首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The putative envelope glycoproteins of hepatitis C virus (HCV) likely play an important role in the initiation of viral infection. Available information suggests that the genomic regions encoding the putative envelope glycoproteins, when expressed as recombinant proteins in mammalian cells, largely accumulate in the endoplasmic reticulum. In this study, genomic regions which include the putative ectodomain of the E1 (amino acids 174 to 359) and E2 (amino acids 371 to 742) glycoproteins were appended to the transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein. This provided a membrane anchor signal and the VSV incorporation signal at the carboxy termini of the E1 and E2 glycoproteins. The chimeric gene constructs exhibited expression of the recombinant proteins on the cell surface in a transient expression assay. When infected with a temperature-sensitive VSV mutant (ts045) and grown at the nonpermissive temperature (40.5°C), cells transiently expressing the E1 or E2 chimeric glycoprotein generated VSV/HCV pseudotyped virus. The resulting pseudotyped virus generated from E1 or E2 surprisingly exhibited the ability to infect mammalian cells and sera derived from chimpanzees immunized with the homologous HCV envelope glycoproteins neutralized pseudotyped virus infectivity. Results from this study suggested a potential functional role for both the E1 and E2 glycoproteins in the infectivity of VSV/HCV pseudotyped virus in mammalian cells. These observations further suggest the importance of using both viral glycoproteins in a candidate subunit vaccine and the potential for using a VSV/HCV pseudotyped virus to determine HCV neutralizing antibodies.  相似文献   

2.
Human immunodeficiency virus (HIV-1) was adapted to replicate efficiently in cells expressing an altered form of the CD4 viral receptor. The mutant CD4 (46 K/D) contained a single amino acid change (lysine 46 to aspartic acid) in the CDR2 loop of domain 1, which results in a 15-fold reduction in affinity for the viral gp120 glycoprotein. The ability of the adapted virus to replicate in CD4 46 K/D-expressing cells was independently enhanced by single amino acid changes in the V2 variable loop, the V3 variable loop, and the fourth conserved (C4) region of the gp120 glycoprotein. Combinations of these amino acids in the same envelope glycoprotein resulted in additive enhancement of virus replication in cells expressing the CD4 46 K/D molecule. In cells expressing the wild-type CD4 glycoproteins, the same V2 and V3 residue changes also increased the efficiency of replication of a virus exhibiting decreased receptor-binding ability due to an amino acid change (aspartic acid 368 to glutamic acid) in the gp120 glycoprotein. In neither instance did the adaptive changes restore the binding ability of the monomeric gp120 glycoprotein or the oligomeric envelope glycoprotein complex for the mutant or wild-type CD4 glycoproteins, respectively. Thus, particular conformations of the gp120 V2 and V3 variable loops and of the C4 region allow postreceptor binding events in the membrane fusion process to occur in the context of less than optimal receptor binding. These results suggest that the fusion-related functions of the V2, V3, and C4 regions of gp120 are modulated by CD4 binding.  相似文献   

3.
Borna disease virus (BDV) surface glycoprotein (GP) (p56) has a predicted molecular mass of 56 kDa. Due to extensive posttranslational glycosylation the protein migrates as a polypeptide of 84 kDa (gp84). The processing of gp84 by the cellular protease furin generates gp43, which corresponds to the C-terminal part of gp84. Both gp84 and gp43 have been implicated in viral entry involving receptor-mediated endocytosis and pH-dependent fusion. We have investigated the domains of BDV p56 involved in virus entry. For this, we used a pseudotype approach based on a recently developed recombinant vesicular stomatitis virus (VSV) in which the gene for green fluorescent protein was substituted for the VSV G protein gene (VSV Delta G*). Complementation of VSV Delta G* with BDV p56 resulted in infectious VSV Delta G* pseudotypes that contained both BDV gp84 and gp43. BDV-VSV chimeric GPs that contained the N-terminal 244 amino acids of BDV p56 and amino acids 421 to 511 of VSV G protein were efficiently incorporated into VSV Delta G* particles, and the resulting pseudotype virions were neutralized by BDV-specific antiserum. These findings indicate that the N-terminal part of BDV p56 is sufficient for receptor recognition and virus entry.  相似文献   

