首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
Perfusion of isolated small intestine with the procyanidin dimers B2 and B5 extracted from cocoa indicated that both forms of dimer are transferred to the serosal side of enterocytes but only to a very small extent (<1% of the total transferred flavanol-like compounds). However, perfusion of dimer mainly resulted in large amounts of unmetabolised/unconjugated epicatechin monomer being detected on the serosal side (95.8%). The cleavage of dimer during transfer seemed to be energy-dependent, requiring an intact cell system, as incubation with jejunal homogenates failed to yield epicatechin. Low levels methylated dimer were also detected (3.2%), but no conjugates and metabolites of epicatechin indicating that metabolism of monomer and dimer is limited during dimer cleavage/translocation. The methylation of dimer may be by catechol-O-methyltransferase, however, at high concentrations of dimer COMT activity is reduced leading to an inhibition of both monomer and dimer O-methylation.  相似文献   

3.
The mechanism of herpesviral protease activation upon dimerization was studied using two independent spectroscopic assays augmented by directed mutagenesis. Spectroscopic changes, attributable to dimer interface conformational plasticity, were observed upon dimerization of Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr). KSHV Pr's dissociation constant of 585 +/- 135 nM at 37 degrees C was measured by a concentration-dependent, 100-fold increase in specific activity to a value of 0.275 +/- 0.023 microM product min(-1) (microM enzyme)(-1). A 4 nm blue-shifted fluorescence emission spectrum and a 25% increase in ellipticity at 222 nm were detected by circular dichroism upon dimer association. This suggested enhanced hydrophobic packing within the dimer interface and/or core, as well as altered secondary structures. To better understand the structure-activity relationship between the monomer and the dimer, KSHV Pr molecules were engineered to remain monomeric via substitution of two separate residues within the dimer interface, L196 and M197. These mutants were proteolytically inactive while exhibiting the spectroscopic signature and thermal stability of wild type, dissociated monomers (T(M) = 75 degrees C). KSHV Pr conformational changes were found to be relevant in vivo, as the autoproteolytic inactivation of KSHV Pr at its dimer disruption site [Pray et al. (1999) J. Mol. Biol. 289, 197-203] was detected in viral particles from KSHV-infected cells. This characterization of structural plasticity suggests that the structure of the KSHV Pr monomer is stable and significantly different from its structure in the dimer. This structural uniqueness should be considered in the development of compounds targeting the dimer interface of KSHV Pr monomers.  相似文献   

4.
An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic β-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization to form the structural equivalent of the classical hexamer. The covalently linked dimer neither bound to the insulin receptor, nor induced a metabolic response in vitro. However, it was extremely thermodynamically stable and did not form amyloid fibrils when subjected to mechanical stress, underlining the importance of oligomerization for insulin stability.  相似文献   

5.
The lactose transporter from Streptococcus thermophilus catalyses the symport of galactosides and protons. The carrier domain of the protein harbours the contact sites for dimerization, and the individual subunits in the dimer interact functionally during the transport reaction. As a first step towards the elucidation of the mechanism behind the cooperation between the subunits, regions involved in the dimer interface were determined by oxidative and chemical cross-linking of 12 cysteine substitution mutants. Four positions in the protein were found to be susceptible to intermolecular cross-linking. To ensure that the observed cross-links were not the result of randomly colliding particles, the cross-linking was studied in samples in which either the concentration of LacS in the membrane was varied or the oligomeric state was manipulated. These experiments showed that the cross-links were formed specifically within the dimer. The four regions of the protein located at the dimer interface are close to the extracellular ends of transmembrane segments V and VIII and the intracellular ends of transmembrane segments VI and VII.  相似文献   

6.
Fis is an abundant bacterial DNA binding protein that functions in many different reactions. We show here that Fis subunits rapidly exchange between dimers in solution by disulfide cross-linking mixtures of Fis mutants with different electrophoretic mobilities and by monitoring energy transfer between fluorescently labeled Fis subunits upon heterodimer formation. The effects of detergents and salt concentrations on subunit exchange imply that the dimer is predominantly stabilized by hydrophobic forces, consistent with the X-ray crystal structures. Specific and nonspecific DNA strongly inhibit Fis subunit exchange. In all crystal forms of Fis, the separation between the DNA recognition helices within the Fis dimer is too short to insert into adjacent major grooves on canonical B-DNA, implying that conformational changes within the Fis dimer and/or the DNA must occur upon binding. We therefore investigated the functional importance of dimer interface flexibility for Fis-DNA binding by studying the DNA binding properties of Fis mutants that were cross-linked at different positions in the dimer. Flexibility within the core dimer interface does not appear to be required for efficient DNA binding, Fis-DNA complex dissociation, or Fis-induced DNA bending. Moreover, FRET-based experiments provided no evidence for a change in the spatial relationship between the two helix-turn-helix motifs in the Fis dimer upon DNA binding. These results support a model in which the unusually short distance between DNA recognition helices on Fis is accommodated primarily through bending of the DNA.  相似文献   

