首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical parameters and unidirectional Na+ and Cl- fluxes were determined in vitro across the duodenum, ileum and colon of lizard (Gallotia galloti). Electrical potential difference (PD) and short circuit current (Isc) were low in the three segments studied, whilst tissue conductance (Gt) was high. A net active transport of Na+ and Cl- was observed in the three segments. Net Na+ absorption was higher across duodenum and ileum than across the colon, while net Cl- absorption was similar in duodenum, ileum and colon. Ouabain virtually abolished Isc, PD and net Na+ and Cl- fluxes in all the segments. Amiloride abolished net Cl- flux in duodenum, ileum and colon, whereas net Na+ flux was abolished in colon but decreased in duodenum and ileum. PD and Isc were not affected by the presence of the diuretic.  相似文献   

2.
Paths of ion transport across canine fetal tracheal epithelium   总被引:1,自引:0,他引:1  
Fluid secretion by the fetal sheep lung is thought to be driven by secretion of Cl- by the pulmonary epithelium. We previously demonstrated Cl- secretion by tracheal epithelium excised from fetal dogs and sheep. In this study we characterized the ion transport pathways across fetal canine tracheal epithelium. The transport of Na+ and Cl- across trachea excised from fetal dogs was evaluated from transepithelial electrical properties and isotope fluxes. Under basal conditions the tissues were characterized by a lumen-negative potential difference (PD) of 11 mV and conductance of 5.2 mS/cm2. The short-circuit current (Isc) was 43 microA/cm2 (1.6 mueq.cm-2.h-1). Basal Na+ flows were symmetrical, but net Na+ absorption (1.1 mueq.cm-2.h-1) could be induced by exposure of the luminal surface to amphotericin B (10(-6) M). Bilateral replacement of Na+ reduced Isc by 85%. Replacement of submucosal Na+ or exposure to submucosal furosemide (10(-4) M) reduced net Cl- secretion by 60-70%. Luminal exposure to indomethacin (10(-6) M) induced a 50% decrease in Isc, whereas isoproterenol (10(-6) M) increased Isc by 120%. The properties of the Cl- secretory pathway across fetal dog trachea are consistent with the model proposed for Cl- secretion across adult dog trachea and other Cl- -secreting tissues (e.g., bullfrog cornea and shark rectal gland). The absence of basal Na+ absorption by fetal dog trachea probably reflects limited apical membrane Na+ permeability.  相似文献   

3.
Bioelectric properties and ion transport of excised human segmental/subsegmental bronchi were measured in specimens from 40 patients. Transepithelial electric potential difference (PD), short-circuit current (Isc), and conductance (G), averaged 5.8 mV (lumen negative), 51 microA X cm-2, and 9 mS X cm-2, respectively. Na+ was absorbed from lumen to interstitium under open- and short-circuit conditions. Cl- flows were symmetrical under short-circuit conditions. Isc was abolished by 10(-4) M ouabain. Amiloride inhibited Isc (the concentration necessary to achieve 50% of the maximal effect = 7 X 10(-7) M) and abolished net Na+ transport. PD and Isc were not reduced to zero by amiloride because a net Cl- secretion was induced that reflected a reduction in Cl- flow in the absorptive direction (Jm----sCl-). Acetylcholine (10(-4) M) induced an electrically silent, matched flow of Na+ (1.7 mueq X cm-1 X h-1) and Cl- (1.9 mueq X cm-12 X h-1) toward the lumen. This response was blocked by atropine. Phenylephrine (10(-5) M) did not affect bioelectric properties or unidirectional ion flows, whereas isoproterenol (10(-5) M) induced a small increase in Isc (10%) without changing net ion flows significantly. We conclude that 1) Na+ absorption is the major active ion transport across excised human bronchi, 2) Na+ absorption is both amiloride and ouabain sensitive, 3) Cl- secretion can be induced by inhibition of the entry of luminal Na+ into the epithelia, and 4) cholinergic more than adrenergic agents modulate basal ion flow, probably by affecting gland output.  相似文献   

