首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The EL2 gene of rice (Oryza sativa), previously classified as early response gene against the potent biotic elicitor N-acetylchitoheptaose and encoding a short polypeptide with unknown function, was identified as a novel cell cycle regulatory gene related to the recently reported SIAMESE (SIM) gene of Arabidopsis thaliana. Iterative two-hybrid screens, in vitro pull-down assays, and fluorescence resonance energy transfer analyses showed that Orysa; EL2 binds the cyclin-dependent kinase (CDK) CDKA1;1 and D-type cyclins. No interaction was observed with the plant-specific B-type CDKs. The amino acid motif ELERFL was identified to be essential for cyclin, but not for CDK binding. Orysa;EL2 impaired the ability of Orysa; CYCD5;3 to complement a budding yeast (Saccharomyces cerevisiae) triple CLN mutant, whereas recombinant protein inhibited CDK activity in vitro. Moreover, Orysa;EL2 was able to rescue the multicellular trichome phenotype of sim mutants of Arabidopsis, unequivocally demonstrating that Orysa;EL2 operates as a cell cycle inhibitor. Orysa;EL2 mRNA levels were induced by cold, drought, and propionic acid. Our data suggest that Orysa;EL2 encodes a new type of plant CDK inhibitor that links cell cycle progression with biotic and abiotic stress responses.  相似文献   

3.
In plants, different families of cyclin-dependent kinases (CDKs) and cyclins have been identified, indicating that also in plants the progression through the cell cycle is regulated by CDKs. In all eukaryotes, CDKs exert their activity through well-controlled phosphorylations of specific substrates on serine/threonine residues. Such post-translational modifications are universal mechanisms in signal transduction pathways. They allow the organism to differentiate, regulate growth and/or adapt to environmental changes, the latter being crucial for plants because of their sedentary life-style. This adaptation might explain the occurrence of a special CDK type with plant-specific features. This review focuses on the involvement of plant CDKs in different phases of the cell cycle in Arabidopsis thaliana and outlines their regulation by binding to other proteins, and by phosphorylation and dephosphorylation.  相似文献   

4.
Progression through the eukaryotic cell cycle is driven by the orderly activation of cyclin-dependent kinases (CDKs). For activity, CDKs require association with a cyclin and phosphorylation by a separate protein kinase at a conserved threonine residue (T160 in CDK2). Here we present the structure of a complex consisting of phosphorylated CDK2 and cyclin A together with an optimal peptide substrate, HHASPRK. This structure provides an explanation for the specificity of CDK2 towards the proline that follows the phosphorylatable serine of the substrate peptide, and the requirement for the basic residue in the P+3 position of the substrate. We also present the structure of phosphorylated CDK2 plus cyclin A3 in complex with residues 658-668 from the CDK2 substrate p107. These residues include the RXL motif required to target p107 to cyclins. This structure explains the specificity of the RXL motif for cyclins.  相似文献   

5.
Arooz T  Yam CH  Siu WY  Lau A  Li KK  Poon RY 《Biochemistry》2000,39(31):9494-9501
Cyclins and cyclin-dependent kinases (CDKs) are key regulators of the human cell cycle. Here we have directly measured the concentrations of the G(1) and G(2) cyclins and their CDK partners in highly synchronized human cervical carcinoma cells (HeLa). To determine the exact concentrations of cyclins and CDKs in the cell extracts, we developed a relatively simple method that combined the use of (35)S-labeled standards produced in rabbit reticulocyte lysates and immunoblotting with specific antibodies. Using this approach, we formally demonstrated that CDC2 and CDK2 are in excess of their cyclin partners. We found that the concentrations of cyclin A2 and cyclin B1 (at their peak levels in the G(2) phase) were about 30-fold less than that of their partner CDC2. The peak levels of cyclin A2 and cyclin E1, at the G(2) phase and G(1) phase, respectively, were only about 8-fold less than that of their partner CDK2. These ratios are in good agreement with size fractionation analysis of the relative amount of monomeric and complexed forms of CDC2 and CDK2 in the cell. All the cyclin A2 and cyclin E1 are in complexes with CDC2 and CDK2, but there are some indications that a significant portion of cyclin B1 may not be in complex with CDC2. Furthermore, we also demonstrated that the concentration of the CDK inhibitor p21(CIP1/WAF1) induced after DNA damage is sufficient to overcome the cyclin-CDK2 complexes in MCF-7 cells. These direct quantitations formally confirmed the long-held presumption that CDKs are in excess of the cyclins in the cell. Moreover, similar approaches can be used to measure the concentration of any protein in cell-free extracts.  相似文献   

