首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protegrin antimicrobial peptides (AMP) possess a high activity against a variety of microorganisms. In the present contribution, we analyse the structural requirements of protegrin analogues reported by Ostberg and Kaznessis (Peptides 2005; 26: 197) for having antimicrobial activity against several microbial species by using interpretable QSAR models. Models were carried out using multiple linear regression (MLR) combined with genetic algorithm (GA) and smoothed amino acid sequence properties were employed for characterizing the peptide dataset. The main advantage of smoothing process is the alteration of local amino acid properties by the properties of the amino acids in the closer neighbourhood. We report models encompassing different characteristics for describing the activities against different microbial species. Our results suggest the existence of specific mechanisms of action for protegrin analogues against different microbial species.  相似文献   

2.
The therapeutic, antibiotic potential of antimicrobial peptides can be prohibitively diminished because of the cytotoxicity and hemolytic profiles they exhibit. Quantifying and predicting antimicrobial peptide toxicity against host cells is thus an important goal of AMP related research. In this work, we present quantitative structure activity relationships for toxicity of protegrin-like antimicrobial peptides against human cells (epithelial and red blood cells) based on physicochemical properties, such as interaction energies and radius of gyration, calculated from molecular dynamics simulations of the peptides in aqueous solvent. The hypothesis is that physicochemical properties of peptides, as manifest by their structure and interactions in a solvent and as captured by atomistic simulations, are responsible for their toxicity against human cells. Protegrins are beta-hairpin peptides with high activity against a wide variety of microbial species, but in their native state are toxic to human cells. Sixty peptides with experimentally determined toxicities were used to develop the models. We test the resulting relationships to determine their ability to predict the toxicity of several protegrin-like peptides. The developed QSARs provide insight into the mechanism of cytotoxic action of antimicrobial peptides. In a subsequent blind test, the QSAR correctly ranked four of five protegrin analogues newly synthesized and tested for toxicity.  相似文献   

3.
Protegrin antimicrobial peptides possess activity against gram-positive and gram-negative bacteria and yeasts. An extensive structure-activity relationship (SAR) study was conducted on several hundred protegrin analogues to gain understanding of the relationship between the primary and secondary structure of the protegrins and their antimicrobial activities, and to identify a protegrin analogue for clinical development. Native sequence protegrins are cationic, amphiphilic peptides that are characterized by the presence of a beta-sheet structure that is maintained by two disulfide bridges. The presence of the beta-sheet is key to the stability of the protegrin structure; linearized analogues or analogues that have amino acid substitutions that eliminate hydrogen bonding across the beta-sheet have reduced activity, especially in the presence of physiological concentrations of NaCl. Also, maintaining amphiphilicity of the beta-sheet is key; analogues with substitutions of polar amino acids in the hydrophobic face have reduced activity. Analogues with reduced positive charge tend to be less active, an observation that is more marked for gram-negative than gram-positive bacteria, and may implicate binding to lipopolysaccharide as a key mechanistic step in the killing of gram-negative bacteria. A very large number of amino acid substitutions are tolerated by the protegrin structure, implying that overall structural features such as amphiphilicity, charge, and shape are more important to activity than the presence of specific amino acids. This lack of importance of specific stereochemistry is supported by the fact that completely D-amino acid substituted protegrins are fully potent. Based on the SAR studies, and on the microbiological data from an animal model, one protegrin analogue, IB-367, was selected for clinical development as a topical agent to prevent the oral mucositis associated with cancer therapy.  相似文献   

4.
The properties and structure-activity relationships (SAR) of a macrocyclic analogue of porcine protegrin I (PG-I) have been investigated. The lead compound, having the sequence cyclo-(-Leu-Arg-Leu-Lys-Lys-Arg-Arg-Trp-Lys-Tyr-Arg-Val-d-Pro-Pro-), shows antimicrobial activity against Gram-positive and -negative bacteria, but a much lower haemolytic activity and a much reduced ability to induce dye release from phosphatidylcholine/phosphatidylglycerol liposomes, when compared to PG-I. The enantiomeric form of the lead peptide shows comparable antimicrobial activity, a property shared with other cationic antimicrobial peptides acting on cell membranes. SAR studies involving the synthesis and biological profiling of over 100 single site substituted analogues, showed that the antimicrobial activity was tolerant to a large number of the substitutions tested. Some analogues showed slightly improved antimicrobial activities (2-4-fold lowering of MICs), whereas other substitutions caused large increases in haemolytic activity on human red blood cells.  相似文献   