4.
Basu A  Beyene A  Meyer K  Ray R 《Journal of virology》2004,78(9):4478-4486
The hypervariable region 1 (HVR1) of hepatitis C virus (HCV) E2 envelope glycoprotein is a 27-amino-acid sequence located at its N terminus. In this study, we investigated the functional role of HVR1 for interaction with the mammalian cell surface. The C-terminal truncated E2 glycoprotein was appended to a transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein for generation of the chimeric E2-G gene construct. A deletion of the HVR1 sequence from E2 was created for the construction of E2DeltaHVR1-G. Pseudotype virus, generated separately by infection of a stable cell line expressing E2-G or E2DeltaHVR1-G with a temperature-sensitive mutant of VSV (VSVts045), displayed unique functional properties compared to VSVts045 as a negative control. Virus generated from E2DeltaHVR1-G had a reduced plaquing efficiency ( approximately 50%) in HepG2 cells compared to that for the E2-G virus. Cells prior treated with pronase (0.5 U/ml) displayed a complete inhibition of infectivity of the E2DeltaHVR1-G or E2-G pseudotypes, whereas heparinase I treatment (8 U/ml) of cells reduced 40% E2-G pseudotype virus titer only. E2DeltaHVR1-G pseudotypes were not sensitive to heparin (6 to 50 micro g/ml) as an inhibitor of plaque formation compared to the E2-G pseudotype virus. Although the HVR1 sequence itself does not match with the known heparin-binding domain, a synthetic peptide representing 27 amino acids of the E2 HVR1 displayed a strong affinity for heparin in an enzyme-linked immunosorbent assay. This binding was competitively inhibited by a peptide from the V3 loop of a human immunodeficiency virus glycoprotein subunit (gp120) known to bind with cell surface heparin. Taken together, our results suggest that the HVR1 of E2 glycoprotein binds to the cell surface proteoglycans and may facilitate virus-host interaction for replication cycle of HCV.  相似文献   

5.
6.
Cytotoxic thymus-derived lymphocytes from mice infected with vesicular stomatitis virus (VSV) are H-2 restricted and virus specific for the Indiana and New Jersey strains of VSV. VSV-Indiana-immune T cells can lyse target cells infected with the temperature sensitive (ts) mutant ts 045 about 30 times better when target cell infection occurs at the permissive rather than the non-permissive temperature. Since this mutant fails to express the glycoprotein at the cell surface when grown at the nonpermissive temperature, our results support the view that the viral glycoprotein is involved in defining the major target antigen for VSV-specific T cells. However, the tl 17 mutant that expresses a mutant glycoprotein at the cell surface was lysed, suggesting that the expressed mutated glycoprotein can cross-react with Indiana wild-type glycoprotein. Targets infected at the nonpermissive temperature with VSV ts G31 (mutant in the matrix protein) are still susceptible to T cell-mediated lysis but at a lower level of sensitivity. These results are compatible with the interpretation that for VSV-specific T cell lysis of infected target cells, the viral glycoprotein is a major target antigen and must be expressed, and that the matrix protein plays a lesser role, probably by indirectly influencing glycoprotein configuration at the cell surface.  相似文献   

7.
Enveloped virus particles carrying the human immunodeficiency virus (HIV) CD4 receptor may potentially be employed in a targeted antiviral approach. The mechanisms for efficient insertion and the requirements for the functionality of foreign glycoproteins within viral envelopes, however, have not been elucidated. Conditions for efficient insertion of foreign glycoproteins into the vesicular stomatitis virus (VSV) envelope were first established by inserting the wild-type envelope glycoprotein (G) of VSV expressed by a vaccinia virus recombinant. To determine whether the transmembrane and cytoplasmic portions of the VSV G protein were required for insertion of the HIV receptor, a chimeric CD4/G glycoprotein gene was constructed and a vaccinia virus recombinant which expresses the fused CD4/G gene was isolated. The chimeric CD4/G protein was functional as shown in a syncytium-forming assay in HeLa cells as demonstrated by coexpression with a vaccinia virus recombinant expressing the HIV envelope protein. The CD4/G protein was efficiently inserted into the envelope of VSV, and the virus particles retained their infectivity even after specific immunoprecipitation experiments with monoclonal anti-CD4 antibodies. Expression of the normal CD4 protein also led to insertion of the receptor into the envelope of VSV particles. The efficiency of CD4 insertion was similar to that of CD4/G, with approximately 60 molecules of CD4/G or CD4 per virus particle compared with 1,200 molecules of VSV G protein. Considering that (i) the amount of VSV G protein in the cell extract was fivefold higher than for either CD4 or CD4/G and (ii) VSV G protein is inserted as a trimer (CD4 is a monomer), the insertion of VSV G protein was not significantly preferred over CD4 or CD4/G, if at all. We conclude that the efficiency of CD4 or CD4/G insertion appears dependent on the concentration of the glycoprotein rather than on specific selection of these glycoproteins during viral assembly.  相似文献   

