首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the first half of the XXth century, while Upper-Volta (now Burkina Faso) was suffering a terrible epidemic of sleeping sickness, the French colonial administration encouraged the movement of people from Upper-Volta to Ivory Coast to meet their demands for labour. This led to the establishment of Mossi villages, such as those of Koudougou, in the Ivorian forest with populations originating from areas of Upper-Volta that were not only densely populated but also severely affected by sleeping sickness. Since 2000, most cases of sleeping sickness in the Koudougou district of Burkina Faso have been in people originally from Ivory Coast. Who are they? Where did they settle in Burkina Faso? Where do they come from in Ivory Coast? After having retraced the epidemiological history of Koudougou villages in Burkina Faso and Ivory Coast, the history of ten cases of sleeping sickness detected passively at Koudougou hospital since 2000 were analysed. All cases originated from the forest area of Ivory Coast. Understanding the spread of sleeping sickness between Burkina Faso and Ivory Coast will assist in the identification of areas of disease risk.  相似文献   

2.
The advanced stages of sleeping sickness are correlated with a spread of trypanosomes into the central nervous system (CNS), producing a disseminated encephalitis. Inflammatory reactions extend along the blood vessels causing perivascular cuffing, which consists of in filtrations and proliferations of lymphocytes and also increased numbers of astrocytes and microglia. Progress in our understanding of the functions of astrocytes suggests that they are efficient antigen-presenting cells, initiating and regulating the intracerebral inflammatory response and limiting parasite spread to the perivascular spaces.  相似文献   

3.
Tsetse-transmitted human and animal trypanosomiasis are constraints to both human and animal health in sub-Saharan Africa, and although these diseases have been known for over a century, there is little recent evidence demonstrating how the parasites circulate in natural hosts and ecosystems. The spread of Rhodesian sleeping sickness (caused by Trypanosoma brucei rhodesiense) within Uganda over the past 15 years has been linked to the movement of infected, untreated livestock (the predominant reservoir) from endemic areas. However, despite an understanding of the environmental dependencies of sleeping sickness, little research has focused on the environmental factors controlling transmission establishment or the spatially heterogeneous dispersal of disease following a new introduction. In the current study, an annually stratified case-control study of Rhodesian sleeping sickness cases from Serere District, Uganda was used to allow the temporal assessment of correlations between the spatial distribution of sleeping sickness and landscape factors. Significant relationships were detected between Rhodesian sleeping sickness and selected factors, including elevation and the proportion of land which was “seasonally flooding grassland” or “woodlands and dense savannah.” Temporal trends in these relationships were detected, illustrating the dispersal of Rhodesian sleeping sickness into more ‘suitable’ areas over time, with diminishing dependence on the point of introduction in concurrence with an increasing dependence on environmental and landscape factors. These results provide a novel insight into the ecology of Rhodesian sleeping sickness dispersal and may contribute towards the implementation of evidence-based control measures to prevent its further spread.  相似文献   

4.
In 1997 the World Health Organization (WHO) advocated increased access to diagnosis and treatment, as well as reinforcement of surveillance, for the control of sleeping sickness (human African trypanosomiasis, HAT). This coincided with the end of decades of civil conflicts in several endemic regions and negotiation of a sustainable supply of 'free' curative drugs and, as a result, HAT is at its lowest level in 50 years. However, reported cases underestimate prevalence and downplay HAT when compared with data generated by advanced diagnostic capacity for human immunodeficiency virus (HIV), tuberculosis (TB) and malaria, and, because HAT case numbers fall between epidemics, diagnostics become less commercially appealing. Here recent trends in the development of diagnostics for sleeping sickness are considered and progress towards a much-needed sensitive, specific and affordable point-of-care diagnostic is assessed.  相似文献   

5.
Sleeping sickness continues to be a significant public health burden in southeastern Uganda. Continued spread of the disease into new areas of Uganda highlights our inability to understand and predict the distribution of infection. Multiple factors influence the distribution of sleeping sickness, including climate, land cover, cattle movements, prevention and control activities, and social conflict. We draw on a systems approach to conceptualize and characterize the multiple interacting forces and processes that influence the spatial and temporal dynamics of sleeping sickness in Uganda. This synthesis reveals a complex system of interactions among human and biophysical systems, feedback, and scale dependence. We identify some common analytical modeling approaches relative to our system characterization and identify opportunities for sleeping sickness research and improved understanding of disease dynamics in Uganda.  相似文献   

6.
In the sleeping sickness focus of Zoukougbeu (C?te d'Ivoire), in the cropping areas which are favourable for disease transmission, more than a quarter of the flies collected were found to have fed on domestic pigs. The sites where Glossina palpalis palpalis was caught fed on these animals were concordant with the sites where the patients were present. These results might indicate that in Zoukougbeu, but perhaps also in other sleeping sickness foci, the pig could play an active role in disease transmission, allowing the parasite to spread widely via the tsetse.  相似文献   

