首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ohata H  Shibasaki T 《Peptides》2004,25(10):1703-1709
Urocortin 2 (Ucn 2) and Ucn 3 are new members of the corticotropin-releasing factor (CRF) family and bind selectively to the CRF type 2 receptor (CRF2). The effects of these peptides on behavioral changes induced by CRF were examined in rats. In a familiar environment, intracerebroventricular injection of Ucn 2 attenuated the stimulatory effect of CRF on motor activity, although it alone produced no effect. Ucn 3 suppressed motor activity and attenuated the stimulatory effect of CRF. In an open field, CRF decreased locomotion and rearing but increased grooming behavior. Ucn 2 attenuated the inhibition of locomotor activity induced by CRF without affecting other activities, such as rearing or grooming behavior. Ucn 3 had no effect on the behavioral changes induced by CRF, although it alone decreased locomotion and rearing in a manner similar to CRF. Ucn 2 was thus found to have an antagonistic effect on bi-directional motor activation induced by CRF, while Ucn 3 had a suppressive effect on motor activity. Both Ucn 2 and Ucn 3 suppressed food intake in freely-fed rats, but not immediately after injection. These results suggest that the CRF2 receptor is involved in motor suppressive effects as well as anxiolytic and anorectic effects of Ucn 2 and Ucn 3.  相似文献   

2.
The effects of intracerebroventricular (icv) injections of corticotropin-releasing factor (CRF, 100 and 300 ng) were investigated in the social interaction test of anxiety in rats. Both doses of CRF significantly decreased active social interaction without a concomitant decrease in locomotor activity. CRF also significantly increased self-grooming, an effect that was independent of the decrease in social interaction. These results indicate an anxiogenic action for CRF. Chlordiazepoxide (CDP, 5 mg/kg ip) pretreatment reversed the anxiogenic effects of icv CRF (100 ng), but CRF did not prevent the sedative effects of CDP. There were no statistically significant changes due to CRF in locomotor activity or rears or head dipping in the holeboard test. Both doses of CRF significantly increased plasma concentrations of corticosterone. The possible mechanisms of the behavioral effects of CRF are discussed.  相似文献   

3.
The activities of the enzymes NTPDase (E.C.3.6.1.5, apyrase, ATP diphosphohydrolase, ecto-CD 39) and 5'-nucleotidase (E.C.3.1.3.5, CD 73) were analyzed in platelets from patients with chronic renal failure (CRF), both undergoing hemodialysis treatment (HD) and not undergoing hemodialysis (ND), as well as from a control group. The results showed an increase in platelet NTPDase activity in CRF patients on HD treatment (52.88%) with ATP as substrate (P<0.0001). ADP hydrolysis was decreased (33.68% and 39.75%) in HD and ND patients, respectively. In addition, 5'-nucleotidase activity was elevated in the HD (160%) and ND (81.49%) groups when compared to the control (P<0.0001). Significant correlation was found among ATP, ADP and AMP hydrolysis and plasma creatinine and urea levels (P<0.0001). Patients were compared statistically according the time of hemodialysis treatment. We found enhanced NTPDase and 5'-nucleotidase activities between 49 and 72 months on HD patients. Our result suggests the existence of alterations in nucleotide hydrolysis in platelets of CRF patients. Possibly, this altered nucleotide hydrolysis could contribute to hemostasis abnormalities found in CRF.  相似文献   

4.
The anxiety- and stress-related neuropeptide corticotropin-releasing factor (CRF) elicits behavioral changes in vertebrates including increases in behavioral arousal and locomotor activity. Intracerebroventricular injections of CRF in an amphibian, the roughskin newt (Taricha granulosa), induces rapid increases in locomotor activity in both intact and hypophysectomized animals. We hypothesized that this CRF-induced increase in locomotor activity involves a central effect of CRF on serotonergic neurons, based on known stimulatory actions of serotonin (5-hydroxytryptamine, 5-HT) on spinal motor neurons and the central pattern generator for locomotor activity in vertebrates. In Experiment 1, we found that neither intracerebroventricular injections of low doses of CRF (25 ng) nor the selective serotonin reuptake inhibitor fluoxetine (10, 100 ng), by themselves, altered locomotor activity. In contrast, newts treated concurrently with CRF and fluoxetine responded with marked increases in locomotor activity. In Experiment 2, we found that increases in locomotor activity following co-administration of CRF (25 ng) and fluoxetine (100 ng) were associated with decreased 5-HT concentrations in a number of forebrain structures involved in regulation of emotional behavior and emotional states, including the ventral striatum, amygdala pars lateralis, and dorsal hypothalamus, measured 37 min after treatment. These results are consistent with the hypothesis that CRF stimulates locomotor activity through activation of serotonergic systems.  相似文献   

