首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple genetic and environmental factors are likely to contribute to the development of Alzheimer's disease (AD). The most important known risk factor for AD is presence of the E4 isoform of apolipoprotein E (apoE). Epidemiological studies demonstrated that apoE4 carriers have a higher risk and develop the disease and an early onset. Moreover, apoE4 is the only molecule that has been associated with all the biochemical disturbances characteristic of the disease: amyloid-beta (Abeta) deposition, tangle formation, oxidative stress, lipid homeostasis deregulation, synaptic plasticity loss and cholinergic dysfunction. This large body of evidence suggest that apoE is a key player in the pathogenesis of AD. This short review examines the current facts and hypotheses of the association between apoE4 and AD, as well as the therapeutic possibilities that apoE might offer for the treatment of this disease.  相似文献   

2.
In this paper, we review experimental advances in molecular neurobiology of Alzheimer's disease (AD), with special emphasis on analysis of neural function of proteins involved in AD pathogenesis, their relation with several signaling pathways and with oxidative stress in neurons. Molecular genetic studies have found that mutations in APP, PS1 and PS2 genes and polymorphisms in APOE gene are implicated in AD pathogenesis. Recent studies show that these proteins, in addition to its role in beta-amyloid processing, are involved in several neuroplasticity-signaling pathways (NMDA-PKA-CREB-BDNF, reelin, wingless, notch, among others). Genomic and proteomic studies show early synaptic protein alterations in AD brains and animal models. DNA damage caused by oxidative stress is not completely repaired in neurons and is accumulated in the genes of synaptic proteins. Several functional SNPs in synaptic genes may be interesting candidates to explore in AD as genetic correlates of this synaptopathy in a "synaptogenomics" approach. Thus, experimental evidence shows that proteins implicated in AD pathogenesis have differential roles in several signaling pathways related to neuromodulation and neurotransmission in adult and developing brain. Genomic and proteomic studies support these results. We suggest that oxidative stress effects on DNA and inherited variations in synaptic genes may explain in part the synaptic dysfunction seen in AD.  相似文献   

3.
Poduslo  S.E.  Neal  M.  Herring  K.  Shelly  J. 《Neurochemical research》1998,23(3):361-367
The E4 allele for the apolipoprotein E gene has been shown to be a significant risk factor for Alzheimer's disease. The gene is located in a conserved gene cluster on chromosome 19q12-13.2. Downstream from APOE is the gene for apolipoprotein CI. We had previously shown that the presence of a restriction site in the 5end of APOCI (the A allele) was present at increased frequency in Alzheimer's patients and could also be considered as a risk factor for the disease. We have extended these studies and find that both familial and sporadic cases of Alzheimer's disease have a higher frequency of the APOCI A allele than control spouses. In addition, male patients with the APOCI A allele and/or the APOE4 allele tend to have an earlier age of onset of the disease than female patients.  相似文献   

4.
A case for a non-transgenic animal model of Alzheimer's disease   总被引:1,自引:0,他引:1  
Alzheimer's disease (AD) is associated with an early impairment in memory and is the major cause of dementia in the elderly. beta-Amyloid (Abeta) is believed to be a primary factor in the pathogenic pathway leading to dementia. Mounting evidence suggests that this syndrome begins with subtle alterations in synaptic efficacy prior to extensive neuronal degeneration and that the synaptic dysfunction could be caused by diffusible oligomeric assemblies of Abeta. This paper reviews the findings from behavioral analysis, electrophysiology, neuropathology and nootropic drug screening studies involving exogenous administration of Abeta in normal rodent brains. This non-transgenic model of amyloid pathology in vivo is presented as a complementary alternative model to transgenic mice to study the cellular and molecular pathways induced by amyloid, which in turn may be a causal factor in the disruption of cognition. The data reviewed here confirm that the diffusible form of Abeta rapidly induces synaptic dysfunction and a secondary process involving cellular cascades induced by the fibrillar form of amyloid. The time-course of alteration in memory processes implicates at least two different mechanisms that may be targeted with selective therapies aimed at improving memory in some AD patients.  相似文献   