7.
Davis S  Aksoy S  Galvani A 《Parasitology》2011,138(4):516-526
African sleeping sickness is a parasitic disease transmitted through the bites of tsetse flies of the genus Glossina. We constructed mechanistic models for the basic reproduction number, R0, of Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, respectively the causative agents of West and East African human sleeping sickness. We present global sensitivity analyses of these models that rank the importance of the biological parameters that may explain variation in R0, using parameter ranges based on literature, field data and expertize out of Uganda. For West African sleeping sickness, our results indicate that the proportion of bloodmeals taken from humans by Glossina fuscipes fuscipes is the most important factor, suggesting that differences in the exposure of humans to tsetse are fundamental to the distribution of T. b. gambiense. The second ranked parameter for T. b. gambiense and the highest ranked for T. b. rhodesiense was the proportion of Glossina refractory to infection. This finding underlines the possible implications of recent work showing that nutritionally stressed tsetse are more susceptible to trypanosome infection, and provides broad support for control strategies in development that are aimed at increasing refractoriness in tsetse flies. We note though that for T. b. rhodesiense the population parameters for tsetse - species composition, survival and abundance - were ranked almost as highly as the proportion refractory, and that the model assumed regular treatment of livestock with trypanocides as an established practice in the areas of Uganda experiencing East African sleeping sickness.  相似文献   

8.
This paper is on dangerous human experimentations with drugs against trypanosimiasis carried out in the former German colonies of German East Africa and Togo. Victory over trypanosomiasis could not be achieved in Berlin because animals were thought to be unsuitable for therapeutic laboratory research in the field of trypanosomiasis. The colonies themselves were necessarily chosen as laboratories and the patients with sleeping sickness became the objects of therapeutical and pharmacological research. The paper first outlines Robert Koch's trypanosomiasis research in the large sleeping sickness laboratory of German East Africa and then focuses on the escalating human experiments on trypanosomiasis in the German Musterkolonie Togo, which must be interpreted as a reaction to the starting signal given by Robert Koch in East Africa.  相似文献   

9.
Trypan blue is colorant from the 19th century that has an association with Africa as a chemotherapeutic agent against protozoan (Trypanosomal) infections, which cause sleeping sickness. The dye still is used for staining biopsies, living cells and organisms, and it also has been used as a colorant for textiles.  相似文献   

10.
Human African trypanosomiasis, or sleeping sickness, is still a worrying problem in Africa. Sleeping sickness is a disease for which a systematic monitoring is necessary, particularly for the trypanosomiasis caused by Trypanosoma brucei gambiense, which is characterized by a long asymptomatic stage. In the absence of specific clinical signs, mass screening of populations remains the only way to control the disease and to avoid its spreading. The lack of sensitivity and specificity of the diagnosis tests classically used led to the development of molecular tools. PCR amplification of parasite specific sequences has considerably improved the diagnostic of the parasitic infection, the stage diagnosis as well as the post-therapeutic follow-up. But there are limits with a use in routine and research is still necessary to make PCR a real tool for control of sleeping sickness.  相似文献   

11.
Control of human African sleeping sickness, caused by subspecies of the protozoan parasite Trypanosoma brucei, is based on preventing transmission by elimination of the tsetse vector and by active diagnostic screening and treatment of infected patients. To identify trypanosome proteins that have potential as biomarkers for detection and monitoring of African sleeping sickness, we have used a ‘deep-mining” proteomics approach to identify trypanosome proteins in human plasma. Abundant human plasma proteins were removed by immunodepletion. Depleted plasma samples were then digested to peptides with trypsin, fractionated by basic reversed phase and each fraction analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This sample processing and analysis method enabled identification of low levels of trypanosome proteins in pooled plasma from late stage sleeping sickness patients infected with Trypanosoma brucei rhodesiense. A total of 254 trypanosome proteins were confidently identified. Many of the parasite proteins identified were of unknown function, although metabolic enzymes, chaperones, proteases and ubiquitin-related/acting proteins were found. This approach to the identification of conserved, soluble trypanosome proteins in human plasma offers a possible route to improved disease diagnosis and monitoring, since these molecules are potential biomarkers for the development of a new generation of antigen-detection assays. The combined immuno-depletion/mass spectrometric approach can be applied to a variety of infectious diseases for unbiased biomarker identification.  相似文献   

12.
The great sleeping sickness epidemic that occurred in Busoga at the turn of the century was caused by a trypanosome identified by Bruce as Trypanosoma gambiense. A study of trypanosomes from the recent epidemic in southeast Uganda has shed new light on the origins of the disease in Busoga. Thorsten Koerner, Peter de Raadt and Ian Maudlin suggest that the epidemic of the turn of the century was of T. p. rhodesiense sleeping sickness, brought about then, as now by social upheaval.  相似文献   