5.
Intracerebroventricular (icv) injections of corticotropin-releasing factor (CRF; 25 ng) given to male rough-skinned newts (Taricha granulosa) stimulated locomotor activity tested in a circular arena starting 35 min after the injection. The CRF receptor antagonist, alpha-helical CRF9-41 (ahCRF; 250 or 500 ng), injected icv concurrently with CRF blocked CRF-induced locomotor activity. In contrast, icv injection of ahCRF had no effect on spontaneous locomotor activity. Other studies examined the effect of ahCRF on the elevated locomotor activity that was observed when the animals were stressed (handled or placed in warm water). The CRF antagonist dose dependently attenuated the response to either handling or warm stress tested 2 hr after drug treatment. We also examined the effect of the alpha 2-adrenergic agonist, clonidine, on spontaneous and CRF-induced locomotor activity. Clonidine injected icv dose dependently suppressed spontaneous locomotor activity but not CRF-induced locomotor activity. These studies support the hypothesis that endogenous CRF is involved in mediating stress-induced locomotor activity and indicate that the effects of CRF on locomotor activity are independent of activation of the alpha 2-adrenergic system.  相似文献   

6.
Urocortins (UCNs) and their receptors are potent immunoregulators in the gastrointestinal (GI) tract, where they can exert both pro- and anti-inflammatory effects. We examined the contribution of Ucn1 and its receptors to the pathogenesis, progression, and resolution of colitis. Trinitrobenzene sulfonic acid was used to induce colitis in rats. Ucn1 mRNA and immunoreactivity (IR) were ubiquitously expressed throughout the GI tract under basal conditions. During colitis, Ucn1 mRNA levels fell below basal levels on day 1 then increased again by day 6, in association with an increase in the number of Ucn1-IR inflammatory cells. Ucn1-IR cells were also numerous in proliferating granulation tissue. In contrast to Ucn1 expression, average phosphorylated ERK1/2 (pERK1/2) expression rose above controls levels on day 1 and was very low on day 6 of colitis. Knockdown of corticotropin-releasing factor 2 (CRF(2)) but not CRF(1) by RNA interference during colitis significantly decreased the macroscopic lateral spread of ulceration compared with uninjected controls or animals with CRF(1) knockdown. After knockdown of CRF(2), but not of CRF(1) during colitis, edema resolution assessed microscopically was slowed, and myeloperoxidase activity remained elevated even at day 6. Ucn1 and TNF-α mRNA peaked earlier, whereas pERK1/2 activation was attenuated after CRF(2) knockdown. Thus we conclude that local CRF(2) and pERK1/2 activation is pivotal for macroscopic spread of colitis and resolution of edema. Elimination of CRF(2), but not CRF(1), results in uncoordinated immune and pERK1/2 signaling responses.  相似文献   

7.
Immunocytochemical techniques were applied to brain and pituitary sections of European eels after experimental manipulation of the pituitary-interrenal activity. A corticotropin-releasing factor (CRF) antiserum allowed the identification of a CRF-like peptide in the preoptic nucleus (PON) and rostral and caudal neurohypophysis (NH). CRF-immunoreactivity (ir) was not affected in solvent-injected eels compared to noninjected eels. Reserpine induced a stimulation of the pituitary interrenal axis, decreased ir-CRF in the rostral NH, but did not affect hypothalamic ir-CRF. Cortisol reduced the immunostaining of hypothalamic CRF-ir perikarya and perikarya cross-sectional area. In the rostral NH, CRF-ir fibers decreased in number and almost disappeared in long-term treated eels. The immunostaining of ACTH cells with ACTH antiserum was greatly reduced. These data suggest that cortisol induces a marked reduction in the activity of the CRF-corticotrop axis. The intensity of the ir-CRF staining observed in the caudal NH, close to the intermediate lobe (IL) was not significantly affected in reserpine-treated eels, and only slightly reduced in long-term cortisol-treated eels. The intensity of ir-CRF staining in the caudal NH did not correlate with melanocorticotropic activity or plasma cortisol level. These data suggest that immunoreactive CRF fibers in the rostral and caudal NH are differently regulated.  相似文献   