5.
Protegrins are potent members of the beta-hairpin-forming class of antimicrobial peptides. Key to their antimicrobial activity is their assembly into oligomeric structures upon binding to the bacterial membrane. To examine the relationship between the physicochemical properties of the peptide and its biological activity, we have synthesized variants of protegrin-1 in which key residues in the hydrophobic core, valine-14 and -16, are changed to leucine and to the extensively fluorinated analogue hexafluoroleucine. These substitutions have the effect of making the peptide progressively more hydrophobic while minimally perturbing the secondary structure. The leucine-containing peptide was significantly more active than wild-type protegrin against several common pathogenic bacterial strains, whereas the hexafluoroleucine-substituted peptide, in contrast, showed significantly diminished activity against several bacterial strains. Isothermal titration calorimetry measurements revealed significant changes in the interaction of the peptides binding to small unilamelar vesicles that mimic the lipid composition of the bacterial membrane. The binding isotherms for wild-type and leucine-substituted protegrins indicate that electrostatic interactions dominate the membrane-peptide interaction, whereas the isotherm for the hexafluoroleucine-substituted protegrin suggests a diminished electrostatic component to binding. Notably both of these substitutions appear to alter the stoichiometry of the lipid-peptide interaction, suggesting that these substitutions may stabilize oligomerized forms of protegrin that are postulated to be intermediates in the assembly of the beta-barrel membrane pore structure.  相似文献   

6.
To correlate conformational rigidity with membranolytic selectivity of antimicrobial activity and cytotoxicity, we prepared six cyclic analogs of protegrin-1 (PG-1), an 18-residue cationic peptide with a broad-spectrum antimicrobial activity. These cyclic protegrins bear end-to-end peptide bonds together with varying numbers (zero to three) of cross-strand disulfide constraints. The most constrained analog is a cyclic tricystine protegrin (ccPG 3) containing three evenly spaced, parallel disulfide bonds. Antimicrobial assays against 10 organisms in low- and high-salt conditions showed that these cyclic protegrins were broadly active with different antimicrobial profiles against Gram-positive and Gram-negative bacteria, fungi and one tested virus, HIV-1. Compared to PG-1, the cyclic tricystine ccPG 3 displayed approximately a 10-fold decrease in hemolytic activity against human cells and 6- to 30-fold improvement of membranolytic selectivity against six of the 10 tested organisms. In contrast, [DeltaSS]cPG 8, a cyclic protegrin with no disulfide bond, and [DeltaCys6,15]cPG 5, a cyclic mimic of PG-1 with one disulfide bond, exhibited activity spectra, potency, and cytotoxicity similar to PG-1. Circular dichroism showed that cyclic protegrins containing with one to three cystine bonds displayed some degree of beta-strand structures in water/trifluoroethanol or phosphate-buffered solutions. Collectively, our results indicate that cyclic structures are useful in the design of antimicrobial peptides and that an increase in the conformational rigidity of protegrins may confer membranolytic selectivity that dissociates antimicrobial activity from hemolytic activity.  相似文献   

7.
The antimicrobial, insecticidal, and hemolytic properties of peptides isolated from the venom of the predatory ant Pachycondyla goeldii, a member of the subfamily Ponerinae, were investigated. Fifteen novel peptides, named ponericins, exhibiting antibacterial and insecticidal properties were purified, and their amino acid sequences were characterized. According to their primary structure similarities, they can be classified into three families: ponericin G, W, and L. Ponericins share high sequence similarities with known peptides: ponericins G with cecropin-like peptides, ponericins W with gaegurins and melittin, and ponericins L with dermaseptins. Ten peptides were synthesized for further analysis. Their antimicrobial activities against Gram-positive and Gram-negative bacteria strains were analyzed together with their insecticidal activities against cricket larvae and their hemolytic activities. Interestingly, within each of the three families, several peptides present differences in their biological activities. The comparison of the structural features of ponericins with those of well-studied peptides suggests that the ponericins may adopt an amphipathic alpha-helical structure in polar environments, such as cell membranes. In the venom, the estimated peptide concentrations appear to be compatible with an antibacterial activity in vivo. This suggests that in the ant colony, the peptides exhibit a defensive role against microbial pathogens arising from prey introduction and/or ingestion.  相似文献   