13.
Human African trypanosomiasis, or sleeping sickness, evolves toward a meningoencephalitic stage, with a breakage in the blood-brain barrier, perivascular infiltrates, and astrocytosis. The involvement of nitric oxide (NO) has been evoked in the pathogenic development of the illness, since NO was found to be increased in the brain of animals infected with Trypanosoma brucei (T. b.) brucei. An excessive NO production can lead to alterations of neuronal signaling and to cell damage through the cytotoxicity of NO and its derivatives, especially peroxynitrites. In African trypanosomiasis, the sites of NO production and its role in the pathogenicity of lesions in the central nervous system (CNS) are unknown. In a chronic model of African trypanosomiasis (mice infected with T. b. brucei surviving with episodic suramin administration), NADPH-diaphorase staining of brain slides revealed that NO synthase (NOS) activity is located not only in endothelial cells, choroid plexus ependymal cells, and neurons as in control mice but also in mononuclear inflammatory cells located in perivascular and parenchyma infiltrates. An immunohistochemical study showed that the mononuclear inflammatory cells expressed an inducible NOS activity. Furthermore, the presence of nitrotyrosine in inflammatory lesions demonstrated an increased NO production and the intermediate formation of peroxynitrites. The detection of extensive formation of nitrotyrosine in the CNS parenchyma was observed in mice having shown neurological disorders, suggesting the role of peroxynitrites in the appearance of neurological troubles. In conclusion, this study confirmed the increased NO synthesis in the CNS of mice infected with T. b. brucei and suggests a deleterious role for NO, through the formation of peroxynitrites, in the pathogenesis of African CNS trypanosomiasis.  相似文献   

14.

Background

Control of human African trypanosomiasis (sleeping sickness) in the Democratic Republic of Congo is based on mass population active screening by mobile teams. Although generally considered a successful strategy, the community participation rates in these screening activities and ensuing treatment remain low in the Kasai-Oriental province. A better understanding of the reasons behind this observation is necessary to improve regional control activities.

Methods

Thirteen focus group discussions were held in five health zones of the Kasai-Oriental province to gain insights in the regional perceptions regarding sleeping sickness and the national control programme''s activities.

Principal Findings

Sleeping sickness is well known among the population and is considered a serious and life-threatening disease. The disease is acknowledged to have severe implications for the individual (e.g., persistence of manic periods and trembling hands, even after treatment), at the family level (e.g., income loss, conflicts, separations) and for communities (e.g., disruption of community life and activities). Several important barriers to screening and treatment were identified. Fear of drug toxicity, lack of confidentiality during screening procedures, financial barriers and a lack of communication between the mobile teams and local communities were described. Additionally, a number of regionally accepted prohibitions related to sleeping sickness treatment were described that were found to be a strong impediment to disease screening and treatment. These prohibitions, which do not seem to have a rational basis, have far-reaching socio-economic repercussions and severely restrict the participation in day-to-day life.

Conclusions/Significance

A mobile screening calendar more adapted to the local conditions with more respect for privacy, the use of less toxic drugs, and a better understanding of the origin as well as better communication about the prohibitions related to treatment would facilitate higher participation rates among the Kasai-Oriental population in sleeping sickness screening and treatment activities organized by the national HAT control programme.  相似文献   

15.
The gambiense form of sleeping sickness is a neglected tropical disease, which is presumed to be anthroponotic. However, the parasite persists in human populations at levels of considerable rarity and as such the existence of animal reservoirs has been posited. Clarifying the impact of animal host reservoirs on the feasibility of interrupting sleeping sickness transmission through interventions is a matter of urgency. We developed a mathematical model allowing for heterogeneous exposure of humans to tsetse, with animal populations that differed in their ability to transmit infections, to investigate the effectiveness of two established techniques, screening and treatment of at-risk populations, and vector control. Importantly, under both assumptions, an integrated approach of human screening and vector control was supported in high transmission areas. However, increasing the intensity of vector control was more likely to eliminate transmission, while increasing the intensity of human screening reduced the time to elimination. Non-human animal hosts played important, but different roles in HAT transmission, depending on whether or not they contributed as reservoirs. If they did not serve as reservoirs, sensitivity analyses suggested their attractiveness may instead function as a sink for tsetse bites. These outcomes highlight the importance of understanding the ecological and environmental context of sleeping sickness in optimizing integrated interventions, particularly for moderate and low transmission intensity settings.  相似文献   

16.
Most cells use either a type I or type II synthase to make fatty acids. Trypanosoma brucei, the sleeping sickness parasite, provides the first example of a third mechanism for this process. Trypanosomes use microsomal elongases to synthesize fatty acids de novo, whereas other cells use elongases to make long-chain fatty acids even longer. The modular nature of the pathway allows synthesis of different fatty-acid end products, which have important roles in trypanosome biology. Indeed, this newly discovered mechanism seems ideally suited for the parasitic lifestyle.  相似文献   

17.
Peptide deformylase is found only in Eubacteria, making it a logical target for discovering new antibacterial agents. Although this protein is absent from animal or fungal cells, evidence supports its existence in eukaryotic protists, including the causative agents of malaria, sleeping sickness, Chagas disease and leishmaniosis. Here, Thierry Meinnel discusses the idea that deformylase inhibitors could be used as very broad-spectrum antibiotics against bacterial infections, as well as parasitic diseases.  相似文献   

18.