8.
Atrial natriuretic hormone secretion in patients with renal failure   总被引:1,自引:0,他引:1  
To study the effects of volume overload and renal failure on plasma levels of immunoreactive atrial natriuretic hormone (IR-ANH), we measured levels of this hormone in normal subjects, in patients with advanced chronic renal failure (CRF) with and without clinically evident volume overload, and in patients with end-stage renal disease (ESRD) treated with chronic hemodialysis. The levels were 13 +/- 2 pmol/l in normal volunteers, 77 +/- 24 pmol/l in patients with CRF without volume overload, and 219 +/- 50 pmol/l in patients with CRF and clinically evident volume overload (analysis of variance, p less than 0.001, alpha = 0.05 compared to normals). In patients with ESRD, the levels of IR-ANH were 145 +/- 46 pmol/l before dialysis and decreased to 87 +/- 31 after dialysis (p less than 0.025). No correlation was found between the decrease in IR-ANH levels and the decrease in weight during dialysis. A significant positive correlation was found between the IR-ANH levels and blood urea nitrogen in patients with CRF (r = 0.658, p less than 0.01). Volume overload appears to be the most important stimulatory factor for ANH secretion in renal failure patients but other mechanisms, especially a decrease in metabolic clearance, may also contribute to elevated plasma levels. The increased secretion of ANH in patients with renal failure may be an important adaptive response to volume overload and hypertension.  相似文献   

9.
Exploration of haemostasis was performed on plasmas thawed in an experimental microwave oven comparatively to a 37 degrees C water bath. Factor VIII:R:Ag, procoagulant and antigenic fibrinogen, and Fg:C/Fg:Ag ratio were found to be significantly, slightly decreased with microwave thawing. Factor VIII:C and VIII:C/VIII:R:Ag ratio were found to be increased with microwaves. Antigenic fractions were decreased because of partial precipitation. In addition, Fibrinogen slightly lost its activity; on the contrary, factor VIIIC was activated by micro-waves. All this allows to select parameters for new experimental microwave ovens development.  相似文献   

10.
L Bueno  J Fioramonti 《Peptides》1986,7(1):73-77
Gastrointestinal motor activity following intracerebroventricular (ICV) and intravenous (IV) administration of corticotropin releasing factor (CRF), corticotropin (ACTH) and cortisol was investigated in fasted dogs with strain-gauge transducers chronically implanted on the antrum and proximal jejunum. ICV but not IV administration of CRF (20 to 100 ng/kg) suppressed the gastric cyclic migrating motor complex (MMC) for 3 to 6 hours without affecting the jejunum. Similar disruptive effects on the gastric MMC were observed after ICV administration of ACTH (0.5 U/kg) or cortisol (0.1 micrograms/kg) but not after IV administration of 10 times higher doses. These results suggest that in dog CRF may be involved in the central control of the interdigestive gastric motility, these effects were not probably due to the release of ACTH and cortisol the other hormones of the pituitary adrenocortical system change the gastric motility when centrally administered through a possible feed-back mechanism affecting brain CRF level.  相似文献   

11.
The role of the N-terminal domains of corticotropin-releasing factor (CRF) and CRF-like peptides in receptor subtype selectivity, ligand affinity and biological potency was investigated. Therefore, human CRF(12-41), human URP(12-38) and antisauvagine-30 (aSvg) were N-terminally prolonged by consecutive addition of one or two amino acids. The peptides obtained were tested for their binding affinities to rat CRF1 and murine CRF(2beta) receptor, and their capability to stimulate cAMP-release by HEK cells producing either receptor.It was observed that human CRF N-terminally truncated by eight residues was bound with high affinity to CRF2 receptor (Ki=5.4nM), whereas affinity for CRF1 receptor was decreased (Ki=250 nM). A similar shift of affinity was found with sauvagine (Svg) analogs. Truncation of human URP analogs did not affect their preference for CRF(2beta) receptor, but reduced their affinity. Changes in affinity were positively correlated with changes in potency. These results indicated that CRF1 receptor was more stringent in its structural requirements for ligands to exhibit high affinity binding than CRF(2beta) receptor.  相似文献   

