首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Kinex antibody microarray analyses was used to investigate the regulation of 188 protein kinases, 24 protein phosphatases, and 170 other regulatory proteins during meiotic maturation of immature germinal vesicle (GV+) pig oocytes to maturing oocytes that had completed meiosis I (MI), and fully mature oocytes arrested at metaphase of meiosis II (MII). Increases in apparent protein levels of protein kinases accounted for most of the detected changes during the GV to MI transition, whereas reduced protein kinase levels and increased protein phosphorylation characterized the MI to MII transition. During the MI to MII period, many of the MI-associated increased levels of the proteins and phosphosites were completely or partially reversed. The regulation of these proteins were also examined in parallel during the meiotic maturation of bovine, frog, and sea star oocytes with the Kinex antibody microarray. Western blotting analyses confirmed altered expression levels of Bub1A, IRAK4, MST2, PP4C, and Rsk2, and the phosphorylation site changes in the kinases Erk5 (T218 + Y220), FAK (S722), GSK3-beta (Y216), MEK1 (S217 + S221) and PKR1 (T451), and nucleophosmin/B23 (S4) during pig oocyte maturation.  相似文献   

2.
Imprinting is an epigenetic modification that is reprogrammed in the germ line and leads to the monoallelic expression of some genes. Imprinting involves DNA methylation. Maternal imprint is reset during oocyte growth and maturation. In vitro maturation (IVM) of oocytes may, therefore, interfere with imprint acquisition and/or maintenance. To evaluate if maturing human oocytes in vitro would be hazardous at the epigenetic level, we first determined the methylation profile of the H19 differentially methylated region (DMR). The methylation status of the H19 DMR seems particularly vulnerable to in vitro culture conditions. We analyzed oocytes at different stages of maturation following IVM, germinal vesicle (GV), metaphase I (MI), and metaphase II (MII), using the bisulfite mutagenesis technique. Our results indicated that the unmethylated specific maternal profile for the H19 DMR was stably established at the GV stage. The majority of MI-arrested oocytes exhibited an altered pattern of methylation, the CTCF-binding site being methylated in half of the DNA strands analyzed. Of the 20 MII oocytes analyzed, 15 showed the normal unmethylated maternal pattern, while 5 originating from two different patients exhibited a methylated pattern. These findings highlight the need for extended analysis on MII-rescued oocytes to appreciate the epigenetic safety of the IVM procedure, before it becomes a routine and practical assisted reproductive procedure.  相似文献   

3.
4.
In female mice, despite the presence of slight DNA double-strand breaks (DSBs), fully grown oocytes are able to undergo meiosis resumption as indicated by germinal vesicle breakdown (GVBD); however, severe DNA DSBs do reduce and delay entry into M phase through activation of the DNA damage checkpoint. But little is known about the effect of severe DNA DSBs on the spindle assembly checkpoint (SAC) during oocyte maturation. We showed that nearly no first polar body (PB1) was extruded at 12 h of in vitro maturation (IVM) in severe DNA DSBs oocytes, and the limited number of oocytes with PB1 were actually at telophase. However, about 60% of the severe DNA DSBs oocytes which underwent GVBD at 2 h of IVM released a PB1 at 18 h of IVM and these oocytes did reach the second metaphase (MII) stage. Chromosome spread at MI and MII stages showed that chromosomes fragmented after GVBD in severe DNA DSBs oocytes. The delayed PB1 extrusion was due to the disrupted attachment of microtubules to kinetochores and activation of the SAC. At the same time, misaligned chromosome fragments became obvious at the first metaphase (MI) in severe DNA DSBs oocytes. These data implied that the inactivation of SAC during the metaphase-anaphase transition of first meiosis was independent of chromosome integrity. Next, we induced DNA DSBs in vivo, and found that the number of superovulated oocytes per mouse was significantly reduced; moreover, this treatment increased the percentage of apoptotic oocytes. These results suggest that DNA DSBs oocytes undergo apoptosis in vivo.  相似文献   

