首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The human red-blood-cell glyoxalase system was modified by incubation with high concentrations of glucose in vitro. Red-blood-cell suspensions (50%, v/v) were incubated with 5 mM- and 25 mM-glucose to model normal and hyperglycaemic glucose metabolism. There was an increase in the flux of methylglyoxal metabolized to D-lactic acid via the glyoxalase pathway with high glucose concentration. The increase was approximately proportional to initial glucose concentration over the range studied (5-100 mM). The activities of glyoxalase I and glyoxalase II were not significantly changed, but the concentrations of the glyoxalase substrates, methylglyoxal and S-D-lactoylglutathione, and the percentage of glucotriose metabolized via the glyoxalase pathway, were significantly increased. The increase in the flux of intermediates metabolized via the glyoxalase pathway during periodic hyperglycaemia may be a biochemical factor involved in the development of chronic clinical complications associated with diabetes mellitus.  相似文献   

5.
This mini-review summarizes results of studies on the oxidation of proteins and low-density lipoprotein (LDL) by various mixed-function oxidation (MFO) systems. Oxidation of LDL by the O2/FeCl3/H2O2/ascorbate MFO system is dependent on all four components and is much greater when reactions are carried out in the presence of a physiological bicarbonate/CO2 buffer system as compared to phosphate buffer. However, FeCl3 in this system could be replaced by hemin or the heme-containing protein, hemoglobin, or cytochrome c. Oxidation of LDL by the O2/cytochrome P450 cytochrome c reductase/NADPH/FeCl3 MFO system is only slightly higher (25%) in the bicarbonate/CO2 buffer as compared to phosphate buffer, but is dependent on all components except FeCl3. Omission of FeCl3 led to a 60% loss of activity. These results suggest that peroxymonobicarbonate and/or free radical derivatives of bicarbonate ion and/or CO2 might contribute to LDL oxidation by these MFO systems.  相似文献   

6.
7.
8.
Prokaryotic sulfur oxidation   总被引:3,自引:0,他引:3  
Recent biochemical and genomic data differentiate the sulfur oxidation pathway of Archaea from those of Bacteria. From these data it is evident that members of the Alphaproteobacteria harbor the complete sulfur-oxidizing Sox enzyme system, whereas members of the beta and gamma subclass and the Chlorobiaceae contain sox gene clusters that lack the genes encoding sulfur dehydrogenase. This indicates a different pathway for oxidation of sulfur to sulfate. Acidophilic bacteria oxidize sulfur by a system different from the Sox enzyme system, as do chemotrophic endosymbiotic bacteria.  相似文献   

9.
To clarify the biological mechanism of anaerobic methane oxidation, experiments were performed with samples of the Black Sea anaerobic sediments and with the aerobic methane-oxidizing bacterium Methylomonas methanica strain 12. The inhibition-stimulation analysis did not allow an unambiguous conclusion to be made about direct and independent role of either methanogenic or sulfate-reducing microorganisms in the biogeochemical process of anaerobic methane oxidation. Enrichment cultures obtained from samples of water and reduced sediments oxidized methane under anaerobic conditions, primarily in the presence of acetate or formate or of a mixture of acetate, formate, and lactate. However, this ability was retained by the cultures for no more than two transfers on corresponding media. Experiments showed that the aerobic methanotroph Mm. methanica strain 12 is incapable of anaerobic methane oxidation at the expense of the reduction of amorphous FeOOH.  相似文献   

10.
Hydroethidine (HE) is a blue fluorescent dye that is intracellularly converted into red-emitting products on two-electron oxidation. One of these products, namely 2-hydroxyethidium, is formed as the result of HE superoxide anion-specific oxidation, and so HE is widely used for the detection of superoxide in cells and tissues. In our experiments we exploited three cell lines of different origin: K562 (human leukemia cells), A431 (human epidermoid carcinoma cells), and SCE2304 (human mesenchymal stem cells derived from endometrium). Using fluorescent microscopy and flow cytometry analysis, we showed that HE intracellular oxidation products accumulate mostly in the cell mitochondria. This accumulation provokes gradual depolarization of mitochondrial membrane, affects oxygen consumption rate in HE-treated cells, and causes cellular apoptosis in the case of high HE concentrations and/or long cell incubations with HE, as well as a high rate of HE oxidation in cells exposed to some stimuli.  相似文献   