8.
Monoclonal antibodies were produced by murine hybridomas after immunization with semipurified baboon endogenous virus. In a solid-phase radioimmunoassay, two antibodies (F12-9 and B9-18) reacted with viral antigen only. The antibodies A6-8 and C9-12 also reacted with virus-producing cells but not with control cells, whereas antibodies E4-6 and D12-2 bound to virus-free cells as well. The cytofluorometry technique confirmed these results and showed a competition between antibodies A6-8 and C9-12 for binding to virus-producing cells as well as a competition between antibodies D12-2 and E4-6 for binding to virus-free human cells. An immune precipitation assay with disrupted virions indicated that antibodies A6-8, B9-18, and C9-12 were directed against the gp70 glycoprotein, and that antibody F12-9 reacted with a viral antigen with a molecular weight of 18,000. The syncytia induced in RSa cells by baboon molecular weight of 18,000. The syncytia induced in RSa cells by baboon endogenous virus could be inhibited either when antibody A6-8 or C9-12 was combined to the virus or when the RSa cells were treated with the anticellular antibody D12-2 or E4-6. These two effects were not observed with Mason-Pfizer virus. Thus, of three antibodies with specificities for viral gp70, two (A6-8 and C9-12) were directed at viral sites responsible for syncytium formation. Another antiviral antibody (F12-9) reacted with a protein of unknown function with a molecular weight of 18,000. The two anticellular antibodies were directed at similar or neighboring epitopes, which may be situated within the receptor to the virus.  相似文献   

9.
Here we report a novel viral glycoprotein created by replacing a natural receptor-binding sequence of the ecotropic Moloney murine leukemia virus envelope glycoprotein with the peptide ligand somatostatin. This new chimeric glycoprotein, which has been named the Sst receptor binding site (Sst-RBS), gives targeted transduction based on three criteria: (i) a gain of the use of a new entry receptor not used by any known virus; (ii) targeted entry at levels comparable to gene delivery by wild-type ecotropic Moloney murine leukemia virus and vesicular stomatitis virus (VSV) G glycoproteins; and (iii) a loss of the use of the natural ecotropic virus receptor. Retroviral vectors coated with Sst-RBS gained the ability to bind and transduce human 293 cells expressing somatostatin receptors. Their infection was specific to target somatostatin receptors, since a synthetic somatostatin peptide inhibited infection in a dose-dependent manner and the ability to transduce mouse cells bearing the natural ecotropic receptor was effectively lost. Importantly, vectors coated with the Sst-RBS glycoprotein gave targeted entry of up to 1 × 10(6) transducing U/ml, a level comparable to that seen with infection of vectors coated with the parental wild-type ecotropic Moloney murine leukemia virus glycoprotein through the ecotropic receptor and approaching that of infection of VSV G-coated vectors through the VSV receptor. To our knowledge, this is the first example of a glycoprotein that gives targeted entry of retroviral vectors at levels comparable to the natural capacity of viral envelope glycoproteins.  相似文献   

10.
Hepatitis C virus (HCV) establishes persistent infections and leads to chronic liver disease. It only recently became possible to study the entire HCV life cycle due to the ability of a unique cloned patient isolate (JFH-1) to produce infectious particles in tissue culture. However, despite efficient RNA replication, yields of infectious virus particles remain modest. This presents a challenge for large-scale tissue culture efforts, such as inhibitor screening. Starting with a J6/JFH-1 chimeric virus, we used serial passaging to generate a virus with substantially enhanced infectivity and faster infection kinetics compared to the parental stock. The selected virus clone possessed seven novel amino acid mutations. We analyzed the contribution of individual mutations and identified three specific mutations, core K78E, NS2 W879R, and NS4B V1761L, which were necessary and sufficient for the adapted phenotype. These three mutations conferred a 100-fold increase in specific infectivity compared to the parental J6/JFH-1 virus, and media collected from cells infected with the adapted virus yielded infectious titers as high as 1 × 10(8) 50% tissue culture infective doses (TCID(50))/ml. Further analyses indicated that the adapted virus has longer infectious stability at 37°C than the wild type. Given that the adapted phenotype resulted from a combination of mutations in structural and nonstructural proteins, these data suggest that the improved viral titers are likely due to differences in virus particle assembly that result in significantly improved infectious particle stability. This adapted virus will facilitate further studies of the HCV life cycle, virus structure, and high-throughput drug screening.  相似文献   