5.
Oocyte cryopreservation is a potentially valuable technique for salvaging the germ-line when a valuable mare dies, but facilities for in vitro embryo production or oocyte transfer are not immediately available. This study examined the influence of maturation stage and freezing technique on the cryopreservability of equine oocytes. Cumulus oocyte complexes were frozen at the immature stage (GV) or after maturation in vitro for 30 hr (MII), using either conventional slow freezing (CF) or open pulled straw vitrification (OPS); cryoprotectant-exposed and untreated nonfrozen oocytes served as controls. After thawing, GV oocytes were matured in vitro, and MII oocytes were incubated for 0 or 6 hr, before staining to examine meiotic spindle quality by confocal microscopy. To assess fertilizability, CF MII oocytes were subjected to intracytoplasmic sperm injection (ICSI) and cultured in vitro. At 12, 24, and 48 hr after ICSI, injected oocytes were fixed to examine their progression through fertilization. Both maturation stage and freezing technique affected oocyte survival. The meiosis resumption rate was higher for OPS than CF for GV oocytes (28% vs. 1.2%; P < 0.05), but still much lower than for controls (66%). Cryopreserving oocytes at either stage induced meiotic spindle disruption (37%-67% normal spindles vs. 99% in controls; P < 0.05). Among frozen oocytes, however, spindle quality was best for oocytes frozen by CF at the MII stage and incubated for 6 hr post-thaw (67% normal); since this combination of cryopreservation/IVM yielded the highest proportion of oocytes reaching MII with a normal spindle (35% compared to <20% for other groups), it was used when examining the effects of cryopreservation on fertilizability. In this respect, the rate of normal fertilization for CF MII oocytes after ICSI was much lower than for controls (total oocyte activation rate, 26% vs. 56%; cleavage rate at 48 hr, 8% vs. 42%: P < 0.05). Thus, although IVM followed by CF yields a respectable percentage of normal-looking MII oocytes (35%), their ability to support fertilization is severely compromised.  相似文献   

6.
We investigated effects of invasive adenylate cyclase (iAC), 3-isobutyl-1-methylxanthine (IBMX) and dibutyryl cyclic AMP (dbcAMP) on porcine oocyte in vitro maturation (IVM), in vitro fertilisation (IVF) and subsequent embryonic development. Porcine oocytes were collected in Hepes-buffered NCSU-37 supplemented with or without 0.1 microg/ml iAC and 0.5 mM IBMX. IVM was performed in a modified NCSU-37 supplemented with or without 1 mM dbcAMP for 22 h and then without dbcAMP for an additional 24 h. After IVF, oocytes were cultured in vitro for 6 days. After 12 h of IVM, no difference in nuclear status was observed irrespective of supplementation with these chemicals during collection and IVM. At 22 h, most (95%) of the oocytes cultured with dbcAMP remained at the germinal vesicle (GV) stage, whereas 44.3% of the oocytes cultured without dbcAMP underwent GV breakdown. At 36 h, oocytes cultured with dbcAMP had progressed to prometaphase I or metaphase I (MI) (32.6% and 49.3%, respectively), whereas non-treated oocytes had progressed further to anaphase I, telophase I or metaphase II (MII) (13.6%, 14.3% and 38.0%, respectively). At 46 h, the rate of matured oocytes at MII was higher in oocytes cultured with dbcAMP (81%) than without dbcAMP (57%), while the proportion of oocytes arrested at MI was lower when cultured with dbcAMP (15%) than without dbcAMP (31%). The rate of monospermic fertilisation was higher when oocytes were cultured with dbcAMP (21%) than without dbcAMP (9%), with no difference in total penetration rates (58% and 52%, respectively). The blastocyst rate was higher in oocytes cultured with dbcAMP (32%) than without dbcAMP (19%). These results suggest that a change in intracellular level of cAMP during oocyte collection does not affect maturational and developmental competence of porcine oocytes and that synchronisation of meiotic maturation using dbcAMP enhances the meiotic potential of oocytes by promoting the MI to MII transition and results in high developmental competence by monospermic fertilisation.  相似文献   