11.
This study measured the time courses of protein and DNA oxidation following spinal cord injury (SCI) in rats and characterized oxidative degradation of proteins. Protein carbonyl content-a marker of protein oxidation-significantly increased at 3-9 h postinjury and the ratio 8-hydroxy-2-deoxyguanosine/deoxyguanosine-an indicator of DNA oxidation-was significantly higher at 3-6 h postinjury in the injured cords than in the sham controls. This suggests that oxidative modification of proteins and DNA contributes to secondary damage in SCI. Densities of selected bands on coomassie-stained gels indicated that most proteins were degraded. Neurofilament protein (NFP) was particularly evaluated immunohistochemically; its light chain (NFP-68) was gradually degraded in nerve fibers, neuron bodies, and large dendrites following SCI. A mixture of Mn (III) tetrakis (4-benzoic acid) porphyrin (10 mg/kg)-a novel SOD mimetic-and nitro-L-arginine (1 mg/kg)-an inhibitor of nitric oxide synthase-injected intraperitoneally, increased NFP-68 immunoreactivity and the numbers of NFP-positive nerve fibers post-SCI, correlating NFP degradation in SCI to free radical-triggered oxidative damage for the first time. Therefore, blockage of protein and DNA oxidation in the secondary injury stage may improve long-term recovery-important information for development of the SCI therapies.  相似文献   

12.
Anaerobic ammonium oxidation (ANAMMOX) may provide an effective nitrogen removal pathway for constructed wetlands with low C/N influent. In a study of domestic sewage treatment, anaerobic ammonium oxidation process was identified in the pilot-scale constructed wetland of a bio-ecological process which was composed of a bio-contact oxidation reactor and a horizontal subsurface flow constructed wetland (CW). To investigate the ANAMMOX establishment in the bio-ecological process, two new CWs (planted and unplanted) were developed to be a control for the pre-existing CW. Under operational conditions of DO 2-3 mg/l, HRT 3.5 h for the bio-contact oxidation reactor, HRT 3 days for CWs, and domestic sewage as influent, the process achieved more than 90% TN removal rate after the ANAMMOX was established. The ANAMMOX bacteria on the media of the constructed wetlands were analyzed by specific polymerase chain reaction (PCR) with ANAMMOX specific primer set AMX818F-AMX1066R. The result of the genetic sequencing showed that the PCR product was related to Candidatus B. anammoxidans (AF375994.1) with 98% sequence similarity. Copy numbers of 16S rRNA gene of ANAMMOX bacteria in the pre-existing CW, the new planted CW and new unplanted CW were 3.47 × 105, 3.02 × 105 and 1.30 × 105, respectively. These results demonstrated that the ANAMMOX process was successfully established and operated consistently in the constructed wetlands with a bio-contact oxidation reactor as a pretreatment, and that vegetation positively affected the growth and enrichment of ANAMMOX bacteria.  相似文献   

13.
14.
Whole cells ofTreponema pallidum consumed O2 with lactate in a glucose-depleted medium.d(–) Lactate caused marked stimulation of O2 uptake at a rate similar to that with glucose, whereasl(+) lactate resulted in no increase over the reduced rate observed upon glucose depletion. Lactate oxidation was specific for -hydroxy straight-chain acids of 3,4, and 5 carbons. O2 uptake during lactate oxidation proceeded independently of pyruvate oxidation and required NAD. The product of lactate oxidation was pyruvate.d(–) Lactate-stimulate O2 uptake was sensitive to chlorpromazine and resistant to amytal and cyanide. Glucose did not inhibit the oxidation of lactate as shown by the additive effect of both substrates on O2 uptake. Oxidation of glucose, but not lactate, provided energy necesary for motilibty or maintenance of virulence. A mixture of lactate isomers was formed from glucose with thel(+) isomer concentration remaining constant and thed(–) isomer concentration varying inversely with dissolved O2 concentration. The function of lactate as an oxidizable substrate is apparently quite distinct from that of glucose.  相似文献   