6.
Trypanosoma cruzi, the etiologic agent of Chagas disease, is a protozoan parasite with a life cycle that alternates between replicative and non-replicative forms, but the components and mechanisms that regulate its cell cycle are poorly described. In higher eukaryotes, cyclins are proteins that activate cyclin-dependent kinases (CDKs), by associating with them along the different stages of the cell cycle. These cyclin–CDK complexes exert their role as major modulators of the cell cycle by phosphorylating specific substrates. For the correct progression of the cell cycle, the mechanisms that regulate the activity of cyclins and their associated CDKs are diverse and must be controlled precisely. Different types of cyclins are involved in specific phases of the eukaryotic cell cycle, preferentially activating certain CDKs. In this work, we characterized TcCYC6, a putative coding sequence of T. cruzi which encodes a protein with homology to mitotic cyclins. The overexpression of this sequence, fused to a tag of nine amino acids from influenza virus hemagglutinin (TcCYC6-HA), showed to be detrimental for the proliferation of epimastigotes in axenic culture and affected the cell cycle progression. In silico analysis revealed an N-terminal segment similar to the consensus sequence of the destruction box, a hallmark for the degradation of several mitotic cyclins. We experimentally determined that the TcCYC6-HA turnover decreased in the presence of proteasome inhibitors, suggesting that TcCYC6 degradation occurs via ubiquitin–proteasome pathway. The results obtained in this study provide first evidence that TcCYC6 expression and degradation are finely regulated in T. cruzi.  相似文献   

7.
Cell-cycle transitions in higher eukaryotes are regulated by different cyclin-dependent kinases (CDKs) and their activating cyclin subunits. Based on pioneering findings that a dominant-negative mutation of CDK1 blocks the cell cycle at G2-M phase, whereas dominant-negative CDK2 inhibits the transition into S phase, a model of cell-cycle control has emerged in which each transition is regulated by a specific subset of CDKs and cyclins. Recent work with gene-targeted mice has led to a revision of this model. We discuss cell-cycle control in light of overlapping and essential functions of the different CDKs and cyclins.  相似文献   

8.
Recessive mutations in the SIAMESE (SIM) gene of Arabidopsis thaliana result in multicellular trichomes harboring individual nuclei with a low ploidy level, a phenotype strikingly different from that of wild-type trichomes, which are single cells with a nuclear DNA content of approximately 16C to 32C. These observations suggested that SIM is required to suppress mitosis as part of the switch to endoreplication in trichomes. Here, we demonstrate that SIM encodes a nuclear-localized 14-kD protein containing a cyclin binding motif and a motif found in ICK/KRP (for Interactors of Cdc2 kinase/Kip-related protein) cell cycle inhibitor proteins. Accordingly, SIM was found to associate with D-type cyclins and CDKA;1. Homologs of SIM were detected in other dicots and in monocots but not in mammals or fungi. SIM proteins are expressed throughout the shoot apical meristem, in leaf primordia, and in the elongation zone of the root and are localized to the nucleus. Plants overexpressing SIM are slow-growing and have narrow leaves and enlarged epidermal cells with an increased DNA content resulting from additional endocycles. We hypothesize that SIM encodes a plant-specific CDK inhibitor with a key function in the mitosis-to-endoreplication transition.  相似文献   

9.
Cell cycle progression is tightly controlled by cyclins and cyclin-dependent kinases (CDKs). CDK2 plays a crucial role in regulating cell cycle progression, but how CDK2 is regulated is still incompletely understood. In this study, we report the identification and characterization of a novel gene CAC1 that regulates CDK2 activity. The open reading frame sequence of this gene encodes a protein of 369 amino acids which contains a Cullin domain, and this protein is physically associated with CDK2. As such, we have designated it Cdk-Associated Cullin1, or CAC1. CAC1 is highly expressed in cancer tissues and cancer cell lines. Interestingly, CAC1 is expressed in a cell cycle-dependent manner and its expression is high in late G1 to S phase. Knockdown of CAC1 by RNAi inhibits cell proliferation and induces G1/S arrest. Since CAC1 interacts with CDK2 and promotes the kinase activity of CDK2 protein, we propose that CAC1 is a novel cell cycle associated protein capable of promoting cell proliferation. Our data provide insight into the mechanism by which CDK2 is regulated and the molecular basis of cell cycle progression in cancer.  相似文献   