7.
Growth hormone (GH) in rhesus macaque in vitro oocyte maturation (IVM) has been shown to increase cumulus expansion and development of embryos to the 9–16 cell stage in response to 100 ng/ml recombinant human GH (r‐hGH) supplementation during IVM. Although developmental endpoints for metaphase II (MII) oocytes and embryos are limited in the macaque, gene expression analysis can provide a mechanism to explore GH action on IVM. In addition, gene expression analysis may allow molecular events associated with improved cytoplasmic maturation to be detected. In this study, gene expression of specific mRNAs in MII oocytes and cumulus cells that have or have not been exposed to r‐hGH during IVM was compared. In addition, mRNA expression was compared between in vitro and in vivo‐matured metaphase II (MII) oocytes and germinal vesicle (GV)‐stage oocytes. Only 2 of 17 genes, insulin‐like growth factor 2 (IGF2) and steroidogenic acute regulator (STAR), showed increased mRNA expression in MII oocytes from the 100 ng/ml r‐hGH treatment group compared with other IVM treatment groups, implicating insulin‐like growth factor (IGF) and steroidogenesis pathways in the oocyte response to GH. The importance of IGF2 is notable, as expression of IGF1 was not detected in macaque GV‐stage or MII oocytes or cumulus cells. Mol. Reprod. Dev. 77: 353–362, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Changes in MPF and MAPK activities during meiotic maturation of goat oocytes were investigated. Detection of MPF activity occurred concomitantly with GVBD, increased at MI, decreased during anaphase-telophase I transition, and increased thereafter in MII oocytes. The appearance of MAPK activity was delayed compared to MPF activity. MAPK activity increased after GVBD and persisted during the MI-MII transition. Whether MAPK was implicated in goat oocyte meiotic competence was also investigated by using oocytes from different follicle size categories that arrest at specific stages of the maturation process (GV, GVBD, MI, and MII). Results indicate that the ability of goat oocytes to resume meiosis is not directly related to the presence of Erk2. The ability to phosphorylate MAPK is acquired by the oocyte during follicular growth after the ability to resume meiosis. GVBD-arrested oocytes exhibited a high level of MPF activity after 27 hr of culture. However, 28% of oocytes from this group contained inactive MAPK, and 72% exhibited high MAPK activity. In addition, 29% of GVBD-arrested oocytes contained a residual interphasic network without recruitment of microtubules around the condensed chromosomes; 71% of GVBD-arrested oocytes displayed recruitment of microtubules near the condensed chromosomes and contained asters of microtubules distributed throughout the cytoplasm. These results indicate that oocytes arrested at GVBD were not exactly at the same point in the meiotic cell cycle progression, and suggest that MAPK could be implicated in the regulation of microtubule organization. The data presented here suggest that in goat oocytes, MAPK is not implicated in the early events of meiosis resumption, but rather in post-GVBD events such as spindle formation and MII arrest. © 1996 Wiley-Liss Inc.  相似文献   