11.
12.
In polarized epithelial cells, maturation sites of enveloped viruses that form by budding at cell surfaces are restricted to particular membrane domains. Recombinant vaccinia viruses were used to investigate the sites of surface expression in the Madin-Darby canine kidney (MDCK) cell line of the hemagglutinin (HA) of influenza virus, the G glycoprotein of vesicular stomatitis virus (VSV), and gp70/p15E of Friend murine leukemia virus (MuLV). These glycoproteins could be demonstrated by immunofluorescence on the surfaces of MDCK cells as early as 4 h post-infection. In intact MDCK monolayers, vaccinia recombinants expressing HA produced a pattern of surface fluorescence typical of an apically expressed glycoprotein. In contrast, cells infected with vaccinia recombinants expressing VSV-G or MuLV gp70/p15E exhibited surface fluorescence only when monolayers were treated with EGTA to disrupt tight junctions, as expected of glycoproteins expressed on basolateral surfaces. Immunoferritin labeling in conjunction with electron microscopy confirmed that MDCK cells infected with the HA recombinant exhibited specific labeling of the apical surfaces whereas the VSV-G and MuLV recombinants exhibited the respective antigens predominantly on the basolateral membranes. Quantitation of surface expression by [125I]protein A binding assays on intact and EGTA-treated monolayers confirmed the apical localization of the vaccinia-expressed HA and demonstrated that 95% of the VSV-G and 97% of the MuLV gp70/p15E glycoproteins were localized on the basolateral surfaces. These results demonstrate that glycoproteins of viruses that normally mature at basolateral surfaces of polarized epithelial cells contain all of the structural information required for their directional transport to basolateral plasma membranes.  相似文献   

13.
The molecular mechanism of human immunodeficiency virus type 1 (HIV-1) entry into cells involves specific interactions between the viral envelope glycoprotein gp120 and two target cell proteins, CD4 and either CCR5 or CXCR4 chemokine receptors. In order to delineate the functional role of HIV-1 gp120 subdomains of dualtropic strains in CCR5 coreceptor usage, we used a panel of chimeric viruses in which the V1/V2 and V3 domains of gp120 from the dualtropic HIV-1(KMT) isolate were introduced either alone or in combination into the T-tropic HIV-1(NL4-3) background. These chimeric constructs were employed in cell-cell fusion and cell-free virus infectivity assays using cell lines expressing CD4 and the CCR5 chemokine receptor. In both assays, the V3 domain of HIV-1(KMT) but not the V1/V2 domain proved to be the principal determinant of CCR5 coreceptor usage. However, in the cell-free viral infectivity assay although a chimeric virus with a combined V1/V2 and V3 domains of HIV-1(KMT) efficiently fused with coreceptor expressing cells, yet its infectivity was markedly diminished in CCR5 as well as CXCR4 expressing cells. Restoring a comparable level of infection of such chimeric virus required the C3-V5 domain from HIV-1(KMT) to be introduced. Our present findings confirmed that the V3 domain is the major determinant of fusion activity and cellular tropism, and demonstrated a dispensable role for the V1/V2 domain. In addition the C3-V5 domain appeared to play an important role in viral infectivity when the corresponding V1/V2 and V3 domains are present.  相似文献   

14.
Oomens AG  Bevis KP  Wertz GW 《Journal of virology》2006,80(21):10465-10477
The importance of the F protein cytoplasmic tail (CT) for replication of human respiratory syncytial virus (HRSV) was examined by monitoring the behavior of viruses expressing F proteins with a modified COOH terminus. The F protein mutant viruses were recovered and amplified under conditions where F protein function was complemented by expression of a heterologous viral envelope protein. The effect of the F protein modifications was then examined in the context of a viral infection in standard cell types (Vero and HEp-2). The F protein modifications consisted of a deletion of the predicted CT or a replacement of the CT with the CT of the vesicular stomatitis virus (VSV) G protein. In addition, engineered HRSVs that lacked all homologous glycoprotein genes (SH, G, and F) and expressed instead either the authentic VSV G protein or a VSV G containing the HRSV F protein CT were examined. We found that deletion or replacement of the F protein CT seriously impaired the production of infectious progeny. Cells infected with viruses bearing CT modifications displayed increased F protein surface expression and increased syncytium formation. The distribution of F protein in the plasma membrane of infected cells was altered, resulting in an F protein that was evenly distributed rather than localized predominantly to virus-induced surface filaments. CT deletion or exchange also abrogated interaction of F protein with Triton-insoluble lipid rafts. Addition of the F protein CT to the VSV G protein, expressed as the only viral glycoprotein in an HRSV genome, had the opposite effects: the number of infectious progeny was higher, the surface distribution was changed from relatively even to localized, and the proportion of VSV G protein associated with lipid rafts was higher. Together, these results show that the HRSV F protein CT plays a critical role in F protein cellular localization and production of infectious virus and suggest that the function provided by the CT is independent of the F protein ectodomain and transmembrane domain and is mediated by F protein-lipid raft interaction.  相似文献   