10.
Cancer prevention is a global priority, but history indicates that the journey towards achieving the goal is difficult. Various cyclin dependent kinase complexes (CDKs/cyclins) operate as major cell signaling components in all stages of cell cycle. CDK/cyclin protein complexes, regulating the cell cycle, are conserved during evolution. In cancer cells, cell division is uncontrolled and CDKs/cyclins become ‘check-points’ or targets. Keeping this in view the proteins cyclin C, cyclin D2, CDKN1C, and Growth Arrest and DNA Damage (GADD45α) which play a major role in regulating CDK/cyclin complexes and operate in the initial stages of cell cycle (G0 phase–S phase), have been identified as promising targets. Targeting critical regulators of cell-cycle signaling components by applying modern computational techniques is projected to be a potential tool for future cancer research.  相似文献   

11.
As the shoot apex produces most of the cells that comprise the aerial part of the plant, perfect orchestration between cell division rates and fate specification is essential for normal organ formation and plant development. However, the inter‐dependence of cell‐cycle machinery and meristem‐organizing genes is still poorly understood. To investigate this mechanism, we specifically inhibited the cell‐cycle machinery in the shoot apex by expression of a dominant negative allele of the A‐type cyclin‐dependent kinase (CDK) CDKA;1 in meristematic cells. A decrease in the cell division rate within the SHOOT MERISTEMLESS domain of the shoot apex dramatically affected plant growth and development. Within the meristem, a subset of cells was driven into the differentiation pathway, as indicated by premature cell expansion and onset of endo‐reduplication. Although the meristem structure and expression patterns of the meristem identity genes were maintained in most plants, the reduced CDK activity caused splitting of the meristem in some plants. This phenotype correlated with the level of expression of the dominant negative CDKA;1 allele. Therefore, we propose a threshold model in which the effect of the cell‐cycle machinery on meristem organization is determined by the level of CDK activity.  相似文献   

12.
Cyclin dependent kinases (CDKs) play important roles in the plant cell cycle, a highly coordinated process in plant growth and development. To understand the regulatory network involving the CDKs, we have examined the role of ACK1, a gene that has significant homology to known ICKs (inhibitors of CDKs), but occupies a distinct branch of the ICK phylogenetic tree. Overexpression of ACK1 in transgenic Arabidopsis significantly inhibited growth, leading to effects such as serration of leaves, as a result of strong inhibition of cell division in the leaf meristem. ACK1 transgenic plants also differed morphologically from control Arabidopsis plants, and the cells of ACK1 transgenics were more irregular than the corresponding cells of control plants. These results suggest that ACK1 acts as a CDK inhibitor in Arabidopsis, and that the alterations in leaf shape may be the result of restricted cell division.  相似文献   

13.
Cyclin-dependent kinases (CDKs) are involved in the control of cell cycle progression. Plant A-type CDKs are functional homologs of yeast Cdc2/Cdc28 and are expressed throughout the cell cycle. In contrast, B-type CDK (CDKB) is a family of mitotic CDKs expressed during the S/M phase, and its precise function remains unknown. Here, we identified two B2-type cyclins, CycB2;1 and CycB2;2, as a specific partner of rice CDKB2;1. The CDKB2;1-CycB2 complexes produced in insect cells showed a significant level of kinase activity in vitro, suggesting that CycB2 binds to and activates CDKB2. We then expressed green fluorescent protein (GFP)-fused CDKB2;1 and CycB2;2 in tobacco BY2 cells to investigate their subcellular localization during mitosis. Surprisingly, the fluorescence signal of CDKB2;1-GFP was tightly associated with chromosome alignment as well as with spindle structure during the metaphase. During the telophase, the signal was localized to the spindle midzone and the separating sister chromosomes, and then to the phragmoplast. On the other hand, the CycB2;2-GFP fluorescence signal was detected in nuclei during the interphase and prophase, moved to the metaphase chromosomes, and then disappeared completely after the cells passed through the metaphase. Co-localization of CDKB2;1-GFP and CycB2;2-GFP on chromosomes aligned at the center of the metaphase cells suggests that the CDKB2-CycB2 complex may function in retaining chromosomes at the metaphase plate. Overexpression of CycB2;2 in rice plants resulted in acceleration of root growth without any increase in cell size, indicating that CycB2;2 promoted cell division probably through association with CDKB2 in the root meristem.  相似文献   