4.
Segments of fetal and maternal trachea, maternal bronchi from near-term sheep, and trachea and bronchi from nonpregnant adult sheep were excised and mounted as sheets in Ussing chambers. The conductance (G) for each group of tissues was similar (approximately 4 mS/cm-2); the short circuit current (Isc) ranged from 45-90 microA/cm-2. Under short-circuit or open-circuit conditions trachea and bronchi from pregnant and nonpregnant adult animals absorbed Na+, whereas fetal trachea secreted Cl-. Short-circuited maternal bronchi secreted K+, whereas maternal and fetal trachea did not. Isoproterenol induced an increase in Isc, G, and Cl- secretion of fetal trachea. Maternal trachea and bronchi were not affected. Amiloride reduced Na+ absorption and Isc of maternal trachea and bronchi, but had little effect on fetal trachea. The permeability of fetal trachea to 14C-mannitol was 17 X 10(-7) cm/s and was not affected by isoproterenol. The permeation of dextran (10 K) and horseradish peroxidase across fetal trachea and of all three probes across maternal airways did not reach steady state, but the relative rates were compatible with an equivalent pore radius greater than 4 nm. We conclude that ion transport in fetal large airways contributes to the Cl- and liquid secretion by the entire fetal pulmonary epithelium, whereas resting ion transport of large airways from adult sheep, like that of mature airways of many species, is dominated by Na+ absorption. All of these airway epithelia are characterized by large paracellular aqueous paths.  相似文献   

5.
1. The effect of theophylline on ion transport was examined using an in vitro short-circuited preparation of lizard colon. 2. Theophylline increased short circuit current (Isc) and transmural potential difference (PD). This increase caused by theophylline was accompanied by a small increase in transmural conductance (Gt). 3. Theophylline did not inhibit the absorption of Na+ but reversed Cl- absorption to secretion. This latter effect was due to an increase of the serosal-to-mucosal flux of Cl-. 4. Ion substitution experiments revealed that the effect of theophylline was Na+- and HCO3(-)-dependent and that these ions were required in the bathing solution. 5. These results with lizard colon are compared with those reported for mammalian colon and the mechanism of theophylline-induced Cl- secretion in these epithelia is discussed.  相似文献   

6.
The identity of the current carriers in canine lingual epithelium in vitro   总被引:2,自引:0,他引:2  
Ion transport across the lingual epithelium has been implicated as an early event in gustatory transduction. The fluxes of isotopically labelled Na+ and Cl- were measured across isolated canine dorsal lingual epithelium under short-circuit conditions. The epithelium actively absorbs Na+ and to a lesser extent actively secretes Cl-. Under symmetrical conditions with Krebs-Henseleit buffer on both sides, (1) Na+ absorption accounts for 46% of the short-circuit current (Isc); (2) there are two transcellular Na+ pathways, one amiloride-sensitive and one amiloride-insensitive; (3) ouabain, added to the serosal solution, inhibits both Isc and active Na+ absorption. When hyperosmotic (0.25 M) NaCl is placed in the mucosal bath, both Isc and Na+ absorption increase; net Na+ absorption is at least as much as Isc. Ion substitution studies indicate that the tissue may transport a variety of larger ions, though not as effectively as Na+ and Cl-. Thus we have shown that the lingual epithelium, like other epithelia of the gastrointestinal tract, actively transports ions. However, it is unusual both in its response to hyperosmotic solutions and in the variety of ions that support a transepithelial short-circuit current. Since sodium ion transport under hyperosmotic conditions has been shown to correlate well with the gustatory neural response, the variety of ions transported may likewise indicate a wider role for transport in taste transduction.  相似文献   