5.
The cellular mechanism by which apolipoprotein E (apoE) affects the pathogenesis of Alzheimer's disease (AD) is not understood. We have examined the effect of apolipoprotein E on the internalization of exogenous amyloid-beta 1-40 (Abeta40) into a rat brain crude synaptosomal preparation. Abeta40 peptide in soluble (within 1 h of dilution in buffer) or aggregated (aged 4 days before dilution in buffer) form was pre-incubated with lipidated apoE then added to synaptosomes; intraterminal amyloid-beta labeling was quantified using flow cytometry following immunolabeling with the anti-Abeta (10G4) antibody. The number of Abeta-positive synaptosomes was increased ( approximately 50%) by treatment with a soluble Abeta/apoE mixture compared with treatment with soluble Abeta40 alone. However, when the Abeta was aggregated, less sodium dodecyl sulfate (SDS)-stable Abeta/apoE complex was formed and the addition of apoE decreased the number of Abeta-positive terminals. The addition of the lipoprotein-receptor related protein (LRP) antagonist receptor-associated protein (RAP) inhibited the apoE-induced increase in synaptosomal Abeta, and controls treated with trypsin and heparinase confirm intraterminal localization of the majority of the soluble Abeta. The apoE-mediated increase in Abeta labeling was confirmed in intact cells by immunocytochemistry of dorsal root ganglion (DRG) neurons. These results suggest that complex formation with apoE enhances internalization of soluble Abeta uptake into terminals.  相似文献   

6.
Oxidative stress is one of the earliest events in the pathogenesis of Alzheimer's disease (AD) and can markedly exacerbate amyloid pathology. Modulation of antioxidant and anti-inflammatory pathways represents an important approach for AD therapy. Synthetic triterpenoids have been found to facilitate antioxidant response and reduce inflammation in several models. We investigated the effect of the triterpenoid, 2-Cyano-3,12-Dioxooleana-1,9-Dien-28-Oic acid-MethylAmide (CDDO-MA) in Tg19959 mice, which carry the human amyloid precursor protein with two mutations. These mice develop memory impairments and amyloid plaques as early as 2–3 months of age. CDDO-MA was provided with chow (800 mg/kg) from 1 to 4 months of age. CDDO-MA significantly improved spatial memory retention and reduced plaque burden, Aβ42 levels, microgliosis, and oxidative stress in Tg19959 mice.  相似文献   

7.
《Free radical research》2013,47(8):569-576
Abstract

A number of evidences indicates oxidative stress as a relevant pathogenic factor in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Considering its recognized major genetic risk factors in AD, apolipoprotein (APO E) has been investigated in several experimental settings regarding its role in the process of reactive oxygen species (ROS) generation. The aim of this work has been to evaluate possible relationships between APO E genotype and plasma levels of selected oxidative stress markers in both AD and MCI patients.

APO E genotypes were determined using restriction enzyme analysis. Plasma levels of oxidative markers, advanced oxidation protein products, iron-reducing ability of plasma and, in MCI, activity of superoxide dismutases were evaluated using spectrophotometric analysis.

We found, compared to controls, increased levels of oxidized proteins and decreased values of plasma-reducing capacity in both AD patients (p < 0.0001) and MCI patients (p < 0.001); the difference between AD and MCI patients was significant only for plasma-reducing capacity (p < 0.0001), the former showing the lowest values. Superoxide dismutase activity was reduced, although not at statistical level, in MCI compared with that in controls. E4 allele was statistically associated (p < 0.05) with AD patients. When comparing different APO E genotype subgroups, no difference was present, as far as advanced oxidation protein products and iron-reducing ability of plasma levels were concerned, between E4 and non-E4 carriers, in both AD and MCI; on the contrary, E4 carriers MCI patients showed significantly decreased (p < 0.05) superoxide dismutase activity with respect to non-E4 carriers.