9.
In an effort to better understand oocyte function, we utilized two-dimensional (2D) electrophoresis and mass spectrometry to identify proteins that are differentially expressed during murine oocyte maturation. Proteins from 500 germinal vesicle (GV) and metaphase II-(MII) arrested oocytes were extracted, resolved on 2D electrophoretic gels, and stained with silver. Analysis of the gels indicated that 12 proteins appeared to be differentially expressed between the GV and MII stage. These proteins were then cored from the 2D gels and identified by mass spectrometry as: transforming acidic coiled-coil protein 3 (TACC3), heat shock protein 105 (HSP105), programmed cell death six-interacting protein (PDCD6IP), stress-inducible phosphoprotein (STI1), importin alpha2, adenylsuccinate synthase (ADDS), nudix, spindlin, lipocalin, lysozyme, translationally controlled tumor protein (TCTP), and nucleoplasmin 2 (NPM2). Interestingly, PDCD6IP, importin alpha2, spindlin, and NPM2 appear slightly larger in mass and more acidic on the MII oocyte gel compared to the GV oocyte gel, suggesting that they may be post-translationally modified during oocyte maturation. Given NPM2 is an oocyte-restricted protein, we chose to further investigate its properties during oocyte maturation and preimplantation development. Real-Time RT-PCR showed that NPM2 mRNA levels rapidly decline at fertilization. Indirect immunofluorescence analysis showed that, with the exception of cortical localization in MII-arrested oocytes, NPM2 is localized to the nucleus of both GV stage oocytes and all stages of preimplantation embryos. We then performed one-dimensional (1D) western blot analysis of mouse oocytes and preimplantation embryos and found that, as implicated by the 2D gel comparison, NPM2 undergoes a phosphatase-sensitive electrophoretic mobility shift during the GV to MII transition. The slower migrating NPM2 form is also present in pronuclear embryos but by the two-cell stage, the majority of NPM2 exists as the faster migrating form, which persists to the blastocyst stage.  相似文献   

10.
In our study, we have examined the pattern of global histone modification changes in somatic cell nuclei after their transfer into mouse oocytes at different stages of maturation or after their parthenogenetic activation. While germinal vesicle (GV) staged immature oocytes are strongly labeled with anti-acetylated histone H3 and H4 antibodies, the signal is absent in both metaphase I and metaphase II oocytes (MI, MII). In contrast, the oocytes of all maturation stages show a presence of trimethylated H3/K4 in their chromatin. When somatic cells were fused to intact or enucleated GV oocytes, both the GV and the somatic cell nucleus showed a very strong signal for all the antibodies used. On the other hand, when somatic cells nuclei that are AcH3 and AcH4 positive before fusion are introduced into either intact or enucleated MI or MII oocytes, their acetylation signal decreased rapidly and was totally absent after a prolonged culture. This was not the case when anti-trimethyl H3/K4 antibody was used. The somatic cell chromatin showed only a slight decrease in the intensity of labeling after its transfer into MI or MII oocytes. This decrease was, however, evident only after a prolonged culture. These results suggest not only a relatively higher stability of the methylation modification but also some difference between the oocyte and somatic chromatin. The ability to deacetylate the chromatin of transferred somatic nuclei disappears rapidly after the oocyte activation. Our results indicate that at least some reprogramming activity appears in the oocyte cytoplasm almost immediately after GV breakdown (GVBD), and that this activity rapidly disappears after the oocyte activation.  相似文献   

11.
12.
Supplementation of energy substrates to culture medium is essential for resumption and completion of meiosis in vitro for many mammalian species. Objectives were to study the dog oocyte, specifically the influences of pyruvate and glutamine on maturation and the utilization of these two substrates at various developmental stages and incubation times. Ovarian oocytes (n=681) were obtained from spayed bitches and cultured for 48 hr in TCM 199 medium containing various concentrations of pyruvate (0-2.5 mM) and glutamine (0-4 mM) before being assessed for nuclear status. For analyzing metabolic activity, 259 dog oocytes were cultured for 0, 12, 24, 36, or 48 hr, assessed for pyruvate and glutamine metabolism using the hanging drop method and then evaluated for nuclear status. Neither pyruvate nor glutamine had influence (P > 0.05) on oocyte maturation in vitro (IVM). However, both culture interval and meiotic status influenced pyruvate uptake (P < 0.05). Specifically, pyruvate uptake declined as the oocyte progressed from the germinal vesicle (GV) to metaphase II (MII) stage. Glutamine oxidation decreased as culture duration progressed (P < 0.05). In summary, pyruvate or glutamine is not required to promote successful IVM of dog oocytes. But, both substrates are being metabolized, and in patterns different to the domestic cat, another carnivore species. Pyruvate played an important role earlier in the maturational process, and less glutamine was oxidized as the oocyte neared nuclear maturation. These variations emphasize the importance of defining species specificities in carnivores before expecting consistently successful IVM/IVF.  相似文献   