7.
Stefin A folds as a monomer under strongly native conditions. We have observed that under partially denaturing conditions in the temperature range from 74 to 93 degrees C it folds into a dimer, while it is monomeric above the melting temperature of 95 degrees C. Below 74 degrees C the dimer is trapped and it does not dissociate. The dimer is a folded and structured protein as judged by CD and NMR, nevertheless it is no more functional as an inhibitor of cysteine proteases. The monomer-dimer transition proceeds at a slow rate and the activation energy of dimerization at 99 kcal/mol is comparable to the unfolding enthalpy. A large and negative dimerization enthalpy of -111(+/- 8) kcal/mol was calculated from the temperature dependence of the dissociation constant. An irreversible pretransition at 10-15 deg. below the global unfolding temperature has been observed previously by DSC and can now be assigned to the monomer-dimer transition. Backbone resonances of all the dimer residues were assigned using 15N isotopically enriched protein. The dimer is symmetric and the chemical shift differences between the monomer and dimer are localized around the tripartite hydrophobic wedge, which otherwise interacts with cysteine proteases. Hydrogen exchange protection factors of the residues affected by dimer formation are higher in the dimer than in the monomer. The monomer to dimer transition is accompanied by a rapid exchange of all of the amide protons which are protected in the dimer, indicating that the transition state is unfolded to a large extent. Our results demonstrate that the native monomeric state of stefin A is actually metastable but is favored by the kinetics of folding. The substantial energy barrier which separates the monomer from the more stable dimer traps each state under native conditions.  相似文献   

8.
Bothopstoxin-I (BthTX-I) is a homodimeric Lys49-PLA2 homologue from the venom of Bothrops jararacussu in which a single Trp77 residue is located at the dimer interface. Intrinsic tryptophan fluorescence emission (ITFE) quenching by iodide and acrylamide has confirmed that a dimer to monomer transition occurs on reducing the pH from 7.0 to 5.0. Both the monomer and the dimer showed an excitation wavelength-dependent increase in the fluorescence emission maximum, however the excitation curve of the dimer was blue-shifted with respect to the monomeric form. No differences in the absorption or circular dichroism spectra between pH 5.0 and 7.0 were observed, suggesting that this curve shift is due neither to altered electronic ground states nor to exciton coupling of the Trp residues. We suggest that fluorescence resonance energy homotransfer between Trp77 residues at the BthTX-I dimer interface results in excitation of an acceptor Trp population which demonstrates a red-shifted fluorescence emission.  相似文献   

9.
Vunnam N  Flint J  Balbo A  Schuck P  Pedigo S 《Biochemistry》2011,50(14):2951-2961
Epithelial- and neural-cadherins are specifically localized at synapses in neurons which can change the shape and contact surface on a time scale of seconds to months. We have focused our studies on the role of the extracellular domains of cadherins in the dynamics of synapses. The kinetics of dimer disassembly of the first two extracellular domains of E- and N-cadherin, ECAD12 and NCAD12, were studied with analytical size exclusion chromatography and sedimentation velocity. NCAD12 forms three different dimers that are distinguished by assembly conditions and kinetics of dissociation. ECAD12 dimer disassembles rapidly regardless of the calcium concentration, whereas the disassembly of NCAD12 dimers was strongly dependent on calcium concentration. In addition to the apo- and saturated-dimeric forms of NCAD12, there is a third dimeric form that is a slow exchange dimer. This third dimeric form for NCAD12, formed by decalcification of the calcium-saturated dimer, was kinetically trapped in apo-conditions and did not disassemble over a period of months. Sedimentation velocity experiments showed that this dimer, upon addition of calcium, had similar weighted averages as a calcium-saturated dimer. These studies provide evidence that the kinetics of dimer disassembly of the extracellular domains may be a major contributor to the morphological dynamics of synapses in vivo.  相似文献   