12.
Corticotropin-releasing factor (CRF) mediates various aspects of the stress response. To differentiate between the roles of CRF(1) and CRF(2) receptor subtypes in monoaminergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity and behaviour we compared the effects of CRF and urocortin 1 with those of the selective CRF(2) receptor ligands urocortin 2 and urocortin 3. In vivo microdialysis in the rat hippocampus was used to assess free corticosterone, extracellular levels of serotonin (5-HT) and noradrenaline (NA), and their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG), respectively. Intracerebroventricular (i.c.v.) injection of CRF and urocortin 1, 2 and 3 (1.0 microg) increased hippocampal levels of 5-HT and 5-HIAA. CRF and urocortin 1 increased NA and MHPG, whereas urocortin 2 and urocortin 3 elevated MHPG, but not NA levels. CRF and the urocortins induced an immediate increase in behavioural activity. CRF and urocortin 1 mainly caused grooming and exploratory behaviour. In contrast, urocortin 2 and urocortin 3 both induced exploratory behaviour, but not grooming, and increased time spent eating food pellets. All urocortins, but not CRF, suppressed food intake 4-6 h after injection. Hippocampal free corticosterone levels were elevated by CRF, urocortin 1 and 3, but not by urocortin 2. The time courses of the CRF- and urocortin 1-induced responses were significantly prolonged as compared to those of the CRF(2) receptor ligands. The stimulatory changes evoked by CRF and urocortin 1 were present up to 4-6 h after injection, whereas the effects of urocortin 2 and urocortin 3 returned to baseline within 2.5 h after injection. Pre-treatment with the selective antagonist antisauvagine-30 (5.0 microg, i.c.v.) confirmed that the effects of urocortin 3 were CRF(2) receptor-mediated. The differential time course of the monoaminergic, neuroendocrine and behavioural effects of CRF and urocortin 1, as compared to urocortin 2 and urocortin 3, and the specific behavioural pattern induced by the CRF(2) receptor ligands, suggest a distinct role for CRF(2) receptors in the stress response.  相似文献   

13.
ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family is known to play an important role in the pathogenesis of osteoarthritis (OA), working on aggrecan degradation or altering the integrity of extracellular matrix (ECM). Thus, the main purpose of our study was to define the role of vasoactive intestinal peptide (VIP) and corticotrophin‐releasing factor (CRF), as immunoregulatory neuropeptides, on ADAMTS production in synovial fibroblasts (SF) from OA patients and healthy donors (HD). OA‐ and HD‐SF were stimulated with pro‐inflammatory mediators and treated with VIP or CRF. Both neuropeptides decreased ADAMTS‐4, ‐5, ‐7 and ‐12 expressions, aggrecanase activity, glycosaminoglycans (GAG), and cartilage oligomeric matrix protein (COMP) degradation after stimulation with fibronectin fragments (Fn‐fs) in OA‐SF. After stimulation with interleukin‐1β, VIP reduced ADAMTS‐4 and ‐5, and both neuropeptides decreased ADAMTS‐7 production and COMP degradation. Moreover, VIP and CRF reduced Runx2 and β‐catenin activation in OA‐SF. Our data suggest that the role of VIP and CRF on ADAMTS expression and cartilage degradation could be related to the OA pathology since scarce effects were produced in HD‐SF. In addition, their effects might be greater when a degradation loop has been established, given that they were higher after stimulation with Fn‐fs. Our results point to novel OA therapies based on the use of neuropeptides, since VIP and CRF are able to stop the first critical step, the loss of cartilage aggrecan and the ECM destabilization during joint degradation.  相似文献   

14.
Effects of 1-(m-trifluoromethylphenyl)-piperazine, a serotonin agonist, were examined on rat plasma levels of adrenocorticotropin (ACTH) and arginine vasopressin (AVP), and on hypothalamic contents of corticotropin releasing factor (CRF) and AVP, to investigate the role of brain serotonin in ACTH regulation. Both plasma ACTH and AVP levels increased markedly 30 min after injection of the compound and were still elevated at 80 min. CRF and AVP contents in the median eminence decreased 30 min after injection but returned to the basal levels by 80 min. The AVP content in the supraoptic nucleus was elevated 80 min after injection. The CRF and aVP content did not significantly change in the paraventricular, suprachiasmatic and arcuate nuclei. Serotonin or 1-(m-trifluoromethylphenyl)-piperazine did not stimulate the release of ACTH in pituitary cell cultures. These results suggest that both CRF and AVP were secreted into the portal vessels by 1-(m-trifluoromethylphenyl)-piperazine to release ACTH from the anterior pituitary and that both the ACTH and AVP release were stimulated via the brain serotonergic mechanism.  相似文献   