15.
We have investigated virus-lymphocyte interactions by using cloned subpopulations of interleukin-2-dependent effector lymphocytes maintained in vitro. Cloned lines of H-2-restricted hapten- or virus-specific cytotoxic T lymphocytes (CTL) and alloantigen-specific CTL were resistant to productive infection by vesicular stomatitis virus (VSV). In contrast, cloned lines of natural killer (NK) cells were readily and persistently infected by VSV, a virus which is normally highly cytolytic. VSV-infected NK cells continued to proliferate, express viral surface antigen, and produce infectious virus. Furthermore, persistently infected NK cells showed no marked alteration of normal cellular morphology and continued to lyse NK-sensitive target cells albeit at a slightly but significantly reduced level. The persistence of VSV in NK cells did not appear to be caused by the generation of temperature-sensitive viral mutants, defective interfering particles, or interferon. Consequently, studies comparing the intracellular synthesis and maturation of VSV proteins in infected NK and mouse L cells were conducted. In contrast to L cells, in which host cell protein synthesis was essentially totally inhibited by infection, the infection of NK cells caused no marked diminution in the synthesis of host cell proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitates of viral proteins from infected cells showed that the maturation rate and size of VSV surface G glycoprotein were comparable in L cells and NK cells. Nucleocapsid (N) protein synthesis also appeared to be unaffected in NK cells. In contrast, the viral proteins NS and M appeared to be selectively degraded in NK cell extracts. Mixing experiments suggested that a protease in NK cells was responsible for the selective breakdown of VSV NS protein. Finally, VSV-infected NK cells were resistant to lysis by virus-specific CTL, suggesting that persistently infected NK cells may harbor virus and avoid cell-mediated immune destruction in an immunocompetent host.  相似文献   

16.
Intracellular alphavirus nucleocapsids express a binding site for the cytoplasmic domain of the viral E2 spike glycoprotein. This binding site is recognized by the anti-idiotype monoclonal antibody, F13. The monoclonal anti-anti-idiotype antibody, raised against F13 and designated 3G10, recognizes the carboxy-terminal eight residues of the E2 cytoplasmic domain in Semliki Forest virus (SFV), identifying this as the signal for nucleocapsid interaction. F13 binding to cells infected with SFV or a second alphavirus, Sindbis virus, is inhibited by a synthetic peptide corresponding to the entire 31 residue cytoplasmic domain (E2c), and also by a synthetic peptide corresponding to the eight residue epitope recognized by 3G10. Both E2c and the eight residue peptide inhibited viral budding in microinjection experiments and when conjugated to colloidal gold are bound specifically to nucleocapsids in infected cells. These results identify a short linear signal in the E2 cytoplasmic domain required for the interaction with nucleocapsids which leads to budding of at least two alphaviruses from infected cells.  相似文献   

17.
Infection of mouse L cells with vesicular stomatitis virus (VSV) leads to an extensive cell fusion, while porcine kidney stable (PS) cells infected with VSV show only cell rounding. Therefore, comparative morphological studies on the infection of the two cell lines were carried out using a transmission or scanning electron microscope and an immunofluorescence microscope. PS cells infected with VSV contrasted to L cells infected with the same virus in the following two points; (1) the principal site of VSV maturation was the intracytoplasmic vacuolar membrane in PS cells and the plasma membrane in L cells. However, it was found that viral glycoprotein was present on the cell surface of infected PS cells; (2) the morphological changes at the cell surface of infected PS cells occurred much earlier and were severer than those at the cell surface of infected L cells. From these observations, we discuss the possibility that the surfaceembrane of PS cells is too sensitive to the VSV-induced cell damage to cause cell fusion.  相似文献   