15.
Summary A total of 1229 cultures, including 230 actinomycetes, 508 other bacteria, 12 fungi and 479 yeasts were screened for their ability to oxidize the isopropyl side chain of 2-phenyl propane (cumene). Four strains of actinomycetes and six strains of bacteria but no yeasts were found positive in converting 2-phenyl propane to its oxygenated products. Eight strains oxidized cumene through the alkyl side chain producing 2-phenyl-1-propanol. TwoBacillus strains oxidized cumene to an oxygenated product.Pseudomonas oleovorans NRRL B-3429 exhibited the highest alkyl side chain oxidation activity. The optimum reaction conditions for strain B-3429 are: 25 °C, pH 6.5 and 48 h of reaction. Octane-grown cells of strain B-3429 produced higher product yields (about 7.2-fold) than the glucose-grown cells. Prolonged incubation resulted in an increase in 2-phenyl-1-propionic acid production at the expense of 2-phenyl-1-propanol. The yield of 2-phenyl-1-propanol plus 2-phenyl-1-propionic acid was 5.1%. Reaction in the presence of methanol favored the accumulation of 2-phenyl-1-propionic acid and also increased the total yield. (The yield of 2-phenyl-1-propanol plus 2-phenyl-1-propionic acid was 14.9%.) Structures of the reaction products were confirmed by GC/MS and GC/IR analyses. Products contained 92% R(–) isomer.  相似文献   

16.
Protein oxidation and aging   总被引:13,自引:0,他引:13  
Organisms are constantly exposed to various forms of reactive oxygen species (ROS) that lead to oxidation of proteins, nucleic acids, and lipids. Protein oxidation can involve cleavage of the polypeptide chain, modification of amino acid side chains, and conversion of the protein to derivatives that are highly sensitive to proteolytic degradation. Unlike other types of modification (except cysteine oxidation), oxidation of methionine residues to methionine sulfoxide is reversible; thus, cyclic oxidation and reduction of methionine residues leads to consumption of ROS and thereby increases the resistance of proteins to oxidation. The importance of protein oxidation in aging is supported by the observation that levels of oxidized proteins increase with animal age. The age-related accumulation of oxidized proteins may reflect age-related increases in rates of ROS generation, decreases in antioxidant activities, or losses in the capacity to degrade oxidized proteins.  相似文献   

17.
Peroxidase oxidation of phenols   总被引:1,自引:0,他引:1  
Partially purified preparations of horseradish peroxidase were able to catalyze the effective transformation of such phenol compounds as phenol, o-chlorophenol, 2,4,6-trichlorophenol, pentachlorophenol (giving rise to the formation of polymer products insoluble in water), resorcinol, and thymol (giving rise to the formation of low-molecular-weight products). The following conditions were found to be optimal for peroxidase oxidation and provide the maximum extent of elimination of phenol compounds: temperature, 15-25 and 25-30 degrees C for phenol and chlorophenol compounds, respectively; molar ratio H2O2/phenol, 1:1; and transformation time, 1-3 h. Although effective transformation was observed within a broad range of pH, the efficiency of the process slightly increased at a pH from 6.0 to 7.5. It was suggested to carry out multiple peroxidase oxidations of phenols using partially purified peroxidase enclosed in a dialysis membrane bag placed into a solution of a phenol compound containing hydrogen peroxide.  相似文献   

18.
Summary The specific activity of the enzyme catalase was investigated in batch cultures ofCandida tropicalis on the following substrates: Gelsenberg 14/18, n-hexandecane, 1-octadecene, oleyl alcohol, oleic acid and glucose. The catalase activity does not change with the different oxidation levels of the hydrocarbon substrates. A correlation between specific activity and growth rate was established.Inhibition experiments with 2-amino-1,3,4-triazol (AT), a specific catalase inhibitor, gave no evidence for two kinds of hydrogen peroxide-degrading enzymes in yeast cells.Growth on hydrocarbons instead of on glucose enhanced the specific activities of both isocitratelyase (ICL) and catalase to about the same extent.On the other hand the succinate-cytochrome C-oxidoreductase, a mitochondrial enzyme, showed more or less the same activity on both substrates.All these facts suggest that the catalase enzyme is related to the degradation (- or -oxidation) or to the gluconeogenesis (glyoxylate cycle) of fatty acids, but not to the initial oxidation of the alkanes.  相似文献   

19.
20.
Enzymatic oxidation of bilirubin   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号