This study, in confirming the occurrence of oxidative stress in AD and MCI patients, shows how it can be related, at least for superoxide dismutase activity in MCI, to APO E4 allele risk factor.  相似文献   

8.
The presence of the epsilon4 allele of apolipoprotein E (APOE) is considered a risk factor for sporadic Alzheimer's disease (AD). Our recent data demonstrated that the systemic modulation of oxidative stress in platelets and erythrocytes is disrupted in aging and AD. In this study, the relationship between APOE genotype and oxidative stress markers, both in AD patients and controls, was evaluated. The AD group showed an increase in the content of thiobarbituric acid-reactive substances (TBARS) and in the activities of nitric oxide synthase (NOS) and Na, K-ATPase, when compared to controls. Both groups had a similar cGMP content and superoxide dismutase activity. APOE epsilon4 allele carriers showed higher NOS activity than non-carriers. These results suggest a possible influence of APOE genotype on nitric oxide (NO) production that might enhance the effects of age-related specific factor(s) associated with neurodegenerative disorders.  相似文献   

9.
载脂蛋白E(ApoE)与迟发的家族性及孤发性阿尔茨海默(Alzheimer)病密切相关. 氯喹慢性中毒可诱发某些肌病理改变, 出现β淀粉样蛋白(βAP)与tau蛋白等的沉积, 与Alzheimer脑中见到的病理改变类似. 为分析这一改变的机制, 用逆转录结合多聚酶链反应技术(RT-PCR)对氯喹处理的大鼠肌肉中ApoE表达的改变进行了研究. 在PCR定量中采用了一种稳定表达的内源性甘油醛-3-磷酸脱氢酶mRNA作为内部参照. PCR扩增在很宽的循环数范围内成线性, 且靶mRNA与参照mRNA的扩增效率相当. 氯喹处理后大鼠肌肉中ApoE mRNA的表达从第6周开始增加, 第8周后超过对照组的20多倍. 结果提示, ApoE在氯喹慢性中毒所致的大鼠肌病理改变中发挥某些作用.  相似文献   

10.
Genetic factors, such as apolipoprotein E (ApoE) polymorphisms, are thought to play an important role in the etiology of Alzheimer's disease (AD). Recent association studies have suggested that the Val66Met polymorphism in the brain-derived neurotrophic factor ( BDNF ) gene could play a role in the development of AD. To identify genotypic effects of the BDNF and the ApoE genes on disease progression in preclinical AD, we assessed morphological changes using serial magnetic resonance imaging during the preclinical period of AD in 35 individuals. When all subjects were analyzed as one group, progressive atrophy was noted in the limbic, paralimbic and neocortical areas. Individuals of the BDNF Val/Val genotype showed progressive atrophy in the left medial temporal areas, whereas the BDNF Met allele carriers showed additional changes in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC) and the precuneus. An interaction between the BDNF genotype and progressive morphological changes was found in the PCC. The noncarriers for the ApoE ɛ4 allele showed progressive atrophy in the bilateral medial temporal areas. In addition to changes in the medial temporal areas, ɛ4 carriers showed progressive atrophy in the PCC, ACC and precuneus. An interaction between the ApoE genotype and progressive morphological change was noted in the right medial temporal area. The present preliminary study indicates that polymorphisms of the ApoE and the BDNF genes could affect disease progression in preclinical AD and implies that the Met-BDNF polymorphism could be an additional risk factor for rapid disease progression in preclinical AD.  相似文献   