13.
WASP homolog associated with actin, membranes and microtubules (WHAMM) is a newly discovered nucleation-promoting factor that links actin and microtubule cytoskeleton and regulates transport from the endoplasmic reticulum to the Golgi apparatus. However, knowledge of WHAMM is limited to interphase somatic cells. In this study, we examined its localization and function in mouse oocytes during meiosis. Immunostaining showed that in the germinal vesicle (GV) stage, there was no WHAMM signal; after meiosis resumption, WHAMM was associated with the spindle at prometaphase I (Pro MI), metaphase I (MI), telophase I (TI) and metaphase II (MII) stages. Nocodazole and taxol treatments showed that WHAMM was localized around the MI spindle. Depletion of WHAMM by microinjection of specific short interfering (si)RNA into the oocyte cytoplasm resulted in failure of spindle migration, disruption of asymmetric cytokinesis and a decrease in the first polar body extrusion rate during meiotic maturation. Moreover, actin cap formation was also disrupted after WHAMM depletion, confirming the failure of spindle migration. Taken together, our data suggest that WHAMM is required for peripheral spindle migration and asymmetric cytokinesis during mouse oocyte maturation.  相似文献   

14.
Combination of in vitro maturation (IVM) and cryopreservation offers new opportunities for women with contraindication in ovarian stimulation, and females who desire to postpone the childbearing due to different problems. There are still controversies regarding IVM procedure and its impact on oocytes fertilization capability. This systematic review and meta-analysis were conducted to evaluate the impact of vitrification on human oocyte maturation rate during IVM procedure. In this review, we searched Medline, Embase, Scopus and ISI web of science to identify English-language studies. The last search was implemented on 3 February 2018. The original articles which assessed maturation rate after vitrification of MI or GV oocytes were included. Animal trials and the studies that performed cryopreservation using slow-freeze method were excluded. Bias and quality assessments were performed. 2476 articles were screened primarily. After duplication removing and the application of inclusion and exclusion criteria, 14 studies included for the analysis. All studies compared maturation rate between the oocytes that were vitrified at the GV or MI stage before maturation and oocytes which were matured in vitro without vitrification. Meta-analysis showed that oocyte vitrification at GV stage had a significant negative impact on maturation rate (RR = 0.76, 95% CI: 0.66–0.88); I2 = 85.2%; P = 0.000). Finally, based on our results, oocyte vitrification decreases the maturation rate by 24%.  相似文献   

15.
Sumoylation is an important posttranslational modification in which SUMO (small ubiquitin-related modifier) proteins are bonded covalently to their substrates. Studies on the roles of sumoylation in cell cycle regulation have been emerging in both mitosis from yeast to mammals and meiosis in budding yeast, but the functions of sumoylation in mammalian meiosis, especially in oocyte meiotic maturation are not well known. Here, we examined the localization and expression of SUMO-1 and SUMO-2/3, the two basic proteins in the sumoylation pathway and investigated their roles through overexpression of Senp2 during mouse oocyte maturation. Immunofluorescent staining revealed differential patterns of SUMO-1 and SUMO-2/3 localization: SUMO-1 was localized to the spindle poles in prometaphase I, MI and MII stages, around the separating homologues in anaphase I and telophase I stages of first meiosis, while SUMO-2/3 was mainly concentrated near centromeres during mouse oocyte maturation. Immunoblot analysis uncovered the different expression profiles of SUMO-1 and SUMO-2/3 modified proteins during mouse oocyte maturation. Overexpression of Senp2, a SUMO-specific isopeptidase, caused changes of SUMO-modified proteins and led to defects in MII spindle organization in mature eggs. These results suggest that the SUMO pathway may play an indispensable role during mouse oocyte meiotic maturation.Key words: sumoylation, mouse oocyte maturation, overexpression, Senp2, MII spindle  相似文献   