10.
The nicotinic acetylcholine receptor from Torpedo sp. occurs as a dimer, disulfide-cross-linked between delta subunits. We determined the sidedness of the COOH terminus of the acetylcholine receptor delta subunit by locating the delta-delta disulfide relative to the membrane and by identifying the Cys residue forming the disulfide. We used receptor-rich native membrane vesicles isolated from Torpedo californica electric tissue and characterized as to orientation and intactness. These vesicles had not been extracted and retained v ("43-kDa protein") as a marker of the cytoplasmic surface. Using the reduction of v as an assay of permeability, we showed that two reductants, 2-mercaptoethanesulfonate and reduced glutathione, were relatively impermeant. Both of these reductants reduced the delta-delta disulfide in sealed right-side-out vesicles equally in the presence and absence of saponin, and 2-mercaptoethanesulfonate reduced this disulfide equally in the presence and absence of Triton X-100. By contrast, surfactants enhanced the reduction of dimer in inside-out and sequestered vesicles. We conclude that the disulfide is extracellular. To identify the Cys residue forming the disulfide, we labeled the sulfhydryls both in receptor dimer and in monomer generated by mild reduction of dimer. By high performance liquid chromatography and NH2-terminal sequencing of cyanogen bromide fragments of labeled delta-delta dimer and delta monomer, we found that the penultimate residue, delta-Cys-500, uniquely formed an intersubunit disulfide and that this disulfide was uniquely reduced when receptor dimer was reduced to monomer. Therefore, the delta COOH terminus is extracellular.  相似文献   

11.
Retroviral integrases are reported to form alternate dimer assemblies like the core–core dimer and reaching dimer. The core–core dimer is stabilized predominantly by an extensive interface between two catalytic core domains. The reaching dimer is stabilized by N-terminal domains that reach to form intermolecular interfaces with the other subunit’s core and C-terminal domains (CTD), as well as CTD–CTD interactions. In this study, molecular dynamics (MD), Brownian dynamics (BD) simulations, and free energy analyses, were performed to elucidate determinants for the stability of the reaching dimer forms of full-length Avian Sarcoma Virus (ASV) and Human Immunodeficiency Virus (HIV) IN, and to examine the role of the C-tails (the last ~16–18 residues at the C-termini) in their structural dynamics. The dynamics of an HIV reaching dimer derived from small angle X-ray scattering and protein crosslinking data, was compared with the dynamics of a core–core dimer model derived from combining the crystal structures of two-domain fragments. The results showed that the core domains in the ASV reaching dimer express free dynamics, whereas those in the HIV reaching dimer are highly stable. BD simulations suggest a higher rate of association for the HIV core–core dimer than the reaching dimer. The predicted stability of these dimers was therefore ranked in the following order: ASV reaching dimer < HIV reaching dimer < composite core–core dimer. Analyses of MD trajectories have suggested residues that are critical for intermolecular contacts in each reaching dimer. Tests of these predictions and insights gained from these analyses could reveal a potential pathway for the association and dissociation of full-length IN multimers.  相似文献   

12.
Bothropstoxin-I (BthTx-I) is a homodimeric Lys49-phospholipase A(2) isolated from Bothrops jararacussu venom which damages liposome membranes via a Ca(2+)-independent mechanism. The Glu12/Trp77/Lys80 triad at the dimer interface forms extensive intermolecular hydrogen bonds and hydrophobic contacts, and equilibrium chemical denaturation was used to evaluate the effect on homodimer stability of site-directed mutagenesis of these residues. Changes in the intrinsic fluorescence anisotropy and farUV circular dichroism signals were analyzed using a two-step unfolding model of the BthTx-I dimer to estimate the Gibbs free energy changes of transitions between the dimer and native monomer and between the native and denatured monomers. Whereas the Trp77His, Trp77Gln and Glu12Gln mutants showed native-like dimer stabilities, the Trp77Phe, Lys80Met and Lys80Gly mutants showed significantly reduced K(d) values. A reduced dimer stability is correlated with a decrease in the Ca(2+)-independent membrane damaging activity as monitored by the release of a liposome entrapped fluorescent marker. Although the membrane damaging activity of the monomer is fivefold less than the dimer, the myotoxic activity was unaffected, indicating that these two effects are not correlated. These data suggest that the BthTx-I dimer is predominantly stabilized by hydrogen bonding interactions, and highlight the importance of the homodimeric form for efficient Ca(2+)-independent membrane damage.  相似文献   