7.
1. Prairie dog gallbladders mounted in a Ussing-type chamber and bathed with symmetrical Ringer's solutions exhibited a transepithelial resistance (Rt) of 51 +/- 5 omega cm2, a lumen negative potential difference (Vms) of 11.5 +/- 0.7 mV and a short-circuit current (Isc) of 6.9 +/- 0.3 microEq/hr/cm2. 2. Radioisotopic ion flux experiments revealed that the basal Isc of 6.9 +/- 0.3 microEq/hr/cm2 was mostly accounted for by net Na+ absorption of 3.2 +/- 0.5 microEq/hr/cm2 and net Cl- secretion of 2.9 +/- 0.3 microEq/hr/cm2. 3. In HCO3- free Ringer's, net Na+ flux was virtually abolished, net Cl- flux decreased by 50% and Isc was reduced by 77%. 4. 10(-3) M mucosal amiloride and DIDS reduced Isc by 28 and 24%, respectively. 5. Mucosal NaCl diffusion potentials indicated that the paracellular pathway was cation selective. 6. Thin section electron micrographs showed a single cell population in this epithelium suggesting that net Na+ absorption and Cl- secretion may emerge from the same cells. 7. We conclude that prairie dog gallbladder epithelium is an electrogenic tissue and, in contrast to gallbladders of most other species, simultaneously but independently absorbs Na+ and secretes Cl-.  相似文献   

8.
Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current (Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5-N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl- stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 +/- 0.03 in a low-Cl- solution. It was increased by 0.21 pH units when luminal Cl- was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl- depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl- solutions. The results show that luminal Cl- can increase the microclimate pH via apical Cl-/HCO3- or Cl-/OH- exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl- effects on Na+ absorption. The data further show that the Cl- conductance of rumen epithelium must be located at the basolateral membrane.  相似文献   

9.
We examined the interaction of heptanol and hydrostatic pressure on Na+ and Cl- transport in isolated toad skin. In the presence of Cl-, heptanol decreased short-circuit current (Isc) and total transepithelial resistance (Rt). However, in the absence of Cl- in the mucosal bath, heptanol increased Rt, although it retained the same inhibitory effect on Isc. When transepithelial active Na+ transport was blocked by amiloride, heptanol had no effect on Isc whether or not Cl- was present, whereas it decreased the shunt resistance (Rs) only in the presence of Cl- in the mucosal bath. Moreover, this effect of heptanol on Rs was significantly smaller in the presence of diphenylamine-2-carboxylate (DPC), a known Cl- channel blocker. Pressure also decreased Isc through inhibition of active Na+ transport, but it increased Rs. When heptanol and pressure were applied together, their inhibitory effects on Isc were additive, but their effects on Rs were antagonistic. Furthermore, when a transepithelial Cl- current was produced by reducing the Cl- concentration of the serosal bath, heptanol stimulated this current, which was reversibly inhibited by pressure or DPC addition to the mucosal bath. When the heptanol-stimulated Cl- current was first inhibited by pressure, subsequent DPC addition had less or no effect. These results suggest that one site of an antagonistic interaction of heptanol and pressure in toad skin is an apical membrane Cl- conductance.  相似文献   

10.
In vitro measurements were made of transmural potential difference (PD), short-circuit current (Isc), resistance and unidirectional fluxes of 22Na and 36Cl across the duodenum, jejunum, ileum and colon of normal sodium-replete domestic fowl (Gallus domesticus). The PD ranged from about 1 mV across the duodenum to 8 mV across the colon while the Isc was, respectively, 2.8 and 64 microA X cm-2. The jejunum and ileum exhibited values between these extremes. Unidirectional fluxes (under short-circuit conditions) of Na and Cl were lowest across the duodenum where there was no evidence of active transport of these ions. Unidirectional fluxes of Na and Cl were less across the jejunum than across the ileum or colon. A net active transport of Na (but not Cl) was observed in the ileum (= 106% of the Isc) and colon (= 50% of Isc). The possible physiological significance of these observations in the domestic fowl are discussed and are compared to that of a mammal, the rabbit.  相似文献   

11.
The effect of conjugated dihydroxy and trihydroxy bile salts on electrolyte transport across isolated rabbit jejunal mucosa was studied. Both taurochenodeoxycholic acid and taurocholic acid increased the short-circuit current (Isc) in bicarbonate-Ringer solution but not in a bicarbonate-free, chloride-free solution. Taurochenodeoxycholic acid was significantly more effective than taurocholic acid in increasing Isc. The presence of theophylline prevented the taurochenodeoxycholic acid- and taurocholic acid-induced increase in Isc. Transmural ion fluxes across jejunal mucosa demonstrated that 2 mM taurochenodeoxycholic acid decreased net Na+ absorption, increased net Cl- secretion and increased the residual flux (which probably represents HCO3- secretion). These studies support the hypothesis that cyclic AMP may be a mediator of intestinal electrolyte secretion.  相似文献   