14.
15.
Negative regulation of cell-cycle progression by RINGO/Speedy E   总被引:1,自引:0,他引:1  
Cell-cycle transitions are controlled by CDKs (cyclin-dependent kinases), whose activation is usually associated with the binding of cyclins. RINGO/Speedy proteins can also bind to and activate CDKs, although they do not have amino acid sequence homology with cyclins. The RINGO/Speedy family members studied so far positively regulate cell-cycle progression. In the present paper, we report the biochemical and functional characterization of RINGO/Speedy E. We show that RINGO/Speedy E is a functionally distant member of this protein family that negatively affects cell-cycle progression. RINGO/Speedy E overexpression inhibits the meiotic progression in Xenopus oocytes as well as the proliferation of mammalian cells. RINGO/Speedy E can bind to endogenous CDK1 and CDK2 in both cellular systems. However, the RINGO/Speedy E-activated CDKs have different substrate specificity than the CDKs activated by other RINGO/Speedy proteins, which may account for their different effects on the cell cycle. Our results indicate that, although all RINGO/Speedy family members can activate CDKs, they may differently regulate cell-cycle progression.  相似文献   

16.
Cyclin from herpesvirus saimiri (Vcyclin) preferentially forms complexes with cyclin-dependent kinase 6 (CDK6) from primate host cells. These complexes show higher kinase activity than host cell CDKs in complex with cellular cyclins and are resistant to cyclin-dependent inhibitory proteins (CDKIs). The crystal structure of human CDK6--Vcyclin in an active state was determined to 3.1 A resolution to better understand the structural basis of CDK6 activation by viral cyclins. The unphosphorylated CDK6 in complex with Vcyclin has many features characteristic of cyclinA-activated, phosphorylated CDK2. There are, however, differences in the conformation at the tip of the T-loop and its interactions with Vcyclin. Residues in the N-terminal extension of Vcyclin wrap around the tip of the CDK6 T-loop and form a short beta-sheet with the T-loop backbone. These interactions lead to a 20% larger buried surface in the CDK6--Vcyclin interface than in the CDK2--cyclinA complex and are probably largely responsible for the specificity of Vcyclin for CDK6 and resistance of the complex to inhibition by INK-type CDKIs.  相似文献   

17.
18.
Plants have capability to optimize its architecture by using CDK pathways. It involves diverse types of cyclin dependent kinase enzymes (CDKs). CDKs are classified in to eight classes (CDKA to CDKG and CKL) based on the recognized cyclin-binding domains. These enzymes require specific cyclin proteins to get activated. They form complex with cyclin subunits and phosphorylate key target proteins. Phosphorylation of these target proteins is essential to drive cell cycle further from one phase to another phase. During cell division, the activity of cyclin dependent kinase is controlled by CDK interactor/inhibitor of CDKs (ICK) and Kip-related proteins (KRPs). They bind with specific CDK/cyclin complex and help in controlling CDKs activity. Since cell cycle can be progressed further only by synthesis and destruction of cyclins, they are quickly degraded using ubiquitination-proteasome pathway. Ubiquitylation reaction is followed by DNA duplication and cell division process. These two processes are regulated by two complexes known as Skp1/cullin/F-box (SCF)-related complex and the anaphase-promoting complex/cyclosome (APC/C). SCF allows cell to enter from G1 to S phase and APC/C allows cell to enter from G2 to M phase. When all these above processes of cell division are going on, genes of cyclin dependent kinases gets activated one by one simultaneously and help in regulation of CDK pathways. How cell cycle is regulated by CDKs is discussed.  相似文献   

19.
Indirubin, an active ingredient of a traditional Chinese recipe Danggui Longhui Wan, has been known as a CDK inhibitor competing with ATP for binding to the catalytic site of cyclin-dependent kinases (CDKs). Since CDKs, a group of serine/threonine kinases forming active heterodimeric complexes with cyclins, are key regulators of the cell cycle regulation, therapeutic interventions targeting CDKs have been stimulated for the treatment of proliferative diseases, such as cancer, psoriasis, and for the prevention of chemotherapy-associated side effects, such as alopecia. A series of novel indirubin analogs was synthesized and evaluated for anti-proliferative and CDK2 inhibitory activities. Among the indirubin derivatives tested in the growth inhibitions against several human cancer cell lines, 5-nitro, halide, and bulky group containing acylamino substituted analogs showed high anti-proliferative effects. Selected analogs showing potent anti-proliferative activities were evaluated further in the CDK2 enzyme assay, which resulted in the discovery of potent CDK2 inhibitors.  相似文献   

20.
Structure-activity relationship studies of flavopiridol analogues   总被引:1,自引:0,他引:1  
Cyclin dependent kinases (CDKs) along with the complementary cyclins form key regulatory checkpoint controls on the cell cycle. Flavopiridol is a synthetic flavone that shows potent and selective cyclin-dependent kinase inhibitory activity. In this paper, we report modifications of the 3-hydroxy-1-methylpiperidinyl (D ring) of flavopiridol and their effect on CDK inhibitory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号