between two binding domains of the target duplexes. The ability of the 3'-3'-linked ODNs to inhibit cleavage of the target DNA 22 by the restriction enzyme Hind III was tested. It was found that the 3'-3'-linked ODN 16 with the anthraquinonyl group at the junction point inhibited the cleavage by the enzyme more effectively than the nonamer 14 and the 3'-3'-linked ODN 15 without the intercalator.  相似文献   

16.
Abstract

Acridine-modified oligodeoxyribonucleotides (ODNs) at the C5-position of a 2′-deoxyuridine via different lengths of linker arms were synthesized. Reaction of 5-(N-aminoalkyl)carbamoylmethyl-2′-deoxyuridines with 9-phenoxyacridine gave the acridine-modified 2′-deoxyuridines which were incorporated into ODNs. The duplexes containing the acridine-modified strands and their complementary DNA or RNA were thermally more stable than that containing the unmodified strand. Thermal stability of the duplexes of the modified ODNs varied depending on the length of the linker arms.

  相似文献   

17.
The efficiency of the cleavage of RNA involved in perfect as well as imperfect hybrid duplexes composed of three components: (1) homogeneous RNA's or polyribonucleotides; (2) corresponding complementary synthetic oligodeoxyribonucleotides; (3) E. coli RNase H was investigated. The predominant RNA hydrolysis was shown to take place within the perfect hybrid duplexes formed by the target RNA and the complementary oligodeoxyribonucleotide probes. RNase H was found to cleave effectively a number of imperfect hybrid duplexes containing a central base pair mismatch.  相似文献   

18.
19.
寡聚脱氧核苷酸的结构与抗降解特性的研究   总被引:1,自引:0,他引:1  
合成了4段具有不同高级结构或不同修饰的寡聚脱氧核苷酸,检查它们在20%血清中的稳定性.发现:(1)寡核苷酸主要被血清中的3′外切核酸酶降解,未经修饰的线性寡核苷酸降解严重;(2)末端部分硫代修饰的寡核苷酸稳定性明显提高;(3)自身互补形成的配对结构可有效保护3′末端.具有4个以上(含4个)GC对的3′端发夹结构寡核苷酸,其抗核酸酶的能力几乎与硫代修饰的寡核苷酸相当.  相似文献   

20.
We report a novel interstrand photocrosslinking of oligodeoxynucleotides (ODNs). In this system, a modified ODN containing p-carbamoylvinyl phenol nucleoside reacts by photoirradiation at 366 nm with adenine residue of a complementary template ODN to yield a crosslinked ODN in 97% yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号