12.
1. The diuretic furosemide, when added to the outside solution at a concentration of 5-10-4 M, increases the electrical potential difference (PD) across the isolated frog skin, but the short-circuit current (Isc) is unchanged. Lower concentrations had no significant effect on these electrical parameters. 2. When SO42- or NO3- are substituted for Cl- in the Ringer's solution furosemide has no effect on the PD or Isc. 3. Simultaneous unidirectional fluxes of Na+ and Cl- show that furosemide (5-10-4 M outside) reduces both the influx and outflux of Cl-, while the Na+ fluxes are not altered. 4. Furosemide (5-10-4 M) on the corium side of the frog skin had no significant effect on either PD, Isc or undirectional fluxes of Cl-. 5. It is suggested that furosemide reduces passive Cl- transfer, possibly by interacting with the Cl-/Cl- exchange diffusion mechanism which has been observed in this tissue. These observations further suggest that perhaps the diuretic action of furosemide may be mediated by such an effect on passive Cl- permeability which is linked to the active Cl- transport mechanism in the renal tubule.  相似文献   

13.
In rat small intestine, the active transport of organic solutes results in significant depolarization of the membrane potential measured in an epithelial cell with respect to a grounded mucosal solution and in an increase in the transepithelial potential difference. According to the analysis with an equivalent circuit model for the epithelium, the changes in emf's of mucosal and serosal membranes induced by active solute transport were calculated using the measured conductive parameters. The result indicates that the mucosal cell membrane depolarizes while the serosal cell membrane remarkably hyperpolarizes on the active solute transport. Corresponding results are derived from the calculations of emf's in a variety of intestines, using the data that have hitherto been reported. The hyperpolarization of serosal membrane induced by the active solute transport might be ascribed to activation of the serosal electrogenic sodium pump. In an attempt to determine the causative factors in mucosal membrane depolarization during active solute transport, cell water contents and ion concentrations were measured. The cell water content remarkably increased and, at the same time, intracellular monovalent ion concentrations significantly decreased with glucose transport. Net gain of glucose within the cell was estimated from the restraint of osmotic balance between intracellular and extracellular fluids. In contrast to the apparent decreases in intracellular Na+ and K+ concentrations, significant gains of Na+ and K+ occurred with glucose transport. The quantitative relationships among net gains of Na+, K+ and glucose during active glucose transport suggest that the coupling ratio between glucose and Na+ entry by the carrier mechanism on the mucosal membrane is approximately 1:1 and the coupling ratio between Na+-efflux and K+-influx of the serosal electrogenic sodium pump is approximately 4:3 in rat small intestine. In addition to the electrogenic ternary complex inflow across the mucosal cell membrane, the decreases in intracellular monovalent ion concentrations, the temporary formation of an osmotic pressure gradient across the cell membrane and the streaming potential induced by water inflow through negatively charged pores of the cell membrane in the course of an active solute transport in intestinal epithelial cells are apparently all possible causes of mucosal membrane depolarization.  相似文献   

14.
The colon of L. maderae consists of a single columnar epithelium covered with a cuticle and of a musculo-connective sheath. The apical plasma membranes form a system of leaflets with numerous mitochondria inserted in association with microfilaments. Lateral plasma membranes are linked together by junctional complexes consisting of a zonula adherens and a long convoluted septate junction of the pleated type. In the basal region of the cell, numerous membrane infolds and scattered scalariform junctions with associated mitochondria are present. These cell specializations are typical of arthropod transporting organs, being distinctive features of ion and fluid transporting epithelia. The isolated colon exhibited a transepithelial electrical potential difference (PD) of about 100 mV, lumen side positive with respect to the haemolymph side. The PD was almost abolished by metabolic inhibitors, it was reduced by acetazolamide and SITS, and it was unaffected by ouabain. These effects suggest that HCO3- and Cl- are involved in the genesis of the PD, whereas Na+ is not directly responsible of the PD. Measurements of Na+ and Cl- fluxes across the colon wall confirm that Na+ moves following the PD across the tissue, while Cl- movement occurs against an electrochemical potential difference. The electrical profile of the epithelial cells is of the well type and it suggests that the primary or secondary active step for Cl- transport across the epithelium should be located at the mucosal border of the cell.  相似文献   