13.
RNase A and its minor and major dimers were digested with subtilisin under controlled conditions. The major dimer was found to be slightly more resistant, the minor dimer markedly less resistant to subtilisin than monomeric RNase A. Two S-proteins formed for each RNase A species, one starting with Ser-21, the other with Ser-22. Their relative proportions indicate that the structure of the minor dimer, whose identity with that of a RNase A dimer shown to be 3D domain-swapped is strongly suggested by recent work [S. Sorrentino et al. (2000) FEBS Lett. 466, 35-39], makes its peptide bond between Ser-21 and Ser-22 more accessible to subtilisin than it is in RNase A and its major dimer. Moreover, (i) both subunits constituting the minor dimer are more susceptible to subtilisin than monomeric RNase A, and (ii) the susceptible bonds in one of its two exchanging N-terminal arms are more accessible to the protease than in the other. The properties of the major dimer suggest that its structure could be different.  相似文献   

14.
The fluorescent properties of 2-aminopurine (2-AP) incorporated in an RNA sequence are used to study the structural dynamics and local changes of the retroviral RNA structure. Using 2-AP, the conformational states of the unpaired loop adenine in avian leucosis virus RNA were studied upon its interaction with aminoglycoside antibiotics. The intensity of 2-AP fluorescence in the monomeric RNA hairpin was higher than in both RNA dimers. The intensity of fluorescence in the extended dimer was significantly lower than in the kissing loop dimer. The finding was be explained by the fact that stacking contacts in the extended dimer produce a more compact loop structure than in the kissing loop dimer. When the binding of aminogycoside antibiotics with the kissing loop dimer RNA was analyzed, only tobramycin increased the intensity of 2-AP fluorescence almost threefold. The results showed that 2-AP fluorescence is suitable for detecting local changes in complexes of retroviral RNA with ligands.  相似文献   

15.
We have constructed a disulfide dimer of S118C azurin, in which two copper centers are coupled through a relatively short covalent pathway, and studied its electron transfer properties. The dimer exhibits intriguing mechanistic properties. Due to the strain in the molecule, caused by the limited accessibility of Cys118, anti-cooperativity occurs in the two step oxidation of the dimer with a difference in redox potential between the two half reactions of 33 mV. Upon oxidation, the dimer favours the semi-reduced over the fully oxidized state, as the Cu(I) site in the semi-reduced dimer is able to stabilize the strained dimer complex. The internal electron transfer is surprisingly slow, which could be partially due to an increase in reorganization energy.  相似文献   

16.
The finding that exchange of tubulin subunits between tubulin dimers (alpha-beta + alpha'beta' <--> alpha'beta + alphabeta') does not occur in the absence of protein cofactors and GTP hydrolysis conflicts with the assumption that pure tubulin dimer and monomer are in rapid equilibrium. This assumption underlies the many physical chemical measurements of the K(d) for dimer dissociation. To resolve this discrepancy we used surface plasmon resonance to determine the rate constant for dimer dissociation. The half-time for dissociation was approximately 9.6 h with tubulin-GTP, 2.4 h with tubulin-GDP, and 1.3 h in the absence of nucleotide. A Kd equal to 10(-11) M was calculated from the measured rate for dissociation and an estimated rate for association. Dimer dissociation was found to be reversible, and dimer formation does not require GTP hydrolysis or folding information from protein cofactors, because 0.2 microM tubulin-GDP incubated for 20 h was eluted as dimer when analyzed by size exclusion chromatography. Because 20 h corresponds to eight half-times for dissociation, only monomer would be present if dissociation were an irreversible reaction and if dimer formation required GTP or protein cofactors. Additional evidence for a 10(-11) M K(d) was obtained from gel exclusion chromatography studies of 0.02-2 nM tubulin-GDP. The slow dissociation of the tubulin dimer suggests that protein tubulin cofactors function to catalyze dimer dissociation, rather than dimer assembly. Assuming N-site-GTP dissociation is from monomer, our results agree with the 16-h half-time for N-site GTP in vitro and 33 h half-life for tubulin N-site-GTP in CHO cells.  相似文献   