16.
The control of microtubule and actin-mediated events that direct the physical arrangement and separation of chromosomes during meiosis is critical since failure to maintain chromosome organization can lead to germ cell aneuploidy. Our previous studies demonstrated a role for FYN tyrosine kinase in chromosome and spindle organization and in cortical polarity of the mature mammalian oocyte. In addition to Fyn, mammalian oocytes express the protein tyrosine kinase Fer at high levels relative to other tissues. The objective of the present study was to determine the function of this kinase in the oocyte. Feline encephalitis virus (FES)-related kinase (FER) protein was uniformly distributed in the ooplasm of small oocytes, but became concentrated in the germinal vesicle (GV) during oocyte growth. After germinal vesicle breakdown (GVBD), FER associated with the metaphase-I (MI) and metaphase-II (MII) spindles. Suppression of Fer expression by siRNA knockdown in GV stage oocytes did not prevent activation of cyclin dependent kinase 1 activity or chromosome condensation during in vitro maturation, but did arrest oocytes prior to GVBD or during MI. The resultant phenotype displayed condensed chromosomes trapped in the GV, or condensed chromosomes poorly arranged in a metaphase plate but with an underdeveloped spindle microtubule structure or chromosomes compacted into a tight sphere. The results demonstrate that FER kinase plays a critical role in oocyte meiotic spindle microtubule dynamics and may have an additional function in GVBD.  相似文献   

17.
Calcium (Ca(2+))/calmodulin-dependent protein kinase kinase (CaMKK) is a novel member of Ca(2+)/calmodulin-dependent protein kinase (CaMK) family, whose physiological roles in regulating meiotic cell cycle needs to be determined. We showed by Western blot that CaMKK was expressed in pig oocytes at various maturation stages. Confocal microscopy was employed to observe CaMKK distribution. In oocytes at the germinal vesicle (GV) or prometaphase I (pro-MI) stage, CaMKK was distributed in the nucleus, around the condensed chromatin and the cortex of the cell. At metaphase I (MI) stage, CaMKK was concentrated in the cortex of the cell. After transition to anaphase I or telophase I stage, CaMKK was detected around the separating chromosomes and in the cortex of the cell. At metaphase II (MII) stage, CaMKK was localized to the cortex of the cell, with a thicker area near the first polar body (PB1). Treatment of pig cumulus-enclosed oocytes with STO-609, a membrane-permeable CaMKK inhibitor, resulted in the delay/inhibition of the meiotic resumption and the inhibition of first polar body emission. The correlation between CaMKK and microfilaments during meiotic maturation of pig oocytes was then studied. CaMKK and microfilaments were colocalized from MI to MII during porcine oocyte maturation. After oocytes were treated with STO-609, microfilaments were depolymerized, while in oocytes exposed to cytochalasin B (CB), a microfilament polymerization inhibitor, CaMKK became diffused evenly throughout the cell. These data suggest that CaMKK is involved in regulating the meiotic cell cycle probably by interacting with microfilaments in pig oocytes.  相似文献   