15.
Knowledge of liquid secretion by fetal lung stems from studies of sheep. We extended these studies to dogs and examined the persistence of the fetal pattern of airway epithelial permeability and ion transport in the neonatal animal. Plasma and lung liquid from fetal dogs were analyzed for Na+, K+, Cl-, and HCO3-. Only the Cl- concentration of fetal lung liquid (129 meq/l) was significantly different from that of fetal plasma (111 meq/l). Segments of trachea from fetal and neonatal (less than 1, 7-10, and 21-46 days after birth) dogs were excised and mounted in flux chambers. The transepithelial potential difference (PD) of all tissues was oriented lumen negative (9.8-14.8 mV). Under short-circuit conditions, unidirectional Na+ flows were symmetrical. Cl- was secreted, and the secretion was equivalent to short-circuit current (Isc). Cl- secretion persisted under open-circuit conditions. Lobar bronchi from 21- to 46-day neonates absorbed Na+ (1.9 mueq.cm-2.h-1), but unidirectional flows of Cl- were symmetrical. Amiloride (10(-4) M) reduced Isc of neonatal bronchi by 47% but did not affect fetal bronchi. Isoproterenol increased Isc of both fetal (33%) and neonatal (40%) bronchi. These responses suggest that fetal bronchi do not absorb Na+ but can be stimulated to secrete Cl-. We conclude that Cl- secretion by epithelium of large airways may contribute to fetal lung liquid production, but it is unlikely that the tracheal epithelium is involved in fluid absorption at birth. Whereas fetal bronchi appear to secrete Cl-, neonatal bronchi absorb Na+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Active secretion of electrolytes by hepatocytes is believed to be responsible for bile acid-independent canalicular bile flow (BAICF). Theophylline, which enhances BAICF, has been shown to enhance electrogenic Cl- secretion in a number of other epithelia. Such transport is dependent on Na+ and Cl-. Thus, the mechanism of theophylline choleresis may also involve stimulation of electrogenic Cl- secretion of the liver. This hypothesis was tested by studying the effect of ion substitution on theophylline choleresis in isolated perfused rat livers. Addition of theophylline (0.1 mmol) and dibutyryl cAMP (0.05 mmol) to 100 ml perfusate, in a single dose, increased bile flow and biliary secretion of Na+ and Cl- reversibly. These effects of theophylline were virtually abolished when perfusate Na+ (146 mM) was replaced by Li+ (146 mM) or choline+ (120 mM), and when Cl- (127 mM) was replaced by 120 mM NO-3, acetate- or isethionate-. Since even the permeable ions like Li+ and NO-3 could not substitute for Na+ and Cl-, these results show that the effect of theophylline on BAICF is specifically dependent on the presence of Na+ and Cl- in the perfusate. We propose, by analogy to other epithelia, that an electrogenic Cl- secretion mechanism is present in the liver. Theophylline, acting via cAMP, stimulates this transport process, thereby enhancing BAICF.  相似文献   

17.
Studies of the bidirectional fluxes of K across segments of rabbit descending colon indicate that: a) when the tissue is short-circuited, the net flux does not differ significantly from zero under control conditions and in the presence of aldosterone; and b) the bidirectional fluxes of K conform to the Ussing flux-ratio equation over a wide range of transepithelial electrochemical potential differences. These and other findings strongly suggest that the movements of K across the epithelium are restricted to paracellular routes and are entirely passive. Studies dealing with the mechanism of homocellular K transport indicate that: a) K is actively transported into the cells across the basolateral membranes against an electrochemical potential difference of approximately 30 mV; and b) the active uptake of K may be mediated by a rheogenic Na-K exchange pump that is also responsible for transcellular Na transport. These results are entirely consistent with the model proposed by Koefoed-Johnson and Ussing for isolated frog skin.  相似文献   