Background

Human African Trypanosomiasis (HAT) also called sleeping sickness is an infectious disease in humans caused by an extracellular protozoan parasite. The disease, if left untreated, results in 100% mortality. Currently available drugs are full of severe drawbacks and fail to escape the fast development of trypanosoma resistance. Due to similarities in cell metabolism between cancerous tumors and trypanosoma cells, some of the current registered drugs against HAT have also been tested in cancer chemotherapy. Here we demonstrate for the first time that the simple ester, ethyl pyruvate, comprises such properties.

Results

The current study covers the efficacy and corresponding target evaluation of ethyl pyruvate on T. brucei cell lines using a combination of biochemical techniques including cell proliferation assays, enzyme kinetics, phasecontrast microscopic video imaging and ex vivo toxicity tests. We have shown that ethyl pyruvate effectively kills trypanosomes most probably by net ATP depletion through inhibition of pyruvate kinase (Ki = 3.0±0.29 mM). The potential of ethyl pyruvate as a trypanocidal compound is also strengthened by its fast acting property, killing cells within three hours post exposure. This has been demonstrated using video imaging of live cells as well as concentration and time dependency experiments. Most importantly, ethyl pyruvate produces minimal side effects in human red cells and is known to easily cross the blood-brain-barrier. This makes it a promising candidate for effective treatment of the two clinical stages of sleeping sickness. Trypanosome drug-resistance tests indicate irreversible cell death and a low incidence of resistance development under experimental conditions.

Conclusion

Our results present ethyl pyruvate as a safe and fast acting trypanocidal compound and show that it inhibits the enzyme pyruvate kinase. Competitive inhibition of this enzyme was found to cause ATP depletion and cell death. Due to its ability to easily cross the blood-brain-barrier, ethyl pyruvate could be considered as new candidate agent to treat the hemolymphatic as well as neurological stages of sleeping sickness.  相似文献   

19.

Background

The polymerase chain reaction (PCR) has been proposed for diagnosis, staging and post-treatment follow-up of sleeping sickness but no large-scale clinical evaluations of its diagnostic accuracy have taken place yet.

Methodology/Principal Findings

An 18S ribosomal RNA gene targeting PCR was performed on blood and cerebrospinal fluid (CSF) of 360 T. brucei gambiense sleeping sickness patients and on blood of 129 endemic controls from the Democratic Republic of Congo. Sensitivity and specificity (with 95% confidence intervals) of PCR for diagnosis, disease staging and treatment failure over 2 years follow-up post-treatment were determined. Reference standard tests were trypanosome detection for diagnosis and trypanosome detection and/or increased white blood cell concentration in CSF for staging and detection of treatment failure. PCR on blood showed a sensitivity of 88.4% (84.4–92.5%) and a specificity of 99.2% (97.7–100%) for diagnosis, while for disease staging the sensitivity and specificity of PCR on cerebrospinal fluid were 88.4% (84.8–91.9%) and 82.9% (71.2–94.6%), respectively. During follow-up after treatment, PCR on blood had low sensitivity to detect treatment failure. In cerebrospinal fluid, PCR positivity vanished slowly and was observed until the end of the 2 year follow-up in around 20% of successfully treated patients.

Conclusions/Significance

For T.b. gambiense sleeping sickness diagnosis and staging, PCR performed better than, or similar to, the current parasite detection techniques but it cannot be used for post-treatment follow-up. Continued PCR positivity in one out of five cured patients points to persistence of living or dead parasites or their DNA after successful treatment and may necessitate the revision of some paradigms about the pathophysiology of sleeping sickness.  相似文献   

20.
Bloodstream forms of Trypanosoma brucei, the causative agent of sleeping sickness in humans, require transferrin for growth. Uptake of host transferrin is mediated by a heterodimeric glycosylphosphatidylinositol-anchored receptor. The trypanosomal transferrin receptor is homologous to the N-terminal domain of the variant surface glycoprotein (VSG) and bears no structural similarity with the human transferrin receptor. In this review, the structure, biochemical properties and function of the transferrin receptor of T. brucei are summarized and compared to the transferrin receptor of mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号