15.
A stimulation test with 100 micrograms ovine or human corticotropin-releasing factor (CRF) is a useful diagnostic tool in diseases of the hypothalamo-pituitary-adrenal axis. No serious side effects were observed during the test procedure. The results showed that the CRF test is useful in making the differential diagnosis of established Cushing's syndrome (n = 42). The CRF test was also repeated after transsphenoidal surgery in 25 patients with Cushing's disease. Successfully operated patients exhibit no, blunted or normal adrenocorticotropic hormone (ACTH) responses to CRF (n = 15), whereas patients who did not show remission remained hyperresponsive (n = 10). In patients with autonomous adrenal cortisol secretion, the ACTH response to CRF was suppressed (n = 10). After surgery the ACTH response to CRF can already be demonstrated when cortisol levels are still undetectable. Pulsatile administration of CRF in one patient after unilateral adrenalectomy and another patient under corticoid therapy revealed that ACTH responses to CRF normalize rapidly but cannot be sustained if CRF administration is withdrawn, suggesting that the cause of adrenal failure after unilateral adrenalectomy for Cushing's syndrome or long-term corticoid therapy is due to hypothalamic CRF deficiency. The decrease of the ACTH responses to CRF in glucocorticoid-treated patients correlated directly to the daily corticoid dosage. Since the ACTH hyperresponse to CRF in 6 patients with Cushing's disease was also suppressed by short-term dexamethasone treatment, the pituitary level as target site for the acute feedback inhibition is also demonstrated. The evaluation of the CRF-induced ACTH response in patients with secondary adrenal failure without detectable pathology in the sella and suprasellar region (n = 6) enables the differentiation between hypothalamic and pituitary adrenal insufficiency. In patients with hypothalamic lesions the ACTH response to CRF was normal whereas insulin hypoglycemia failed to induce an ACTH rise.  相似文献   

16.
H K Bakke  R Murison 《Life sciences》1989,45(10):907-916
Corticotropin releasing factor (CRF) or saline was administered i.p. to rats aged either 100 or 220 days, followed by either brief handling or water immersion restraint. Plasma corticosterone was measured 75 min. later. Age of the animals in itself was not a significant factor either for basal levels of plasma corticosterone or for extent of restraint induced gastric pathology. However after CRF administration, young but not older animals revealed a significant increase in plasma corticosterone levels, and post restraint gastric ulcerations were more severe in older than young animals. CRF significantly decreased the number of restraint induced ulcers in young rats, while the cumulative ulcer length was increased in older animals.  相似文献   

17.
The hypothalamic peptides corticotrophin releasing factor (CRF) and urocortin (UCN) decrease food intake and increase energy expenditure when administered either centrally or peripherally to rodents. The effects of CRF and UCN on food intake in other mammals (for example marsupials), however, are not known. Peripherally administered CRF induced cortisol release in the marsupial Sminthopsis crassicaudata via the CRF1 receptor, and central CRF administration potently decreased food intake, as in rodents. When peripherally administered, both CRF and UCN decreased food intake in S. crassicaudata, but UCN was considerably more potent ( approximately 50 fold) in this regard. The anorectic effects of CRF and UCN were not blocked by the CRF1 receptor antagonist antalarmin, suggesting that the peripheral effects of CRF and UCN on food intake are mediated primarily by the CRF2 receptor.  相似文献   

18.
Corticotropin releasing factor (CRF) infused bilaterally into the lateral ventricles of awake, chronically cannulated, male Sprague-Dawley rats produced a dose-dependent increase in the in vitro activity of cortical and midbrain tryptophan hydroxylase after 60 min. The maximal increase in enzyme activity of 60% over that of vehicle-treated controls was reached 45 min after an infusion of 3 micrograms CRF. The increase in enzyme activity after a single dose of CRF resembled that seen after exposure of rats to an acute sound stress: it was reversed by preincubation of the enzyme preparation with alkaline phosphatase and was nonadditive with the increase in activity obtained in the presence of phosphorylating conditions. The response to intracerebroventricularly administered CRF was abolished by bilateral adrenalectomy, but restored by repeated daily systemic administration of the synthetic glucocorticoid, dexamethasone (500 micrograms/day, i.p. for 3 days), to the adrenalectomized rats. Intracerebroventricular administration of the glucocorticoid antagonist, RU 38486 (200 micrograms/day for 4 days), also blocked the acute increase in tryptophan hydroxylase activity in response to CRF. Finally, bilateral lesions to the central nucleus of the amygdala, a region involved in mediating behavioral, endocrine and autonomic responses to stressful stimuli, abolished the increase in enzyme activity in response to intraventricular CRF. The glucocorticoid sensitivity of the response to CRF, as well as the involvement of the central nucleus of the amygdala support the view that CRF may have a role in mediating the enhancement of tryptophan hydroxylase activity by acute sound stress.  相似文献   