17.
Studying the dimeric RNA structural organization is a step toward the understanding of retroviral genomic RNA dimerization. A kissing loop dimer is rearranged into an extended dimer during maturation of the virus particle. The extended dimer formation may be inhibited by ligands interacting with the RNA kissing loop dimer. A study was made of the interaction of dimeric RNA with paromomycin and magnesium ions. RNA dimers were formed from two hairpin RNAs having complementary sequences in the loop. The structural features of RNA dimers and the influence of the ligands were inferred from the fluorescence of 2-aminopurine (2-AP) incorporated in one of the two RNA hairpin sequences. As dimeric RNA interacted with paromomycin, 2-AP fluorescence increased. The increase was explained by a flipping of the fluorescent base out of the RNA structure. The binding constants and stoichiometry were estimated for dimeric RNA binding with paromomycin. An RNA dimer was found to interact with two paromomycin molecules; the binding constant was approximately the same (about 3 × 105 M−1) for both types of dimers. It was observed that the antibiotic and Mg2+ ions compete for binding to the hairpin RNA dimer and that one paromomycin molecule is displaced by one Mg2+ ion.  相似文献   

18.
In this paper, the novel chiral porphyrin dimer ligand and its cobalt(II) porphyrin dimer were synthesized by using a glutamate bridging group. The FT-IR and Raman spectra of the chiral porphyrin dimer were investigated. Furthermore, the photochemical and electrochemical properties of dimer were studied. In addition, we prepared the nanorods of the cobalt(II) porphyrin dimer using liquid-solid-solution (LSS) technologies. The shape and dimension of the spontaneous aggregates of cobalt(II) porphyrin dimer were characterized by the transmission electron microscopy (TEM). The results show the diameter and shape of the aggregates can be controlled by refining the stocked solution temperature.  相似文献   

19.
Nyarko A  Cochrun L  Norwood S  Pursifull N  Voth A  Barbar E 《Biochemistry》2005,44(43):14248-14255
LC8 is a highly conserved light-chain subunit of cytoplasmic dynein that interacts with a wide variety of cellular proteins and is presumed to play a fundamental role in dynein assembly and cargo recruitment and in the assembly of protein complexes unrelated to dynein. LC8 is a dimer at physiological pH but dissociates to a folded monomer at pH < 4.8. We have suggested that acid-induced dimer dissociation is due to protonation of His 55, which is stacked against His 55' and completely buried in the dimer interface. In this work, we show that the pH-induced dissociation is reversible and indeed governed by the ionization state of His 55. Mutagenesis of His 55 to Lys results in a monomer in the pH range of 3-8, while the mutation to Ala results in a dimer in the same pH range. Mutations that disrupt intermolecular hydrogen bonds between Tyr 65 and Lys 44' and His 55 and Thr 67' do not change the association state of the dimer. Titration curves for His 55 and the two other histidines, His 72 and 68, were determined by (13)C-(1)H NMR for H55K and for WT-LC8 in the monomeric and dimeric states. The pK(a) values of His 72 and His 68 are 6 in the WT dimer and 6.2-6.5 in monomeric H55K, while the pK(a) of His 55 is about 4.5 in the WT dimer. These results indicate that deprotonation of His 55 is linked to dimer formation and that mutation of His 55 to a small neutral residue or to a positively charged residue uncouples the protonation and dissociation processes.  相似文献   

20.
The analysis of a recombinant pheromone-binding protein from the silkworm moth, Bombyx mori, by native gel electrophoresis with Coomassie staining showed one single band with a molecular mass consistent with a monomer. A slow migrating band, detected in the recombinant and native samples by a polyclonal antibody, was indistinguishable from the monomer in the mass spectrum fragmentation pattern and chromatographic behavior. Flow injection analyses of the protein by mass spectrometry in the negative mode showed fragments of a dimer. The dimeric form was also supported by estimation of the molecular mass by gel filtration at basic pH. A cross-linked dimer coeluted with the noncovalent dimer on a gel filtration column. The molecular mass of the protein changed in a pH-dependent way with a dramatic transition from dimer to monomer between pH 6 and 4.5. A low pH induced not only dissociation of the dimer, but also a conformational change in the protein. In marked contrast to denaturation with guanidinium chloride, the emission maxima of tryptophan was not significantly changed at low pH. BmPBP is thus a dimer at slightly acid, neutral, and basic pH, which dissociates and then undergoes conformational change at low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号