18.
The effects of ion substitutions on the Cl- secretion rate and tissue conductance of isolated short-circuited opercular epithelia from sea-water-adapted Fundulus heteroclitus were investigated. Serosal Na+ substitution had the same effect on the Cl- secretion rate that serosal Cl- substitution had on the active component of the Cl- efflux. This similarity indicated a 1:1 Na-Cl requirement for active Cl- secretion across this epithelium, which supports the proposal of a coupled NaCl uptake mechanism at the serosal membrane of Cl- secretory epithelia. Mucosal Na+ and Cl- substitutions appeared to inhibit completely the active Cl- secretory flux. The reductions in the tissue conductance with mucosal ion substitutions suggested that this effect can be attributed to a blocking of the apical membrane Cl- conductance. These mucosal ion effects suggested a possible direct regulatory influence of the external salinity on the Cl- secretion rate and tissue conductance, which provide alternative explanations for observations with the teleost gill epithelium.  相似文献   

19.
The mucosa that lines the airways is covered with a fluid film forming a hypophase between mucus and cell surface. To study the function of this epithelium aims at describing the mechanisms by which fluid is normally produced. Another goal to be pursued consists in looking for the origin of pathological situations, such as cystic fibrosis, in which the functioning of epithelial cell is altered. The elucidation of transport mechanisms present in the apical and in the basolateral membrane results in a conceptual model that illustrates the asymmetrical functioning of epithelial cells. Recent discoveries enlarge our understanding of membrane transport processes; in particular, a concerted, reciprocal regulation of the activity of both membranes was shown to be exerted via the intracellular composition. The tracheal epithelium absorbs Na+ and secretes Cl-. These two transports are active and electrogenic; their sum corresponds approximately to the short-circuit current measured in vitro. Na+ absorption is sensitive to amiloride from the luminal side and also to ouabain added to the serosal compartment. The process is a primary active transport, analogous to that found in amphibian epithelia or in mammalian colon. Cl- secretion is abolished by furosemide (or bumetanide), by ouabain or by Na+ suppression in the serosal incubation solution. The mechanism is a secondary active transport: Cl- influx across the basolateral membrane is coupled to Na+ (probably through Na+, K+, Cl- symport); energy is dissipated by the Na+-K+-ATPase localised in the basolateral membrane. Thus, Na+ is recirculated across that membrane by the pump activity, which maintains a favorable gradient for influx via the symport. Cl- efflux takes place by diffusion through the luminal membrane. This model applies to other epithelia in which Na+-coupled Cl- secretion was shown to take place. It is confirmed by isotopic fluxes measurements and by electrophysiologic properties of the apical and the basolateral membrane. Various agents are known to influence ion transports. In particular Cl- secretion is stimulated by substances that increase the intracellular concentration of cyclic AMP. At the membrane level, the number of active Cl- channels in the apical membrane is primarily controlled, then the basolateral membrane K+ permeability. Yet, species differences are worth to note: the trachea of the cow is barely sensitive to agents that exert a marked action on dog trachea. The tracheal epithelium is used as an experimental model for studying cystic fibrosis, a disease in which the apical membrane is almost devoid of functional Cl- channels, so that Cl- permeability is quite low.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Under short-circuit conditions, vasoactive intestinal peptide (VIP) did not alter net Na+ movement but selectively stimulated net Cl- secretion across dog tracheal epithelium with a high affinity (Km congruent to 10(-8) M). The increase in Cl- secretion was not different from the rise in short-circuit current (Isc). However, stimulation of Cl- secretion was not maximal, because the addition of isoproterenol (10(-6) M) to VIP-treated tissues further increased the Isc by 54%. The effect of exogenous VIP was not blocked by a combination of atropine, phentolamine, propranolol (10(-5) or 10(-6) M), or tetrodotoxin (10(-6) M). Under open-circuit conditions, VIP caused an increase in the net secretion of Cl- and Na+, but the changes did not reach statistical significance. We conclude that VIP acts directly on receptors on the surface of epithelial cells to stimulate active Cl- secretion. The abundance of VIP nerves in the submucosa suggests that VIP may be important in regulation of fluid movement across the epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号