8.
In the present study, the 26-residue peptide sequence Ac-KWKSFLKTFKSAVKTVLHTALKAISS-amide (V681) was utilized as the framework to study the effects of peptide hydrophobicity/hydrophilicity, amphipathicity, and helicity (induced by single amino acid substitutions in the center of the polar and nonpolar faces of the amphipathic helix) on biological activities. The peptide analogs were also studied by temperature profiling in reversed-phase high performance liquid chromatography, from 5 to 80 degrees C, to evaluate the self-associating ability of the molecules in solution, another important parameter in understanding peptide antimicrobial and hemolytic activities. A higher ability to self-associate in solution was correlated with weaker antimicrobial activity and stronger hemolytic activity of the peptides. Biological studies showed that strong hemolytic activity of the peptides generally correlated with high hydrophobicity, high amphipathicity, and high helicity. In most cases, the D-amino acid substituted peptides possessed an enhanced average antimicrobial activity compared with L-diastereomers. The therapeutic index of V681 was improved 90- and 23-fold against Gram-negative and Gram-positive bacteria, respectively. By simply replacing the central hydrophobic or hydrophilic amino acid residue on the nonpolar or the polar face of these amphipathic derivatives of V681 with a series of selected D-/L-amino acids, we demonstrated that this method has excellent potential for the rational design of antimicrobial peptides with enhanced activities.  相似文献   

9.
Zhao J  Sun Y  Li Z  Su Q 《Zoological science》2011,28(2):112-117
One species of the Chinese brown frog, Rana chensinensis, is widely distributed in north-central China. In this study, a cDNA library was constructed to clone the antimicrobial peptides' genes from the skin of R. chensinensis. Twenty-three prepropeptide cDNA sequences encoding twelve novel mature antimicrobial peptides were isolated and characterized. Six peptides belonged to three known families previously identified from other Ranid frogs: temporin (4 peptides), brevinin-2 (1 peptide), and palustrin-2 (1 peptide). The other six peptides showed little similarity to known antimicrobial peptides. According to the amino acid sequences, with or without α-helix structure, and either hydrophilic or hydrophobic, these were organized into four new families: chensinin-1 (3 peptides), chensinin-2 (1 peptide), chensinin-3 (1 peptide), and chensinin-4 (1 peptide). Five peptides from different families were chemically synthesized, and their antimicrobial, cytolytic, and hemolytic activities were evaluated. Of these, brevinin-2CE showed strongest antimicrobial activities against both the Gram-positive and Gram-negative bacteria with a slight hemolysis. Temporin-1CEe and palustrin-2CE also displayed a slight hemolysis, but they had different activities to prokaryotic cells. Temporin-1CEe showed higher antimicrobial activity against Gram-positive bacteria than Gram-negative bacteria, whereas it was contrary to palustrin-2CE. Chensinin-1 CEb and chensinin-3CE only had moderate antimicrobial activity against microorganisms. In addition, the brevinin-2 peptides from different brown frogs were analyzed to reveal the taxonomy and phylogenetic relationships of R. chensinensis.  相似文献   

10.
11.
Antimicrobial peptides (AMPs) represent the first defense line against infection when organisms are infected by pathogens. These peptides are generally good targets for the development of antimicrobial agents. Peptide amide analogs of Ixosin-B, an antimicrobial peptide with amino acid sequence of QLKVDLWGTRSGIQPEQHSSGKSDVRRWRSRY, were designed, synthesized and examined for antimicrobial activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Within the peptides synthesized, we discovered an 11-mer peptide, KRLRRVWRRWR-amide, which exhibited potent antimicrobial activity while very little hemolytic activity in human erythrocytes was observed even at high dose level (100 μM). With further modifications, this peptide could be developed into a potent antimicrobial agent in the future.  相似文献   