11.
12.
Oxidative stress, which plays a critical role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), is intimately linked to aging – the best established risk factor for AD. Studies in neuronal cells subjected to oxidative stress, mimicking the situation in AD brains, are therefore of great interest. This paper reports that, in human neuronal cells, oxidative stress induced by the free radical-generating xanthine/xanthine oxidase (X-XOD) system leads to apoptotic cell death. Microarray analyses showed a potent activation of the cholesterol biosynthesis pathway following reductions in the cell cholesterol synthesis caused by the X-XOD treatment; furthermore, the apoptosis was reduced by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase ( HMGCR ) expression with an interfering RNA. The potential importance of this mechanism in AD was investigated by genetic association, and it was found that HMGCR , a key gene in cholesterol metabolism and among those most strongly upregulated, was associated with AD risk. In summary, this work presents a human cell model prepared to mimic the effect of oxidative stress in neurons that might be useful in clarifying the mechanism involved in free radical-induced neurodegeneration. Gene expression analysis followed by genetic association studies indicates a possible link among oxidative stress, cholesterol metabolism and AD.  相似文献   

13.
High serum/plasma cholesterol levels have been suggested as a risk factor for Alzheimer's disease (AD). Some reports, mostly retrospective epidemiological studies, have observed a decreased prevalence of AD in patients taking the cholesterol lowering drugs, statins. The strongest evidence causally linking cholesterol to AD is provided by experimental studies showing that adding/reducing cholesterol alters amyloid precursor protein (APP) and amyloid beta‐protein (Aβ) levels. However, there are problems with the cholesterol‐AD hypothesis. Cholesterol levels in serum/plasma and brain of AD patients do not support cholesterol as a causative factor in AD. Prospective studies on statins and AD have largely failed to show efficacy. Even the experimental data are open to interpretation given that it is well‐established that modification of cholesterol levels has effects on multiple proteins, not only amyloid precursor protein and Aβ. The purpose of this review, therefore, was to examine the above‐mentioned issues, discuss the pros and cons of the cholesterol‐AD hypothesis, involvement of other lipids in the mevalonate pathway, and consider that AD may impact cholesterol homeostasis.

  相似文献   


14.
Plasticity and the Spread of Alzheimer's Disease-Like Changes   总被引:1,自引:0,他引:1  
Tangles are a major histopathological feature of Alzheimer's disease and their regional location and number correlate significantly with the individual's cognitive decline. Intriguingly, these tangles are formed only in a small subset of nerve cell types and are practically absent in most animal species examined so far. In humans, tangle formation seemingly starts decades before clinical signs of dementia are seen and spread over cortical areas in a regular manner described by the Braak classification. In the present article the role of plasticity-related molecules and mechanisms are discussed considering their putative role in neuronal vulnerability and spread of tangles. Special emphasis is given to some aspects of lipid metabolism, that is, apolipoprotein E polymorphism, statin effects, and lysosomal dysfunction in Alzheimer's and Niemann-Pick C's diseases.Special issue dedicated to Dr. Carl Cotman.  相似文献   

15.
Polymorphisms in the apolipoprotein E (APOE) gene affect the risk of Alzheimer disease and the amount of amyloid beta-protein (Abeta) deposited in the brain. The apoE protein reduces Abeta levels in conditioned media from cells in culture, possibly through Abeta clearance mechanisms. To explore this effect, we treated multiple neural and non-neural cell lines for 24 h with apoE at concentrations similar to those found in the cerebrospinal fluid (1-5 microg/mL). The apoE treatment reduced Abeta40 by 60-80% and Abeta42 to a lesser extent (20-30%) in the conditioned media. Surprisingly, apoE treatment resulted in an accumulation of amyloid precursor protein (APP)-C-terminal fragments in cell extracts and a marked reduction of APP intracellular domain-mediated signaling, consistent with diminished gamma-secretase processing of APP. All three isoforms of apoE, E2, E3 and E4, had similar effects on Abeta and APP-C-terminal fragments, and the effects were independent of the low-density lipoprotein receptor family. Apolipoprotein E had minimal effects on Notch cleavage and signaling in cell-based assays. These data suggest that apoE reduces gamma-secretase cleavage of APP, lowering secreted Abeta levels, with stronger effects on Abeta40. The apoE modulation of Abeta production and APP signaling is a potential mechanism affecting Alzheimer disease risk.  相似文献   