18.
The Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) GP64 envelope glycoprotein is essential for virus entry and plays an important role in virion budding. An AcMNPV construct that contains a deletion of the gp64 gene is unable to propagate infection from cell to cell, and this defect results from both a severe reduction in the production of budded virions and the absence of GP64 on virions. In the current study, we examined GP64 proteins containing N- and C-terminal truncations of the ectodomain and identified a minimal construct capable of targeting the truncated GP64 to budded virions. The minimal budding and targeting construct of GP64 contained 38 amino acids from the mature N terminus of the GP64 ectodomain and 52 amino acids from the C terminus of GP64. Because the vesicular stomatitis virus (VSV) G protein was previously found to rescue infectivity of a gp64null AcMNPV, we also examined a small C-terminal construct of the VSV G protein. We found that a construct containing 91 amino acids from the C terminus of VSV G (termed G-stem) was capable of rescuing AcMNPV gp64null virion budding to wild-type (wt) or nearly wt levels. We also examined the display of chimeric proteins on the gp64null AcMNPV virion. By generating viruses that expressed chimeric influenza virus hemagglutinin (HA) proteins containing the GP64 targeting domain and coinfecting those viruses with a virus expressing the G-stem construct, we demonstrated enhanced display of the HA protein on gp64null AcMNPV budded virions. The combined use of gp64null virions, VSV G-stem-enhanced budding, and GP64 domains for targeting heterologous proteins to virions should be valuable for biotechnological applications ranging from targeted transduction of mammalian cells to vaccine production.  相似文献   

19.
It has been frequently reported that gp96 acts as a strong biologic adjuvant. Some studies have even investigated adjuvant activity of the gp96 C- or N-terminal domain. The controversy surrounding adjuvant activity of gp96 terminal domains prompted us to compare adjuvant activity of gp96 C- or N-terminal domain toward Her2/neu, as DNA vaccine in a Her2/neu-positive breast cancer model. To do so, mice were immunized with DNA vaccine consisting of transmembrane and extracellular domain (TM + ECD) of rat Her2/neu alone or fused to N- or C-terminal domain of gp96. Treatment with Her2/neu fused to N-terminal domain of gp96 resulted in tumor progression, compared to the groups vaccinated with pCT/Her2 or pHer2. Immunological examination revealed that treatment with Her2/neu fused to N-terminal domain of gp96 led to significantly lower survival rates, higher interferon-γ secretion, and induced infiltration of CD4+/CD8+ cells to the tumor site. However, it could not induce cytotoxic T lymphocyte activity, did not decrease regulatory T cell percentage at the tumor site, and eventually led to tumor progression. Our results reveal that gp96 N-terminal domain does not have adjuvant activity toward Her2/neu. It is also proposed that adjuvant activity and the resultant immune response of gp96 terminal domains may be directed by the antigen applied.  相似文献   

20.
Vesicular stomatitis virus (VSV), a prototype of the Rhabdoviridae family, contains a single surface glycoprotein (G) that is responsible for attachment to cells and mediates membrane fusion. Working with the Indiana serotype of VSV, we employed a reverse genetic approach to produce fully authentic recombinant viral particles bearing lethal mutations in the G gene. By altering the hydrophobicity of the two fusion loops within G, we produced a panel of mutants, W72A, Y73A, Y116A, and A117F, that were nonfusogenic. Propagation of viruses bearing those lethal mutations in G completely depended on complementation by expression of the glycoprotein from the heterologous New Jersey serotype of VSV. The nonfusogenic G proteins oligomerize and are transported normally to the cell surface but fail to mediate acid pH-triggered membrane fusion. The nonfusogenic G proteins also interfered with the ability of wild-type G to mediate fusion, either by formation of mixed trimers or by inhibition of trimer function during fusion. Passage of one recombinant virus, A117F, identified a second site suppressor of the fusion block, E76K. When analyzed in the absence of the A117F substitution, E76K rendered G more sensitive to acid pH-triggered fusion, suggesting that this compensatory mutation is destabilizing. Our work provides a set of authentic recombinant VSV particles bearing lethal mutations in G, confirms that the hydrophobic fusion loops of VSV G protein are critical for membrane fusion, and underscores the importance of the sequence elements surrounding the hydrophobic tips of the fusion loops in driving fusion. This study has implications for understanding dominant targets for inhibition of G-mediated fusion. Moreover, the recombinant viral particles generated here will likely be useful in dissecting the mechanism of G-catalyzed fusion as well as study steps of viral assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号