18.
In contrast to the majority of mammals, canine oocytes are ovulated at immature germinal vesicle (GV) stage and complete meiotic maturation to metaphase II during 48-72 hr within the oviducts. This study aims to characterize meiotic maturation process in bitch oocytes, with both morphological and biochemical approaches. The follow-up of chromatin and microtubules during maturation was described, and MPF and MAP kinase activities were quantified at different stages of maturation. Since bitch oocyte cytoplasm is darkly pigmented, the first step was to setup an appropriate staining method for DNA. We thus compared the efficiency of two visualization techniques and demonstrated that propidium iodide coupled to confocal microscopy was a better method than Hoechst/fluorescence microscopy for nuclear stage observation (determination rates: 98.6 vs. 69.5%, respectively; P < 0.01, n = 1622 oocytes). Microtubule organization, evaluated by tubulin immunodetection, revealed subcortical and perinuclear alpha-tubulin and asters in GV oocytes and a clear network of microtubules in GVBD oocytes. In MI and MII oocytes, a symmetrical, barrel-shaped, and radially located spindle was observed. MPF and MAP kinase activities were assayed concomitantly using histone H1 and MBP as substrates. Kinase activities were detected at low levels in oocytes at GV and GVBD stages and were significantly higher at MI and MII stages. In conclusion, despite the particular pattern of meiotic resumption in canine oocytes (ovulated at GV stage), cytoskeleton/chromatin organization and kinase activities follow a similar pattern to those observed in other mammalian species.  相似文献   

19.
Yang CR  Wei Y  Qi ST  Chen L  Zhang QH  Ma JY  Luo YB  Wang YP  Hou Y  Schatten H  Liu ZH  Sun QY 《PloS one》2012,7(6):e38807
The arrest of meiotic prophase in mammalian oocytes within fully grown follicles is dependent on cyclic adenosine monophosphate (cAMP) regulation. A large part of cAMP is produced by the Gs-linked G-protein-coupled receptor (GPR) pathway. In the present study, we examined whether GPR3 is involved in the maintenance of meiotic arrest in porcine oocytes. Expression and distribution of GPR3 were examined by western blot and immunofluorescence microscopy, respectively. The results showed that GPR3 was expressed at various stages during porcine oocyte maturation. At the germinal vesicle (GV) stage, GPR3 displayed a maximal expression level, and its expression remained stable from pro-metaphase I (MI) to metaphase II (MII). Immunofluorescence staining showed that GPR3 was mainly distributed at the nuclear envelope during the GV stage and localized to the plasma membrane at pro-MI, MI and MII stages. RNA interference (RNAi) was used to knock down the GPR3 expression within oocytes. Injection of small interfering double-stranded RNA (siRNA) targeting GPR3 stimulated meiotic resumption of oocytes. On the other hand, overexpression of GPR3 inhibited meiotic maturation of porcine oocytes, which was caused by increase of cGMP and cAMP levels and inhibition of cyclin B accumulation. Furthermore, incubation of porcine oocytes with the GPR3 ligand sphingosylphosphorylcholine (SPC) inhibited oocyte maturation. We propose that GPR3 is required for maintenance of meiotic arrest in porcine oocytes through pathways involved in the regulation of cAMP and cGMP.  相似文献   

20.
Sumoylation is an important post-translational modification in which SUMO (small ubiquitin-related modifier) proteins are bonded covalently to their substrates. Studies on the roles of sumoylation in cell cycle regulation have been emerging in both mitosis from yeast to mammals and meiosis in budding yeast, but the functions of sumoylation in mammalian meiosis, especially in oocyte meiotic maturation are not well known. Here, we examined the localization and expression of SUMO-1 and SUMO-2/3, the two basic proteins in the sumoylation pathway and investigated their roles through over-expression of Senp2 during mouse oocyte maturation. Immunofluorescent staining revealed differential patterns of SUMO-1 and SUMO-2/3 localization: SUMO-1 was localized to the spindle poles in prometaphase I, MI and MII stages, around the separating homologues in anaphase I and telophase I stages of first meiosis, while SUMO-2/3 was mainly concentrated near centromeres during mouse oocyte maturation. Immunoblot analysis uncovered the different expression profiles of SUMO-1 and SUMO-2/3 modified proteins during mouse oocyte maturation. Over-expression of Senp2, a SUMO-specific isopeptidase, caused changes of SUMO-modified proteins and led to defects in MII spindle organization in mature eggs. These results suggest that the SUMO pathway may play an indispensable role during mouse oocyte meiotic maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号