19.
The role of cyclic AMP in the stimulation of corticotropin (ACTH) release by corticotropin-releasing factor (CRF), angiotensin II (AII), vasopressin (VP), and norepinephrine (NE) was examined in cultured rat anterior pituitary cells. Synthetic CRF rapidly stimulated cyclic AMP production, from 4- to 6-fold in 3 min to a maximum of 10- to 15-fold at 30 min. Stimulation of ACTH release by increasing concentrations of CRF was accompanied by a parallel increase in cyclic AMP formation, with ED50 values of 0.5 and 1.3 nM CRF for ACTH and cyclic AMP, respectively. A good correlation between cyclic AMP formation and ACTH release was also found when pituitary cells were incubated with the synthetic CRF(15-41) fragment, which displayed full agonist activity on both cyclic AMP and ACTH release with about 0.1% of the potency of the intact peptide. In contrast, the CRF(21-41) and CRF(36-41) fragments were completely inactive. The other regulators were less effective stimuli of ACTH release and caused either no change in cyclic AMP (AII and VP) or a 50% decrease in cyclic AMP (NE). Addition of the phosphodiesterase inhibitor, methylisobutylxanthine, increased the sensitivity of the ACTH response to CRF but did not change the responses to AII, VP, and NE. In pituitary membranes, adenylate cyclase activity was stimulated by CRF in a dose-dependent manner with ED50 of 0.28 nM, indicating that the CRF-induced elevation of cyclic AMP production in intact pituitary cells is due to increased cyclic AMP biosynthesis. The intermediate role of cyclic AMP in the stimulation of ACTH release by CRF was further indicated by the dose-related increase in cyclic AMP-dependent protein kinase activity in pituitary cells stimulated by CRF with ED50 of 1.1 nM. These data demonstrate that the action of CRF on ACTH release is mediated by the adenylate cyclase-protein kinase pathway and that the sequence requirement for bioactivity includes the COOH-terminal 27 amino acid residues of the molecule. The other recognized regulators of ACTH release are less effective stimuli than CRF and do not exert their actions on the corticotroph through cyclic AMP-dependent mechanisms.  相似文献   

20.
Hypermetabolism and anorexia are significant problems associated with major burn trauma. Recent studies have shown that hypothalamic corticotropin releasing factor (CRF) elevates metabolic rate, while neuropeptide Y (NPY) reduces it. CRF also elicits anorexia, while NPY stimulates feeding. We hypothesized that elevation of CRF and decrease of NPY may be mediators of these negative effects of burn trauma. Therefore, we assessed concentrations of CRF and NPY in hypothalamus of burned rats one, three, and twenty-one days after a 30% body surface area, full-thickness, open flame burn. In addition we determined whether a biochemical lesion of CRF receptors using 3rd ventricle injections of a saporin-CRF conjugated peptide would decrease resting energy expenditure (REE). We found a three-day period of anorexia, with REE significantly increasing three days after the burn trauma. Concentrations of NPY were increased in the PVN-containing dorsomedial region of the hypothalamus 1 and 3 days after burn trauma, but were increased further in the day 1 pair-fed rats suggesting this change was a consequence of the anorexia. Levels of CRF were decreased in the ventromedial region of the hypothalamus in day 1 and day 3 burned and PF rats. Treatment with the saporin-CRF conjugate normalized REE and reduced CRF receptor-2 density in the hypothalamus of burned rats, and blocked CRF-induced hypermetabolism in sham-burned rats. Although these results suggest a role of CRF receptors in mediating burn-induced hypermetabolism, CRF itself may not be the principle ligand, as suggested by the significant elevation of hypothalamic urocortin 15 days after burn injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号