12.
Wang X  Song Y  Li J  Liu H  Xu X  Lai R  Zhang K 《Peptides》2007,28(10):2069-2074
While conducting experiments to investigate antimicrobial peptides of amphibians living in the Yunnan-Guizhou region of southwest China, a new family of antimicrobial peptides was identified from skin secretions of the Yunnan frog, Rana pleuraden. Members of the new peptide family named pleurain-As are composed of 26 amino acids with a unique N-terminal sequence (SIIT) and a disulfide-bridged heptapeptide sequence (CRLYNTC). By BLAST search, pleurain-As had no significant similarity to any known peptides. Native and synthetic peptides showed antimicrobial activities against tested microorganisms including Gram-negative and Gram-positive bacteria and fungi. Twenty different cDNAs encoding pleurain-As were cloned from the skin cDNA library of R. pleuraden. The precursors of pleurain-As are composed of 69 amino acid residues including predicted signal peptides, acidic propieces, and cationic mature antimicrobial peptides. The preproregion of pleurain-A precursor comprises a hydrophobic signal peptide of 22 residues followed by an 18 residue acidic propiece which terminates by a typical prohormone processing signal Lys-Arg. The preproregions of precursors are very similar to other amphibian antimicrobial peptide precursors but the mature pleurain-As are different from other antimicrobial peptide families. The remarkable similarity of preproregions of precursors that give rise to very different antimicrobial peptides in distantly related frog species suggests that the corresponding genes form a multigene family originating from a common ancestor. Furthermore, pleurain-As could exert antimicrobial capability against Helicobacter pylori. This is the first report of naturally occurring peptides with anti-H. pylori activity from Rana amphibians.  相似文献   

13.
Design of antimicrobial peptides with selective activity towards microorganisms is an important step towards the development of new antimicrobial agents. Leucine zipper sequence has been implicated in cytotoxic activity of naturally occurring antimicrobial peptides; moreover, this motif has been utilized for the design of novel antimicrobial peptides with modulated cytotoxicity. To understand further the impact of substitution of amino acids at ‘a’ and/or ‘d’ position of a leucine zipper sequence of an antimicrobial peptides on its antimicrobial and cytotoxic properties four short peptides (14-residue) were designed on the basis of a leucine zipper sequence without or with replacement of leucine residues in its ‘a’ and ‘d’ positions with d-leucine or alanine or proline residue. The original short leucine zipper peptide (SLZP) and its d-leucine substituted analog, DLSA showed comparable activity against the tested Gram-positive and negative bacteria and the fungal strains. The alanine substituted analog (ASA) though showed appreciable activity against the tested bacteria, it showed to some extent lower activity against the tested fungi. However, the proline substituted analog (PSA) showed lower activity against the tested bacterial or fungal strains. Interestingly, DLSA, ASA and PSA showed significantly lower cytotoxicity than SLZP against both human red blood cells (hRBCs) and murine 3T3 cells. Cytotoxic and bactericidal properties of these peptides matched with peptide-induced damage/permeabilization of mammalian cells and bacteria or their mimetic lipid vesicles suggesting cell membrane could be the target of these peptides. As evidenced by tryptophan fluorescence and acrylamide quenching studies the peptides showed similarities either in interaction or in their localization within the bacterial membrane mimetic negatively charged lipid vesicles. Only SLZP showed localization inside the mammalian membrane mimetic zwitterionic lipid vesicles. The results show significant scope for designing antimicrobial agents with selectivity towards microorganisms by substituting leucine residues at ‘a’ and/or ‘d’ positions of a leucine zipper sequence of an antimicrobial peptide with different amino acids.  相似文献   

14.
A method based on the use of signal peptide sequences from antimicrobial peptide (AMP) precursors was used to mine a placozoa expressed sequence tag database and identified a potential antimicrobial peptide from Trichoplax adhaerens. This peptide, with predicted sequence FFGRLKSVWSAVKHGWKAAKSR is the first AMP from a placozoan species, and was named trichoplaxin. It was chemically synthesized and its structural properties, biological activities and membrane selectivity were investigated. It adopts an α-helical structure in contact with membrane-like environments and is active against both Gram-negative and Gram-positive bacterial species (including MRSA), as well as yeasts from the Candida genus. The cytotoxic activity, as assessed by the haemolytic activity against rat erythrocytes, U937 cell permeabilization to propidium iodide and MCF7 cell mitochondrial activity, is significantly lower than the antimicrobial activity. In tests with membrane models, trichoplaxin shows high affinity for anionic prokaryote-like membranes with good fit in kinetic studies. Conversely, there is a low affinity for neutral eukaryote-like membranes and absence of a dose dependent response. With high selectivity for bacterial cells and no homologous sequence in the UniProt, trichoplaxin is a new potential lead compound for development of broad-spectrum antibacterial drugs.  相似文献   