16.
17.
载脂蛋白E基因多态性与阿尔茨海默病   总被引:6,自引:0,他引:6  
利用PCR RFLP方法分析了中国汉族人群中 16 0例散发性阿尔茨海默病 (Alzheimerdisease,AD)患者和 195例正常对照老年人中载脂蛋白E(APOE)基因多态性分布的差异。结果表明 ,APOE 3种等位基因ε2、ε3和ε4的频率在AD组和对照组分别为 0 0 5 6、0 713、0 2 31和 0 0 82、0 84 4、0 0 74。APOEε4等位基因携带个体患AD的危险为非携带个体的 3 82倍 (χ2 =2 8 7,P <0 0 0 1)。 6 5岁以上APOEε4携带个体患AD的危险为非携带个体的 5 38倍(χ2 =2 9 8,P <0 0 0 1) ,说明年龄因素可能影响ε4与AD间的相互作用。APOE等位基因和基因型频率在轻、中和重度痴呆病人间的分布无明显差异 (P >0 0 5 ) ,提示APOE基因多态性可能与AD患者的痴呆程度无关联。APOEε4基因型频率在女性AD病人中的分布略高于男性AD病人 (4 3 0 %对 36 5 % ) ,女性ε4携带个体患AD的危险也高于男性ε4携带个体 (4 3倍对 3 3倍 ) ,但统计学分析未检测到这些差异的显著性 (P >0 0 5 )。ε2等位基因频率在AD患者男性亚组明显低于女性亚组 ,也低于对照人群的男性亚组 (P <0 0 5 ) ,提示ε2等位基因可能降低中国汉族男性人群AD发病的危险  相似文献   

18.
Neurodegenerative diseases such as Huntington's disease and Alzheimer's disease, although very different in etiology, share common degenerative processes. These include neuronal dysfunction, decreased neural connectivity, and disruption of cellular plasticity. Understanding the molecular mechanisms underlying the neural plasticity deficits in these devastating conditions may lead the way toward new therapeutic targets, both disease-specific and more generalized, which can ameliorate degenerative cognitive deficits. Furthermore, investigations of 'pathological plasticity' in these diseases lend insight into normal brain function. This review will present evidence for altered plasticity in Huntington's and Alzheimer's diseases, relate these findings to symptomatology, and review possible causes and commonalities.  相似文献   

19.
Glycogen synthase kinase-3beta (GSK-3beta) is implicated in regulating apoptosis and tau protein hyperphosphorylation in Alzheimer's disease (AD). We investigated the effects of two key AD molecules, namely apoE (E3 and E4 isoforms) and beta-amyloid (Abeta) 1-42 on GSK-3beta and its major upstream regulators, intracellular calcium and protein kinases C and B (PKC and PKB) in human SH-SY5Y neuroblastoma cells. ApoE3 induced a mild, transient, Ca2+-independent and early activation of GSK-3beta. ApoE4 effects were biphasic, with an early strong GSK-3beta activation that was partially dependent on extracellular Ca2+, followed by a GSK-3beta inactivation. ApoE4 also activated PKC-alpha and PKB possibly giving the subsequent GSK-3beta inhibition. Abeta(1-42) effects were also biphasic with a strong activation dependent partially on extracellular Ca2+ followed by an inactivation. Abeta(1-42) induced an early and potent activation of PKC-alpha and a late decrease of PKB activity. ApoE4 and Abeta(1-42) were more toxic than apoE3 as shown by MTT reduction assays and generation of activated caspase-3. ApoE4 and Abeta(1-42)-induced early activation of GSK-3beta could lead to apoptosis and tau hyperphosphorylation. A late inhibition of GSK-3beta through activation of upstream kinases likely compensates the effects of apoE4 and Abeta(1-42) on GSK-3beta, the unbalanced regulation of which may contribute to AD pathology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号