15.
Different species of Leishmania are responsible for cutaneous, mucocutaneous or visceral leishmaniasis infections in millions of people around the world [14]. The adverse reactions caused by antileishmanial drugs, emergence of resistance and lack of a vaccine have motivated the search for new therapeutic options to control this disease. Different sources of antimicrobial molecules are under study as antileishmanial agents, including peptides with antimicrobial and/or immunomodulatory activity, which have been considered to be potentially active against diverse species of Leishmania [7] and [39]. This study evaluated the cytotoxicity on dendritic cells, hemolytic activity, leishmanicidal properties on Leishmania panamensis and Leishmania major promastigotes and effectiveness on parasite intracellular forms (dendritic cells infected with L. panamensis and L. major promastigotes), when each parasite in culture was exposed to different concentrations of a group of synthetic peptides with previously reported antimicrobial properties, which were synthesized based on their naturally occurring reported sequences. Dermaseptin, Pr-2 and Pr-3 showed inhibitory activity on the growth of L. panamensis promastigotes, while Andropin and Cecropin A (with a selectivity index of 4 and 40, respectively) showed specific activity against intracellular forms of this species. The activities of Andropin and Cecropin A were exclusively against the intracellular forms of the parasite, therefore indicating the relevance of these two peptides as potential antileishmanial agents. In the case of L. major promastigotes, Melittin and Dermaseptin showed inhibitory activity, the latter also showed a selectivity index of 8 against intracellular forms. These findings suggest Andropin, Cecropin A and Dermaseptin as potential therapeutic tools to treat New and Old World cutaneous leishmaniasis.  相似文献   

16.
Cathelicidins are a family of antimicrobial peptides which exhibit broad antimicrobial activities against antibiotic-resistant bacteria. Considering the progressive antibiotic resistance, cathelicidin is a candidate for use as an alternative approach to treat and overcome the challenge of antimicrobial resistance. Cathelicidin-BF (Cath-BF) is a short antimicrobial peptide, which was originally extracted from the venom of Bungarus fasciatus. Recent studies have reported that Cath-BF and some related derivatives exert strong antimicrobial and weak hemolytic properties. This study investigates the bactericidal and cytotoxic effects of Cath-BF and its analogs (Cath-A and Cath-B). Cath-A and Cath-B were designed to increase their net positive charge, to have more activity against methicillin resistant S. aureus (MRSA). The results of this study show that Cath-A, with a +17-net charge, has the most noteworthy antimicrobial activity against MRSA strains, with minimum inhibitory concentration (MIC) ranging between 32–128 μg/ml. The bacterial kinetic analysis by 1 × MIC concentration of each peptide shows that Cath-A neutralizes the clinical MRSA isolate for 60 min. The present data support the notion that increasing the positive net charge of antimicrobial peptides can increase their potential antimicrobial activity. Cath-A also displayed the weakest cytotoxicity effect against human umbilical vein endothelial and H9c2 rat cardiomyoblast cell lines. Analysis of the hemolytic activity reveals that all three peptides exhibit minor hemolytic activity against human erythrocytes at concentrations up to 250 μg/ml. Altogether, these results suggest that Cath-A and Cath-B are competent candidates as novel antimicrobial compounds against MRSA and possibly other multidrug resistant bacteria.  相似文献   

17.
The aim of this study was to isolate bacteria with antimicrobial activities from the marine sponges Aplysina aerophoba and Aplysina cavernicola. The obtained 27 isolates could be subdivided into eight phylogenetically different clusters based on comparative sequence analysis of their 16S rDNA genes. The sponge isolates were affiliated with the low (Bacillus) and high G+C Gram-positive bacteria (Arthobacter, Micrococcus), as well as the alpha-Proteobacteria (unknown isolate) and gamma-Proteobacteria (Vibrio, Pseudoalteromonas). One novel Bacillus species was identified and two species were closely related to previously uncharacterized strains. Isolates with antimicrobial activity were numerically most abundant in the genera Pseudoalteromonas and the alpha-Proteobacteria. The sponge isolates show antimicrobial activities against Gram-positive and Gram-negative reference strains but not against the fungus Candida albicans. A general pattern was observed in that Gram-positive bacteria inhibited Gram-positive strains while Gram-negative bacteria inhibited Gram-negative isolates. Antimicrobial activities were also found against clinical isolates, i.e. multi-resistant Staphylococcus aureus and Staphylococcus epidermidis strains isolated from hospital patients. The high recovery of strains with antimicrobial activity suggests that marine sponges represent an ecological niche which harbors a hitherto largely uncharacterized microbial diversity and, concomitantly, a yet untapped metabolic potential.  相似文献   

18.
Chen Z  Yang X  Liu Z  Zeng L  Lee W  Zhang Y 《Biochimie》2012,94(2):328-334
The characterization of new natural antimicrobial peptides (AMPs) can help to solve the serious problem of bacterial resistance to currently used antibiotics. In the current study, we analyzed two families of AMPs from the Chinese torrent frog Amolops jingdongensis with a range of bioactivities. The first family of peptides, named jindongenin-1a, is 24 amino acids in length; a BLAST search of jindongenin-1a revealed no sequence similarity with other AMPs. The second family consists of two peptides containing 29 amino acid residues each. These peptides have high sequence similarity with the AMPs of palustrin-2 and are therefore designated palustrin-2AJ1 and palustrin-2AJ2. The cDNA sequences encoding these AMPs have been cloned and the deduced protein sequence of each AMP has been determined by protein sequencing. Sequence and structural analysis showed that each precursor is composed of a putative signal peptide, an N-terminal spacer, a processing site and a disulfide-bridged heptapeptide segment at the C-terminus. We synthesized jindongenin-1a and palustrin-AJ1 to test their antimicrobial, hemolytic, antioxidative and cytotoxic activities. These two peptides showed broad-spectrum antimicrobial activity to standard and clinically isolated strains of bacteria. In addition, they exhibited weak hemolytic activity to human and rabbit erythrocytes under our experimental conditions. Moreover, these peptides also displayed cytotoxic activity against the K562 and HT29 mammalian cell lines and low anti-oxidant activity. These findings provide helpful insight that will be useful in the design of anti-infective peptide agents.  相似文献   

19.
The protegrin PG-1, belonging to the family of beta-stranded antimicrobial peptides, exerts its activity by forming pores in the target biological membranes. Linear analogues derived from PG-1 do not form pores in the phospholipid membranes and have been used successfully to deliver therapeutic compounds into eucaryotic cells. In this paper, the translocation of PG-1 and of a linear analogue through artificial phospholipid membranes was investigated, leading to a possible mechanism for the activity of these peptidic vectors. We report here that [12W]PG-1, a fluorescent analogue of PG-1, is able to translocate through lipid bilayers and we demonstrate that this property depends on its secondary structure. Our results agree with the recent mechanism proposed for the translocation and permeabilisation activities of several helical and beta-stranded peptides. In addition, our data corroborate recent work suggesting that certain protegrin-derived vectors enter into endothelial cells by adsorptive-mediated endocytosis.  相似文献   

20.
Tritrpticin is a member of the cathelicidin family of antimicrobial peptides. Starting from its native sequence (VRRFPWWWPFLRR), eight synthetic peptide analogs were studied to investigate the roles of specific residues in its biological and structural properties. This included amidation of the C-terminus paired with substitutions of its cationic and Phe residues, as well as the Pro residues that are important for its two-turn micelle-bound structure. These analogs were determined to have a significant antimicrobial potency. In contrast, two other peptide analogs, those with the three Trp residues substituted with either Phe or Tyr residues are not highly membrane perturbing, as determined by leakage and flip-flop assays using fluorescence spectroscopy. Nevertheless the Phe analog has a high activity; this suggests an intracellular mechanism for antimicrobial activity that may be part of the overall mechanism of action of native tritrpticin as a complement to membrane perturbation. NMR experiments of these two Trp-substituted peptides showed the presence of multiple conformers. The structures of the six remaining Trp-containing analogs bound to dodecylphosphocholine micelles showed major, well-defined conformations. These peptides are membrane disruptive and show a wide range in hemolytic activity. Their micelle-bound structures either retain the typical turn-turn structure of native tritrpticin or have an extended alpha-helix. This work demonstrates that closely related antimicrobial peptides can often have remarkably altered properties with complex influences on their biological activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号